1. M.A. Abdou, F.A. Salama, Volterra–Fredholm integral equation of the first kind and spectral relationships, Appl. Math. Comput. 153 (2004), 141–153.
2. J. Ahmadi Shali, P. Darania, A.A. Jodayree, Collocation method for nonlinear Volterra–Fredholm integral equations, Open J. Appl. Sci. 2(2012),115–121.
3. H. Brunner, Collocation methods for Volterra integral and related functional equations, Cambridge Monographs on Applied and Computational Mathematics, vol. 15, Cambridge University Press, Cambridge, 2004.
4. O. Diekman, Thresholds and traveling waves for the geographical spread of infection, J. Math. Biol. 6 (1978), 109–130.
5. M. Hamina, J. Saranen , On the spline collocation method for the single layer heat operator equation, Math. Comp. 62 (1994), 41–64.
6. L. Hocia, On Approximate Solution for Integral Equation of the Mixed Type, ZAMM J. Appl. Math. Mech. 76 (1996), 415–416.
7. Y, Iso, K. Onishi, On the stability of the boundary element collocation method applied to the linear heat equation, J. Comput. Appl. Math. 38(1991), 201–209
8. J.P. Kauthen, Continuous time collocation for Volterra–Fredholm integral equations, Numer. Math. 56 (1989), 409–424.
9. A. Kirsch, An introduction to the mathematical theory of inverse problem, Second edition. Applied Mathematical Sciences, 120. Springer, New York, 2011.
10. K. Maleknejad, H. Almasieh, M. Roodaki, Triangular functions (TF) method for the solution of nonlinear Volterra–Fredholm integral equations, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 3293–3298
11. K. Maleknejad, M. Hadizadeh, A New computational method for Volterra–Fredholm integral equations, Comput. Math. Appl., 37 (1999), 1–8.
12. D.L. Phillips, A technique for the numerical solution of certain integral equations of the first kind, J. Assoc. Comput. Mach. 9 (1962), 84–97.
13. H. R. Thieme, A model for the spatio spread of an epidemic, J. Math. Biol. 4, (1977), 337–351.
14. A. N. Tikhonov, On the solution of incorrectly posed problem and the method of regularization, Soviet Math. 4 (1963), 1035–1038.
15. S. Yousefi, M. Razzaghi, Legendre Wavelets method for the nonlinear Volterra–Fredholm integral equations, Math. Comput. Simul. 70 (2005), 1–8.
16. A.M. Wazwaz, A reliable treatment for mixed Volterra–Fredholm integral equations, Appl. Math. Comput. 127 (2002), 405–414.
Send comment about this article