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Abstract

We study the calculus of variations problem in the presence of a system
of differential-integral (D-I) equations. In order to identify the necessary
optimality conditions for this problem, we derive the so-called D-I Euler–
Lagrange equations. We also generalize this problem to other cases, such
as the case of higher orders, the problem of optimal control, and we derive
the so-called D-I Pontryagin equations. In special cases, these formulations
lead to classical Euler–Lagrange equations. To illustrate our results, we
provide simple examples and applications such as obtaining the minimum
power for an RLC circuit.
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663 D-I- Euler-Lagrange equations

1 Introduction

The calculus of variations began with Johann Bernoulli’s Brachistochrone
problem at the end of the 17th century. As a result of their work, Euler
and Lagrange were able to develop a systematic way of dealing with this
kind of problem by introducing what is now known as the Euler–Lagrange
equation in the 18th century. This work was then extended in many ways
by Bliss, Bolza, Caratheodory, Clebsch, Hahn, Hamilton, Hilbert, Kneser,
Jacobi, Legendre, Mayer, Weierstrass, just to quote a few; see [4, 5, 11]. For
an interesting historical book on one-dimensional problems of the calculus of
variations, see [8].

The classical variational calculus has one major shortcoming despite its
great success, it only deals with functionals containing derivatives. Many
phenomena in nature can be modeled more accurately using differential in-
tegral equations. The application of these equations is found in science,
biology, engineering, and economics; see [1, 2, 3, 6, 7, 9, 10, 12, 15, 16]. It
is not worthwhile in applications to convert integrals into differentials, espe-
cially if there are many integrals of higher orders. In [13], an algorithm has
been constructed to compute the exact solutions for the quadratic optimal
control problem with integral constraints, and this algorithm has been used
to find the optimal solution for single and coupled RC electrical circuits. In
this paper, we identify differential-integral (D-I) Euler–Lagrange equations
necessary conditions for a new class of variational problems in which a cost
functional involves differential and integral operators.

2 Definitions and notations

Definition 1 (Lower and upper integrals). For a given time horizon [t0, tf ],

we define lower and upper integration of a continuous function x : [t0, tf ] →
ℜ by

IKx =

∫ t

t0

K(t, τ)x(τ) dτ, IKx =

∫ tf

t

K(t, τ)x(τ) dτ

with continuous kernel K(t, τ). We can define lower and upper higher order
integrals as follows:
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I2K1K2
x = IK1

(
IK2

x
)
, I

2

K1K2
x = IK1

(
IK2x

)
,

I2Kx = IK (IKx) , I
2

Kx = IK
(
IKx

)
,

and so on.

Definition 2 (Complementary integral). For a given time horizon [t0, tf ]

and continuous function x : [t0, tf ] → ℜ, we define the complement of the
integral

IKx =

∫ t

t0

K(t, τ)x(τ) dτ, by IKx =

∫ tf

t

K(t, τ)x(τ) dτ,

where K(t, s) := K(s, t).

For K = 1 we denote it by I1x = Ix, I1x = Ix.

Applying the Leibniz integral rule n+1 times to
∫ t

t0

(t−τ)n and
∫ tf

t0

(τ−

t)n, respectively, we obtain the Cauchy formulas for repeated integration.

Theorem 1 (Cauchy formulas). If x(t) is a continuous function over [t0, tf ],
then

1.
∫ t

t0

(t− τ)n x(τ)dτ = n!

∫ t

t0

∫ τ

t0

∫ τ1

t0

· · ·
∫ τn−1

t0︸ ︷︷ ︸
n+1 times

x(τn)dτndτn−1 . . . dτ1dτ,

2.
∫ tf

t

(τ−t)n x(τ)dτ = n!

∫ tf

t

∫ tf

τ

∫ tf

τ1

· · ·
∫ tf

τn−1︸ ︷︷ ︸
n+1 times

x(τn)dτn dτn−1 . . . dτ1dτ .

From this theorem, we can define lower and upper higher integrals
In x, I

n
x by

In x =
1

(n− 1)!

∫ t

t0

(t− τ)n−1x(τ) dτ,

I
n
x =

1

(n− 1)!

∫ tf

t

(τ − t)n−1x(τ) dτ.

Through this paper, D =
d

dt
, and in general Dn =

dn

dtn
.

Note that

(i) Dn (In x(t)) = x(t) and Dn
(
I
n
x(t)

)
= (−1)nx(t).

(ii) I (Dx(t)) = x(t)− x(t0) and I (Dx(t)) = x(tf )− x(t).
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665 D-I- Euler-Lagrange equations

3 D-I Euler–Lagrange equations

The first simplest D-I variations problem with fixed ends can be defined as
follows: Among all functions x(t) that satisfy the fixed end conditions

x(t0) = x0, x(tf ) = xf , (1)

find the function for which the functional

J(x) =

∫ tf

t0

f
(
t, x(t), D x(t), IK1

x(t), IK2
x(t)

)
dt, (2)

is an extremum. We assume that f : [t0, tf ] × ℜ4 → ℜ has continuous first
and second partial derivatives with respect to all of its arguments.

To derive the necessary conditions for the extremum, assume that x =

x(t) is the desired curve, and take some admissible curve x = x̄(t) close to
x = x(t) and include the curves x = x(t) in one parameter family of curves

x(t, ϵ) = x(t) + ϵη, η = x̄(t)− x(t), wheretbelongsto[t0, tf ].

If one considers the values of the functional (2) only on curves of the family
x(t, ϵ), then the functional becomes a function of ϵ:

J(y(ϵ)) = φ(ϵ).

This function φ(ϵ) is extremized for ϵ = 0 since for ϵ = 0 we have x = x(t).
The necessary conditions for the extremum of the function φ(ϵ) for ϵ = 0 is
as we know that φ′(0) = 0. Therefore we have proved the following lemma.

Lemma 1 (First variation condition). If x = x(t) is a solution to problem
(1)–(2), then ∂

∂ϵ
(J(x+ ϵη) |ϵ=0 = 0, for some functions η(t) satisfies η(t0) =

η(tf ) = 0.

We also know from the calculus of variations, the following fundamental
lemma.

Lemma 2 (The fundamental lemma). If for every continuous function η(t)∫ tf

t0

Ψ(t)η(t)dt = 0,
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where the function Ψ(t) is continuous on the interval [t0, tf ], then Ψ(t) ≡ 0

on that interval.

From the above two lemmas, we will prove the following theorem.

Theorem 2 (D-I Euler Lagrange conditions). If x = x(t) is a solution of
problem (1)–(2), then

∂f

∂x
−D

(
∂f

∂Dx

)
+ IK1

(
∂f

∂ IK1
x

)
+ IK2

(
∂f

∂ IK2x

)
= 0. (3)

Proof. By Lemma 1, if x = x(t) is a solution of Problem 1, then ∂
∂ϵ (J(x+ ϵη) |ϵ=0 =

0, for some functions η(t) satisfying η(a) = η(b) = 0, and it follows that∫ tf

t0

[
∂f

∂x
η +

∂f

∂Dx
Dη +

∂f

∂ IK1
x
IK1

η +
∂f

∂ IK2
x
IK2

η

]
dt = 0. (4)

We integrate the second term by parts, and we get∫ tf

t0

∂f

∂Dx
Dηdt =

[
∂f

∂x
(tf )η(tf )−

∂f

∂Dx
(t0)η(t0)

]
−
∫ tf

t0

D

(
∂f

∂Dx

)
ηdt

= −
∫ tf

t0

D

(
∂f

∂Dx

)
ηdt. (5)

By changing the order of the integrations in the third and fourth term in (4),
we get ∫ tf

t0

∂f

∂ IK1
x
IK1

ηdt =

∫ tf

t0

IK1

(
∂f

∂ IK1
x

)
ηdt, (6)∫ tf

t0

∂f

∂ IK2
x
IK2ηdt =

∫ tf

t0

IK2

(
∂f

∂ IK2
x

)
ηdt. (7)

Thus, substituting (5), (6), and (7) back into (4), gives us[
∂f

∂Dx
(tf )η(tf )−

∂f

∂Dx
(t0)η(t0)

]
+

∫ tf

t0

[
∂f

∂x
−D

(
∂f

∂Dx

)
+ IK1

(
∂f

∂ IK1
x

)
+ IK2

(
∂f

∂ IK2x

)]
ηdt = 0.(8)

Finally, from Lemma 2 and η(t0) = η(tf ) = 0, we obtain the desired D-I
Euler–Lagrange equation (3).

Remark 1. By substituting t = t0 in (3), we obtain the natural condition
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667 D-I- Euler-Lagrange equations[
∂f

∂x
−D

(
∂f

∂Dx

)
+

∫ tf

t0

K1

(
∂f

∂ IK1
x

)
dτ

]
τ=t0

= 0, (9)

and by substituting t = tf in (3), we obtain the natural condition[
∂f

∂x
−D

(
∂f

∂Dx

)
+

∫ tf

t0

K2

(
∂f

∂ IK2x

)
dτ

]
τ=tf

= 0. (10)

Special cases. There are some special cases of D-I Euler–Lagrange,
which are important in many applications:

case 1. If f is independent of IKx, then D-I Euler–Lagrange conditions
are reduced to so called (D − I) Euler–Lagrange equation:

∂f

∂x
−D

(
∂f

∂Dx

)
+ IK

(
∂f

∂ IKx

)
= 0,

and if K = (τ − t)n, then (D − I) Euler–Lagrange conditions become

∂f

∂x
−D

(
∂f

∂Dx

)
+ In

(
∂f

∂ I
n
x

)
= 0.

case 2. If f is independent of IKx, then D-I Euler–Lagrange conditions
are reduced to so called (D − I) Euler–Lagrange equation:

∂f

∂x
−D

(
∂f

∂Dx

)
+ IK

(
∂f

∂ IKx

)
= 0,

and if K = (t− τ)n, then (D − I) Euler–Lagrange conditions become

∂f

∂x
−D

(
∂f

∂Dx

)
+ I

n
(

∂f

∂ Inx

)
= 0.

case 3. If f is independent of both IK1
x, IK2x, then D-I Euler–

Lagrange conditions are reduced to the usual Euler–Lagrange equation:

∂f

∂x
−D

(
∂f

∂Dx

)
= 0.
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4 Generalizations

In this section, we generalized the fixed boundaries problem to the cases of
integral with deferent kernels, moving boundaries, higher order, and several
independent variables.

Integral with different kernel

Consider the functional

J(x) =

∫ tf

t0

f
(
t, x,Dx, IK11

x, IK12
x, . . . , IK1ℓ

x, IK21
x, IK22

x, . . . , IK2k
x
)
dt,

(11)
where f : [t0, tf ]×ℜ2+m+ℓ → ℜ has continuous partial derivatives up to the
order two with respect to all its arguments. Moreover, t0 and tf are specified,
and the boundary conditions are

x(t0) = x0, x(tf ) = xf .

For this case, following the above approach, we obtain the following necessary
conditions

∂f

∂Dx
−D

(
∂f

∂Dx

)
+

ℓ∑
j=1

IK1j

(
∂f

∂ IK1j
x

)
+

k∑
j=1

IK2j

(
∂f

∂ IK2jx

)
= 0. (12)

Moving boundaries

Let the terminal conditions at t = t0 and/or at t = tf not be specified. For
this case, following the above approach, we obtain the D-I Euler–Lagrange
equation given by (3), and the following transversally conditions:

∂f

∂Dx

]
t=t0

= 0, ifx(t0) is not satisfied and

∂f

∂Dx

]
t=tf

= 0, ifx(tf ) is not satisfied.
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669 D-I- Euler-Lagrange equations

Higher order

Consider the functional

J(x) =

∫ tf

t0

f
(
t, x,Dx, . . . , Dm x, IK1

x, I2K1
x, . . . , IℓK1

x, IK2 x, I
2
K2

x, . . . , I
k
K2

x
)
dt,

(13)

where f : [t0, tf ] × ℜ1+m+ℓ+k → ℜ has continuous partial derivatives up to
the order m + 1 with respect to all its arguments. Moreover, t0 and tf are
specified, and the boundary conditions are

x(t0) = x0, x(tf ) = xf ,

...
...

Dmx(t0) = xm0, Dmx(tf ) = xmf .

For this case, following the above approach, we obtain the following necessary
conditions:

m∑
i=0

(−1)iDi

(
∂f

∂Dix

)
+

ℓ∑
j=1

I
j

K1

(
∂f

∂ IjK1
x

)
+

k∑
j=1

Ij
K2

(
∂f

∂ I
j

K2
x

)
= 0. (14)

Several independent variables

Consider the functional

J(x1, . . . , xn) (15)

=

∫ tf

t0

f
(
t, x1, . . . , xn, x

′
1, . . . , x

′
n, . . . , IK1

x1, . . . , IK1
xn, IK2x1, . . . , IK2xn

)
dt,

where x1, x2, . . . , xn are independent functions with continuous first deriva-
tives and f : [t0, tf ] × ℜ4n → ℜ has continuous first and second partial
derivatives with respect to all of its arguments. Moreover, t0 and tf are
specified, and the boundary conditions are

x1(t0) = x10, x1(tf ) = x1f ,

...
...

xn(t0) = xn0, xn(tf ) = xnf .
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For this case, following the above approach, we obtain the following necessary
conditions:

∂f

∂xi
−D

(
∂f

∂Dxi

)
+ IK1

(
∂f

∂ IK1
xi

)
+ IK2

(
∂f

∂ IK2xi

)
= 0, i = 1, 2, . . . , n.

(16)

5 D-I optimal control problem

We shall consider the class of control problems where the dynamical system
is described by the following ordinary D − I equations:

Dx = f(t, x, IK1
x, IK2

x, u), (17)

x(t0) = x0, t0 and tf are specified, (18)

where x(t) an n-vector function is determined by u(t) an m-vector function,
with x ∈ ℜn, u ∈ ℜm.

The performance of the system is measured by the cost functional:

J(x) = S(tf , x(tf )) +

∫ tf

t0

L(t, x, IK1
x, IK2

x, u)dt. (19)

The problem is to find the functions u(t) that minimize (or maximize) )J . It is
assumed that f(t, x, IK1

x, IK2
x, u) and L(t, x, IK1

x, IK2
x, u) are continuous

for all t ∈ [t0, tf ], x ∈ ℜn, u ∈ ℜm, and have continuous derivative up to the
second order.

Theorem 3 (D-I (Pontryagin)). If u(t) is a solution to the problem (17)–
(19), then the following equations are satisfied:
state equations

Dx =
∂H

∂λ
= f(t, x, IK1

x, IK2
x, u); (20)

x(t0) = x0; (21)

adjoint equations

−Dλ =

(
∂H

∂ x

)T

+ IK1

(
∂F

∂ IK1
x

)T

+ IK2

(
∂F

∂ IK2x

)T

; (22)
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671 D-I- Euler-Lagrange equations

optimality conditions

0 =

(
∂H

∂ u

)T

; (23)

transversality condition

λ(tf ) =

(
∂S

∂ x

)T
]
t=tf

; (24)

where
H = L(t, x, IK1

x, IK2x, u) + λT (t, x, IK1
x, IK2x, u) (25)

is the usual Hamiltonian.

Proof. First S(tf , x(tf )) can be written as

S(tf , x(tf )) = S(t0, x(t0)) +

∫ tf

t0

d

dt
S(t, x(t))dt (26)

= S(t0, x(t0)) +

∫ tf

t0

[
∂S

∂t
+
∂S

∂x
x′
]
dt. (27)

Equation (19) becomes

J(x) = S(t0, x(t0)) +

∫ tf

t0

L(t, x, IK1
x, IK2

x, u) +

[
∂S

∂t
+
∂S

∂x
x′
]
dt. (28)

Adjoin the system differential equations (19) to J with multiplier functions
λ(t) and we have

Ĵ(x) = S(t0, x(t0)) +

∫ tf

t0

H − λT Dx+

[
∂S

∂t
+
∂S

∂x
x′
]
dt

= S(t0, x(t0)) +

∫ tf

t0

F (t, x,Dx, IK1
x, IK2

x, u, λ), (29)

where F (t, x,Dx, IK1
x, IK2

x, u, λ) = H − λT Dx+

[
∂S

∂t
+
∂S

∂x
x′
]
.

Following the same approach in the calculus of variations ((8)) gives[
∂F

∂Dx
(tf )η(tf )−

∂F

∂Dx
(t0)η(t0)

]
+

∫ tf

t0

[
∂F

∂x
−D

(
∂F

∂Dx

)
+ IK1

(
∂F

∂ IK1
x

)
+ IK2

(
∂F

∂ IK2
x

)]
ηdt = 0

for some η(t0) = 0.
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From the definition of F and the fact that the D-I Euler equation must
be satisfied, we have

∂F

∂x
−D

(
∂F

∂Dx

)
+ IK1

(
∂F

∂ IK1
x

)
+ IK2

(
∂F

∂ IK2
x

)
=
∂H

∂x
+ IK1

(
∂H

∂ IK1
x

)
+ IK2

(
∂H

∂ IK2
x

)
+

∂

∂x
[St + Sxx

′]

+D
(
λT − Sx

)
=
∂H

∂x
+ IK1

(
∂F

∂ IK1
x

)
+ IK2

(
∂F

∂ IK2
x

)
+D

(
λT
)
= 0. (30)

This gives (22). Similarly, λ and u being independent variables, then

∂F

∂λ
=
∂F

∂λ
=
∂H

∂λ
− Dx = 0,

∂F

∂u
=
∂F

∂u
=
∂H

∂u
= 0.

This gives (20) and (23), respectively. Finally, the transversally or boundary
conditions given by the remaining terms of (30) are

∂F

∂x′
(tf )η(tf ) =

[
∂S

∂x
− λT

]
η(tf ) = 0. (31)

The fact that η(tf ) does not vanish, yields (24).

6 Examples

To illustrate our result, we give some examples.

Example 1. In this example, we want to find the unknown supplied voltage
u(t) for the RLC circuit in Figure 1, which minimizes the cost functional
given by

J =
1

2
i2(5) +

1

2

∫ 5

0

u2(t)dt. (32)

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 662–680



673 D-I- Euler-Lagrange equations

Figure 1: Series RLC circuit.

By applying the Kirchhoff’s voltage law, we get

4
d

dt
i(t) + 5 i(t) +

∫ t

0

i(τ)dτ = u(t). (33)

By applying D-I Pontryagin necessary conditions to this problem with x ≡
i, t0 = 0, tf = 5 and

H =
1

2
u2(t) + λ(t)

[
−5

4
i(t)− 1

4

∫ t

0

i(τ)dτ +
1

4
u(t)

]
, (34)

the optimal control for the problem (32)–(33) is characterized by

u(t) = −1

4
λ(t),

where i(t) and λ(t) satisfy the following equations:
State equations

d i(t)

dt
= −5

4
i(t)− 1

4

∫ t

0

i(τ)dτ − 1

16
λ(t), (35)

i(0) = 1, (36)

Adjoint equations

d λ(t)

dt
=

5

4
λ(t) +

1

4

∫ 5

t

λ(τ) dτ, (37)

λ(5) = i(5). (38)
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Remark 2. Equations (35) and (37) provide the necessary conditions for
the problem. They constitute two second order D-I equations whose solution
contains four constants of integration. To evaluate these, we have 1-equation
i(0) = 1, 1-equation λ(5) = i(5), 1-equation Ii(t) = 0 at t = 0 and 1-equation
Iλ(t) = 0 at t = 5.

To solve the adjoint equation (37), let

λ1(t) =

∫ 5

t

λ(τ) dτ, λ2(t) =
dλ1(t)

dt
= −λ(t).

Then (37)–(38) can be written in the following matrix form:[
λ1(t)

λ2(t)

]′
=

[
0 1
−1
4

5
4

] [
λ1(t)

λ2(t)

]

with final conditions: [
λ1(5)

λ2(5)

]
=

[
0

−i(5)

]
,

which have the solution

[
λ1(t)

λ2(t)

]
= e

 0 1
−1
4

5
4

(t−5) [
0

−i(5)

]
.

Now (see, for example, [14]),[
0 1
−1
4

5
4

]
=

[
−1
3

4
3

−1
3

1
3

][
1 0

0 1
4

][
−1
3

4
3

−1
3

1
3

]−1

.

Then

e

 0 1
−1
4

5
4

(t−5)

=

[
−1
3

4
3

−1
3

1
3

][
e(t−5) 0

0 e
1
4 (t−5)

][
1 −4

1 −1

]

=
1

3

[
−e5−t + 4e

1
4 (5−t) 4e5−t − 4e

1
4 (5−t)

−e5−t + e
1
4 (5−t) 4e5−t − e

1
4 (5−t)

]
.

So,
λ(t) = −λ2(t) =

i(5)

3

[
4 e5−t − e

1
4 (5−t)

]
.
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To solve the state equation (35), let

i1(t) =

∫ t

0

i(τ) dτ, i2(t) =
di1(t)

dt
= i(t).

Then (35)–(36) can be written in the following nonhomogeneous matrix form[
i1(t)

i2(t)

]′
=

[
0 1
−1
4

−5
4

] [
i1(t)

i2(t)

]
+ ψ(t, i(5))

with initial conditions: [
i1(0)

i2(0)

]
=

[
0

1

]
,

where ψ(t, i(5)) =

 0
−i(5)
16

[
4
3 e

5−t − 1
3 e

1
4 (5−t)

], which have the solution

[
i1(t)

i2(t)

]
= e

 0 1
−1
4

−5
4

t [
0

1

]
+

∫ t

0

e

 0 1
−1
4

−5
4

(t−τ)

ψ(τ, i(5))dτ

=

[
−4
3 e

−t + 4
3e

−t
4

4
3e

−t − 1
3e

−t
4

]

− i(5)

16

∫ t

0

(−4
3 e

τ−t + 4
3e

1
4 (τ−t)

)(
4
3 e

5−t − 1
3 e

1
4 (5−t)

)(
4
3e

τ−t − 1
3e

1
4 (τ−t)

)(
4
3 e

5−t − 1
3 e

1
4 (5−t)

)  dτ.
So,

i(t) = i2(t) =
4

3
e−t − 1

3
e

−t
4 +

i(5)

9

[
e5−2t − 1

4
e

5
4−

5
4 t − e5−

5
4 t +

1

4
e

5
4−

1
2 t

]

⇒ i(5) =
4
(
4e−5 − e−

5
4

)
12− e−5 + e

−5
4

.

Hence, we obtain the control

u(t) = −

(
4e−5 − e−

5
4

)(
e5−t − e

1
4 (5−t)

)
3
(
12− e−5 + e

−5
4

) (39)

and the current (see Figure 2)
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i(t) =
4

3
e−t − 1

3
e

−t
4 +

4
(
4e−5 − e−

5
4

)(
e5−2t − 1

4e
5
4−

5
4 t − e5−

5
4 t + 1

4e
5
4−

1
2 t
)

9
(
12− e−5 + e

−5
4

) .

(40)

Figure 2: Optimal electrical current.

Example 2. In this example, we want to find u(t) that minimizes the cost
functional given by

J =
1

2

∫ 2

0

u2(t)dt+
1

2

∫ 2

0

[∫ t

0

(t− τ)x(τ) dτ

]2
dt

with constraints

Dx(t) = u(t), 0 < t ≤ 2,

x(0) = 1.

By applying D-I Pontryagin necessary conditions to this problem, the optimal
control is characterized by

u = −λ,
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Dx = −λ,

−Dλ =

∫ 2

t

{
(τ − t)

∫ τ

0

(τ − s)x(s) ds

}
dτ,

x(0) = 1,

λ(2) = 0.

The above system is simplified to the following equations:

Dx(t) = −
∫ 2

t

{∫ 2

τ

(r − τ1)

∫ r

0

(r − s)x(s) dsdr

}
dτ1 dτ, (41)

x(0) = 1. (42)

To solve (41)–(42). Let x1 = x(t), x2 =

∫ t

0

x1(τ) dτ, x3(t) =

∫ t

0

x2(τ) dτ,

x4(t) =

∫ 2

t

x3(τ) dτ, x5(t) =

∫ 2

t

x4(τ) dτ and x6(t) =

∫ 2

t

x5(τ) dτ.

Then (41)–(42) is equivalent to the following system:

x1

x2

x3

x4

x5

x6



′

=



0 0 0 0 0 −1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0





x1

x2

x3

x4

x5

x6


with

x1(0) = 1, x2(0) = 0, x3(0) = 0, x4(2) = 0, x5(2) = 0, x6(2) = 0,

which leads to the graph of x(t) as shown in Figure 3.
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Figure 3: Optimal state solution x(t).

7 Conclusion

In this paper, we have identified D-I Euler–Lagrange equations necessary
conditions for a new class of variational problems in which a cost functional
involving differential and integral operators. We concluded that if Euler–
Lagrange equations contain an integral, then they must contain the comple-
mentary integral. We also generalized results to other problems.
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