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Discrete collocation method for
Volterra type weakly singular integral
equations with logarithmic kernels

P. Mokhtary∗

Abstract

An efficient discrete collocation method for solving Volterra type weakly
singular integral equations with logarithmic kernels is investigated. One of
features of these equations is that, in general the first derivative of solution

behaves like as a logarithmic function, which is not continuous at the origin.
In this paper, to make a compatible approximate solution with the exact
ones, we introduce a new collocation approach, which applies the Müntz-
logarithmic polynomials(Müntz polynomials with logarithmic terms) as basis

functions. Moreover, since implementation of this technique leads to integrals
with logarithmic singularities that are often difficult to solve numerically, we
apply a suitable quadrature method that allows the exact evaluation of inte-
grals of polynomials with logarithmic weights. To this end, we first remind

the well-known Jacobi–Gauss quadrature and then extend it to integrals with
logarithmic weights. Convergence analysis of the proposed scheme are pre-
sented, and some numerical results are illustrated to demonstrate the effi-
ciency and accuracy of the proposed method.

Keywords: Discrete collocation method; Müntz-logarithmic polynomials;
Quadrature method; Volterra type weakly singular integral equations with
logarithmic kernels.

1 Introduction

In this paper, we develop an approximate approach to obtain the numerical
solution of the following Volterra type weakly singular integral equation with
logarithmic kernel
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y(x) = g(x)+

x∫
0

ln (x− t)K(x, t)y(t)dt, x ∈ Ω = [0, 1], 0 ≤ t ≤ x ≤ 1, (1)

where the continuous functions g(x) and K(x, t) are given and y(x) is the
unknown solution. Such kinds of equations arise from solution of Dirichlet’s
problem for the Laplace equation in two dimensions in terms of a single-layer
logarithmic potential [24], solution of the reduced wave equation in two di-
mensions using an integral equation with a kernel, which can be expressed
as a Hankel function of order zero that this kernel, has also a logarithmic
singularity [25], investigation of electrostatic and low frequency electromag-
netic problems [15], methods of computing the conformal mapping of a given
domain [28], solution of electromagnetic scattering problems( [2], [16]), deter-
mination of propagation of acoustical and elastical waves( [5], [6]), boundary
value problems of plane elasticity theory for regions with a defect [13], prob-
lems of diffraction by thin screens [12] and so on.

Weakly singular integral equations with logarithmic kernels are usually
difficult to solve analytically; so it is necessary to provide reliable numerical
techniques. There are several approximate methods proposed to obtain the
numerical solution of these types of equations, which we refer to some of them.
In [4], authors designed a computational meshless discrete Galerkin method
to solve the second kind Fredholm integral equations with logarithmic kernels.
In [17], authors developed a collocation method for the numerical solution
of a special integro-differential equation with logarithmic kernel using airfoil
polynomials of the first kind. A collocation method based on the periodic
splines was introduced in [11] to solve some logarithmic kernel integral equa-
tions on open arcs. In [29], authors studied a special integral equation with
logarithmic kernel and solved it using product integration method. In [14],
a piecewise Chebyshev expansion was considered to solve Volterra integral
equations with logarithmic singularities in their kernels. The properties of
the integro-differential equations of the convolution on a finite interval with
kernel having a logarithmic singularity were studied in [3]. In [10], authors
investigated two numerical approaches by means of an analytical integration
in the vicinity of the singular point and extraction of the singular part. A
Gauss type quadrature method with a logarithmic weight function was ex-
tended to evaluate of the Cauchy type integral equations with logarithmic
kernels in [30].

In this paper, we design and analyze a reliable discrete collocation tech-
nique to obtain a suitable approximate solution of (1). Our strategy is based
on the following two stages. From well-known existence and uniqueness the-
orems [8], we can see that the first derivative of the exact solution has a
singularity at the origin and behaves like as a logarithmic function. Then
to establish a highly accurate approximate solution, it is necessary to rep-
resent the collocation solution as a linear combination of the suitable bases
functions with logarithmic asymptotic behavior like as Müntz-logarithmic
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polynomials [18]. Since in the implementation procedure, integrals with log-
arithmic singularities are observed to highly accurate evaluation of them, we
use a generalized Gauss type quadrature with logarithmic weight function
that calculates exactly integrals of polynomials [7].

The reminder of this paper is organized as follows. In the next section we
present the required preliminaries for our subsequent development. Here, we
introduce the Müntz-logarithmic polynomials as well as the generalized Gauss
quadrature method for the integrals with logarithmic weight functions. In
Section 3, we explain the application of the discrete collocation method using
Müntz-logarithmic polynomials to approximate the solution of (1). In Section
4, we provide a reliable convergence analysis for the proposed algorithm that
justifies the L2−norm of the error function tends to zero as the approximation
degree tends to infinity. Section 5 devotes to our numerical illustrative and
Section 6 contains our conclusions.

2 Preliminaries

In this section, we give some preliminaries that are required in the sequel.

2.1 Müntz-Logarithmic polynomials

This subsection is devoted to a brief introduction on the Müntz-logarithmic
polynomials. All of the details presented in this section a long with further
details can be found in [18].

The Müntz-logarithmic polynomials are defined as

Mn(x) = Rn(x) + Sn(x) lnx, n ≥ 0, x ∈ Ω, (2)

where Rn(x) and Sn(x) are algebraic polynomials of degree [n2 ] and [n−1
2 ],

respectively; that is,

Rn(x) =

[n2 ]∑
i=0

rix
i, Sn(x) =

[n−1
2 ]∑

i=0

six
i.

It is shown that these polynomials are orthogonal with respect to the
weight function w(x) = 1. Explicit expressions of the coefficients are obtained
as follows:

Theorem 1.

• If n = 2m, m ≥ 0, we have
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ri = −

(
m+ i
m

)2(
m
i

)2
[

2m+1
2i+1 + 2(m− i)

m−1∑
j=0,j ̸=i

2j+1
(j−i)(j+i+1)

]
,

si = −(m− i)

(
m+ i
m

)2(
m
i

)2

, 0 ≤ i ≤ m− 1,

and

rm =

(
2m
m

)2

, sm = 0.

• If n = 2m+ 1, m ≥ 0, we have
ri =

(
m+ i
m

)2(
m
i

)2
[

2m+1
2i+1 + 2(m+ i+ 1)

m∑
j=0,j ̸=i

2j+1
(j−i)(j+i+1)

]
,

si = (m+ i+ 1)

(
m+ i
m

)2(
m
i

)2

, 0 ≤ i ≤ m.

Proof. See [18].

The first few Müntz-logarithmic polynomials are given by

M0(x) = 1,

M1(x) = 1 + lnx,

M2(x) = −3 + 4x− lnx,

M3(x) = 9− 8x+ 2(1 + 6x) lnx,

M4(x) = −11− 24x+ 36x2 − 2(1 + 18x) lnx,

M5(x) = 19 + 276x− 294x2 + 3(1 + 48x+ 60x2) lnx,

M6(x) = −21− 768x+ 390x2 + 400x3 − 3(1 + 96x+ 300x2) lnx.

2.2 Jacobi–Gauss quadrature

This subsection presents the mechanism of the Jacobi–Gauss quadrature [7,
9, 27], which is to seek the best numerical approximation of an integral by
selecting optimal nodes at which the integrand is evaluated. The Nth-order
Jacobi–Gauss quadrature formula (JG)α,β to approximate the integral is
given by
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1∫
−1

f(r)(1− r)α(1 + r)βdr ≈ (JG)α,β(f) :=
N∑
i=1

f(xα,β
i )Wα,β

i ,

α, β > −1, r ∈ [−1, 1],

which the integral is evaluated exactly if f(r) is a polynomial of degree 2N −
1 or less. The nodes {xα,β

i }Ni=1 and the corresponding weights {Wα,β
i }Ni=1

depend on α, β and are given by the following formulas [7, 27]:

• {xα,β
i }Ni=1 are the zeros of the following orthonormal polynomial

Pα,β
N (r) =

√
n!(2N + α+ β + 1)Γ(N + α+ β + 1)

2α+β+1Γ(N + α+ 1)Γ(N + β + 1)
Jα,β
N (r),

where Jα,β
N (r) is the classical Jacobi polynomial of degree N .

• The weights {Wα,β
i }Ni=1 are given by

(
Wα,β

i

)−1
=

N−1∑
n=0

(
Pα,β
n (xα,β

i )

)2

, 1 ≤ i ≤ N.

The error term for the Nth-order Jacobi–Gauss quadrature (JG)α,β is
given by [7]( 1∫

−1

(1− r)α(1 + r)βf(r)dr

)
−(JG)α,β(f) = EN,r(α, β, f(r)) := δα,βN

f (2N)(ξ)

(2N)!
,

(3)
where ξ lies somewhere on [−1, 1] and

δα,βN =
22N+α+β+1N !Γ(N + α+ 1)Γ(N + β + 1)Γ(N + α+ β + 1)

(2N + α+ β + 1)Γ(2N + α+ β + 1))2
.

2.3 Gauss type quadrature for logarithmic weights
integrals

This subsection devotes to introduce a generalized Jacobi–Gauss quadratures
[7] to approximate the following integrals
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(a)

1∫
−1

f(r) ln (1− r)(1− r)αdr,

(b)

1∫
−1

f(r) ln (1 + r)(1 + r)βdr. (4)

Considering the first integral in (4) we have

∂

∂α

1∫
−1

(1− r)αf(r)dr =
∂

∂α

1∫
−1

eα ln (1−r)f(r)dr

=

1∫
−1

f(r) ln (1− r)(1− r)αdr,

and equivalently

1∫
−1

f(r) ln (1− r)(1− r)αdr =
∂

∂α

1∫
−1

(1− r)αf(r)dr

≈ ∂

∂α

(
(JG)α,0(f)

)
=

∂

∂α

N∑
i=1

(
f(xα,0

i )Wα,0
i

)

=
N∑
i=1

(
dWα,0

i

dα
f(xα,0

i ) +Wα,0
i

dxα,0
i

dα
f ′(xα,0

i )

)
:= (GJG)α,0(f), (5)

where “GJG” is an abbreviation for the generalized Jacobi–Gauss. From
(3), we can obtain the following formula for the error term of Nth order
generalized Jacobi–Gauss quadrature (GJG)α,0:( 1∫

−1

f(r)(1− r)α ln (1− r)dr

)
− (GJG)α,0(f)

=
∂

∂α
EN,r(α, 0, f(r)) := ẼN,r(α, 0, f(r))

:=

(
ln (2)− 1

2N + α+ 1

+ 2Ψ(N + α+ 1)− 2Ψ(2N + α+ 1)

)
EN,r(α, 0, f(r)), (6)
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where Ψ(z) = d ln (Γ(z))
dz = Γ′(z)

Γ(z) is the psi or digamma function.

Proceeding the same technique with (5)-(6) we can obtain the following
approximation for the second integral of (4)

1∫
−1

f(r) ln (1 + r)(1 + r)βdr =
∂

∂β

1∫
−1

(1 + r)βf(r)dr

≈ ∂

∂β

(
(JG)0,β(f)

)
=

∂

∂β

N∑
i=1

(
f(x0,β

i )W0,β
i

)

=
N∑
i=1

(
dW0,β

i

dβ
f(x0,β

i ) +W0,β
i

dx0,β
i

dβ
f ′(x0,β

i )

)
:= (GJG)0,β(f),

which has the following error function

( 1∫
−1

f(r)(1 + r)β ln (1 + r)dr
)
− (GJG)0,β(f)

=
∂

∂β
EN,r(0, β, f(r)) := ẼN,r(0, β, f(r))

:=

(
ln (2)− 1

2N + β + 1

+ 2Ψ(N + β + 1)− 2Ψ(2N + β + 1)

)
EN,r(0, β, f(r)). (7)

The relations (6) and (7) conclude that the generalized Jacobi–Gauss
quadratures (GJG)α,0(f) and (GJG)0,β(f) calculate the integrals of (4)
exactly for polynomials of degree 2N − 1 or less same as the Jacobi–Gauss
quadrature (JG)α,β(f).

3 Numerical approach

The main concern of this section is to obtain the discrete collocation solu-
tion of (1) when the Müntz-logarithmic polynomials are applied as the basis
functions. To this end we represent the collocation solution of (1) as

yN (x) =
N∑

n=0

anMn(x), (8)
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such that the unknowns {an}Nn=0 satisfy in the following linear algebraic
system:

yN (xi) = g(xi) +

xi∫
0

ln (xi − t)K(xi, t)yN (t)dt, 0 ≤ i ≤ N, (9)

where {xi}Ni=0 is the shifted Legendre–Gauss quadrature points [27]. Apply-
ing the variable transformation

t = ti(θ) =
xi

2
(θ + 1), θ ∈ [−1, 1],

we can rewrite (9) as follows:

yN (xi) = g(xi) +
xi

2

1∫
−1

ln (xi − ti(θ))K(xi, ti(θ))yN (ti(θ))dθ

= g(xi) +
xi

2

{
ln

xi

2

1∫
−1

K̃(xi, θ)yN (ti(θ))dθ

+

1∫
−1

ln (1− θ)K̃(xi, θ)yN (ti(θ))dθ

}
(10)

for 0 ≤ i ≤ N and K̃(xi, θ) = K(xi, ti(θ)). Substituting (8) into (10) yields

N∑
n=0

an

{
Mn(xi)−

xi

2

{
ln

xi

2
A(n,xi)

1 +A(n,xi)
2

}}
= g(xi), 0 ≤ i ≤ N, (11)

where

A(n,xi)
1 =

1∫
−1

K̃(xi, θ)Mn(ti(θ))dθ,

A(n,xi)
2 =

1∫
−1

ln (1− θ)K̃(xi, θ)Mn(ti(θ))dθ.

Using (2), we have
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A(n,xi)
1 =

1∫
−1

K̃(xi, θ)

(
Rn(ti(θ)) + Sn(ti(θ)) ln (ti(θ))

)
dθ

=

1∫
−1

K̃(xi, θ)

(
Rn(ti(θ)) + ln

xi

2
Sn(ti(θ))

)
dθ

+

1∫
−1

ln (1 + θ)K̃(xi, θ)Sn(ti(θ))dθ

=

1∫
−1

F (n,xi)
1 (θ)dθ

+

1∫
−1

ln (1 + θ)F (n,xi)
2 (θ)dθ,

where

F (n,xi)
1 (θ) = K̃(xi, θ)

(
Rn(ti(θ)) + ln

xi

2
Sn(ti(θ))

)
,

F (n,xi)
2 (θ) = K̃(xi, θ)Sn(ti(θ)). (12)

Using quadratures (JG)α,β and (GJG)0,β , we obtain

A(n,xi)
1 ≈ A(n,xi)

1,N := (JG)0,0(F (n,xi)
1 (θ)) +

[
(GJG)0,β(F (n,xi)

2 (θ))

]
β=0

.

(13)

On the other hand, from (2) we can write

A(n,xi)
2 =

1∫
−1

ln (1− θ)K̃(xi, θ)

(
Rn(ti(θ)) + Sn(ti(θ)) ln (ti(θ))

)
dθ

=

1∫
−1

ln (1− θ)F (n,xi)
1 (θ)dθ +

1∫
−1

ln (1− θ) ln (1 + θ)F (n,xi)
2 (θ)dθ

= A(1,n,xi)
2 +A(2,n,xi)

2 , (14)

where
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A(1,n,xi)
2 =

1∫
−1

ln (1− θ)F (n,xi)
1 (θ)dθ,

A(2,n,xi)
2 =

1∫
−1

ln (1− θ) ln (1 + θ)F (n,xi)
2 (θ)dθ.

Trivially we can write

A(1,n,xi)
2 ≈ A(1,n,xi)

2,N =

[
(GJG)α,0(F (n,xi)

1 (θ))

]
α=0

, (15)

and

A(2,n,xi)
2 =

0∫
−1

ln (1− θ) ln (1 + θ)F (n,xi)
2 (θ)dθ

+

1∫
0

ln (1− θ) ln (1 + θ)F (n,xi)
2 (θ)dθ. (16)

Using the variable transformation θ = θ1(s) =
s+1
2 in the second integral

and θ = −θ1(s) in the first integral of (16), we obtain

A(2,n,xi)
2 =

1

2

1∫
−1

ln
1− s

2
ln

3 + s

2

(
F (n,xi)

2 (θ1(s)) + F (n,xi)
2 (−θ1(s))

)
ds

=
1

2

{ 1∫
−1

ln (1− s)F (n,xi)
3 (s)ds− ln 2

1∫
−1

F (n,xi)
3 (s)ds

}
,

where

F (n,xi)
3 = ln

3 + s

2

(
F (n,xi)

2 (θ1(s)) + F (n,xi)
2 (−θ1(s))

)
. (17)

then we can write

A(2,n,xi)
2 ≈ A(2,n,xi)

2,N =
1

2

([
(GJG)α,0(F (n,xi)

3 (s))

]
α=0

− ln 2(JG)0,0(F (n,xi)
3 (s))

)
. (18)

Substituting (18) and (15) into (14) yields
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A(n,xi)
2 ≈ A(n,xi)

2,N := A(1,n,xi)
2,N +A(2,n,xi)

2,N . (19)

Inserting (19) and (13) into (11), we can conclude that the discrete collo-
cation solution of (1) is characterized by

ȳN (x) =
N∑

n=0

ānMn(x),

where the unknowns {ān}Nn=0 satisfy in the following system of linear alge-
braic equations

N∑
n=0

ān

{
Mn(xi)−

xi

2

{
ln

xi

2
A(n,xi)

1,N +A(n,xi)
2,N

}}
= g(xi), 0 ≤ i ≤ N, (20)

The matrix formulation of (20) is given by

aM = g, (21)

where a = [ā0, ā1, . . . , āN ], g = [g(x0), g(x1), . . . , g(xN )]T , and

M =M1 − (A1D1 +A2D2),

such that

M1 =


M0(x0) M0(x1) · · · M0(xN )
M1(x0) M1(x1) · · · M1(xN )

...
...

...
...

MN (x0)MN (x1) · · · MN (xN )

 ,

A1 =


A(0,x0)

1,N A(0,x1)
1,N · · · A(0,xN )

1,N

A(1,x0)
1,N A(1,x1)

1,N · · · A(1,xN )
1,N

...
...

...
...

A(N,x0)
1,N A(N,x1)

1,N · · · A(N,xN )
1,N

 ,

A2 =


A(0,x0)

2,N A(0,x1)
2,N · · · A(0,xN )

2,N

A(1,x0)
2,N A(1,x1)

2,N · · · A(1,xN )
2,N

...
...

...
...

A(N,x0)
2,N A(N,x1)

2,N · · · A(N,xN )
2,N

 ,

and D1 and D2 are the diagonal matrices with diagonal entries
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(D1)i,i =
xi

2
ln

xi

2
, (D2)i,i =

xi

2
, 0 ≤ i ≤ N.

4 Convergence analysis

In this section, we provide a reliable error analysis for the proposed technique
to justify convergence of the proposed approach. In our analysis we shall ap-
ply the following definitions and lemmas.

Definition 1.[ [1], [19–23], [27]]

1. L2(Ω) = {u| ∥u∥22 :=
∫
Ω

|u(x)|2dx <∞}.

2. C(Ω) is the space of all continuous functions on Ω.

3. INu is the Legendre–Gauss interpolation polynomial and defines by

INu(x) =
N∑
i=0

u(xi)Li(x),

where Li(x), 0 ≤ i ≤ N , are the Lagrange interpolation basis functions
associated with the Legendre–Gauss points {xi}Ni=0.

4. Let (X , ∥.∥X ) and (Y, ∥.∥Y) be normed vector spaces, and letK : X → Y
be a linear operator. Then K is compact, if the set

{Ku| ∥u∥X ≤ 1}

has compact closure in Y. For example, the integral operators with
continuous and weakly singular kernels are compact operators on C(Ω)
and L2(Ω).

Lemma 1.[see [8]] Let K(x, t) ∈ C(Ω × Ω); then for any g(x) ∈ C(Ω), the
Volterra type weakly singular integral equation with logarithmic kernel (1)
possesses a unique solution y(x) ∈ C(Ω).

Lemma 2.[see [1]] Let X be a Banach space, and let K : X → X be compact.
Then the equation (λ−K)u = f, λ ̸= 0 has a unique solution u ∈ X if and
only if the homogeneous equations (λ−K)z = 0 have only the trivial solution
z = 0. In this case the operator λ − K : X → X has a bounded inverse
(λ−K)−1.

Lemma 3.[see [26]] If u(x) ∈ C(Ω), then we have

∥u− INu∥2 → 0, as N →∞.
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Lemma 4.[see [19]] For every bounded function u(x), there exists a constant
C independent of u(x) such that

sup
N
∥INu∥2 ≤ C∥u∥∞.

Theorem 2. Under assumptions of Lemma 1, assume that the following
conditions are satisfied:

1. The given functions g(x),K(x, t), and the approximate solution ȳN (x)
are continuous on their domains.

2. The homogeneous equation (1) with g(x) = 0 has the only trivial solu-
tion.

3. ȳN (x) ∈ C(Ω) and the numerical integral operator

KN ȳN (x) :=

N∑
n=0

ān
x

2

{
ln

x

2
An,x

1,N +An,x
2,N

}
is a bounded operator on C(Ω) to C(Ω) with An,x

1,N and An,x
2,N defined in

(13) and (19), respectively.

4. The quadrature errors

∥EN,θ(0, 0,Fn,x
1 (θ))∥∞, ∥EN,s(0, 0,Fn,x

3 (s))∥∞,∥∥∥[ẼN,θ(α, 0,Fn,x
1 (θ))

]
α=0

∥∥∥
∞
,
∥∥∥[ẼN,θ(0, β,Fn,x

2 (θ))
]
β=0

∥∥∥
∞
,∥∥∥[ẼN,s(α, 0,Fn,x

3 (s))
]
α=0

∥∥∥
∞
, 0 ≤ n ≤ N,

converge to zero as N → ∞. Here the functions Fn,x
1 (θ),Fn,x

2 (θ) and
Fn,x

3 (s) are given in (12) and (17), respectively, and the error terms
EN,r(0, 0, f(r)),

ẼN,r(α, 0, f(r)), ẼN,r(0, β, f(r)) are defined in (3), (6), and (7), respec-
tively.

Then we have
lim

N→∞
∥y(x)− ȳN (x)∥2 = 0.

Proof. Using (20), we can conclude that the discrete collocation solution
ȳN (x) for the equation (1) satisfies in the following operator system:

ȳN (xi) = g(xi) +KN ȳN (xi), 0 ≤ i ≤ N, (22)
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where the operator KN is the numerical integral operator defined in the
assumption 3. Multiplying Li(x) on both sides of (22) and summing up from
i = 0 to i = N yield

IN (ȳN ) = INg + INKN ȳN . (23)

Subtracting (1) from (23) gives

y − IN (ȳN ) = (g − INg) + (Ky − INKN ȳN ),

or equivalently

(id−K)ēN = eIN (g)− eIN (ȳN ) + eIN (KȳN ) + IN
(
KȳN −KN ȳN

)
, (24)

where ēN = y(x) − ȳN (x) is the discrete collocation error function, eINu =
u − INu is the interpolation error function, id is the identity operator, and
K is the following continuous and compact integral operator with weakly
singular logarithmic kernel

Ky(x) =
x∫

0

ln (x− t)K(x, t)y(t)dt.

Applying Lemma 2 with X = C(Ω) and using the assumption 2, the
relation (24) can be rewritten as

∥ēN∥2 ≤ ∥(id−K)−1∥∞

(
∥eIN (g)∥2 + ∥eIN (ȳN )∥2

+ ∥eIN (KȳN )|2 + ∥IN
(
KȳN −KN ȳN

)
∥2

)
, (25)

with ∥(id−K)−1∥∞ <∞. Due to Lemma 3 and assumption 1 we have

∥eIN (g)∥2, ∥eIN (ȳN )∥2, ∥eIN (KȳN )|2 → 0, as N →∞. (26)

Now, it is sufficient that we show ∥IN
(
KȳN −KN ȳN

)
∥2 → 0 as N →∞.

To this end, using Lemma 4 and assumption 3, we can write

∥IN
(
KȳN −KN ȳN

)
∥2 ≤ C1∥KȳN −KN ȳN∥∞, (27)

which KȳN − KN ȳN is the numerical integration error function. According
to the definition of KN and numerical approach proposed in the previous
section, we can deduce that the numerical integration error is established by
calculating the errors obtained from the applying Jacobi–Gauss and general-
ized Jacobi–Gauss formulas in (13), (15), (18), and (19). Consequently, we
can write (27) as follows:
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∥IN
(
KȳN −KN ȳN

)
∥2 ≤ C2

N∑
n=0

(
∥EN,θ(0, 0,Fn,x

1 (θ))∥∞

+
∥∥∥[ẼN,θ(0, β,Fn,x

2 (θ))
]
β=0

∥∥∥
∞

+
∥∥∥[ẼN,θ(α, 0,Fn,x

1 (θ))
]
α=0

∥∥∥
∞

+
∥∥∥[ẼN,s(α, 0,Fn,x

3 (s))
]
α=0

∥∥∥
∞

+ ∥EN,s(0, 0,Fn,x
3 (s))∥∞

)
,

and thereby using assumption 4 in the inequality above, we deduce

∥IN
(
KȳN −KN ȳN

)
∥2 → 0, as N → 0. (28)

Finally, the required result can be obtained by applying (26) and (28) in
(25).

5 Numerical Results

In this section, we illustrate some examples using the method proposed in the
previous section and confirm its validity. All of calculations performed on a
PC runningMathematica software. In the obtained results we presented some
essential items regarding the L2-norms of the error functions and compari-
son results between our scheme and the well known Chebyshev collocation
method [9,27].

Example 1. Consider the following problem

y(x) = g(x) +

x∫
0

ln (x− t)y(t)dt

with

g(x) = x(lnx− 1) +
x2

12

(
π2 − 21 + 18 lnx− 6 ln2 x

)
and y(x) = x(lnx− 1) as the exact solution.

We solve this problem by the proposed method with N = 3. Indeed, we
seek a discrete collocation solution in the form
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ȳ3(x) =
3∑

n=0

ānMn(x),

to approximate this problem and find its unknown coefficients such that they
satisfy in the linear system (21) withN = 3. Considering the Gauss–Legendre
collocation points

x0 = 0.330009, x1 = 0.669991, x2 = 0.0694318, x3 = 0.930568,

and the operational matrices

M1 =


1 1 1 1

−0.1086 0.5995 −1.6674 0.9280
−0.5713 0.0805 −0.0549 0.7942
−0.2477 −0.3808 0.8873 0.6080

 ,

A1 =


2 2 2 2

−2.2173 −0.8009 −5.3348 −0.1439
−0.4627 −0.5191 1.6126 −0.1338
0.5550 −0.2017 0.1359 −0.1194

 ,

A2 =


−0.6137 −0.6137 −0.6137 −0.6137
−0.6095 −1.0441 0.3471 −1.2457
0.7718 0.1092 0.6562 −0.5302
0.1912 0.6068 −1.3532 0.0376

 ,

D1 =


−0.2973 0 0 0

0 −0.3664 0 0
0 0 −0.1167 0
0 0 0 −0.3560

 ,

D2 =


0.1650 0 0 0

0 0.3350 0 0
0 0 0.0247 0
0 0 0 0.4653

 ,

the system of linear algebraic equations (21) is presented in the following
form
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1.0449 + 1.6959ā0 − 0.6673ā1 − 0.8362ā2 − 0.1142ā3 = 0,
1.6603 + 1.9383ā9 + 0.6558ā1 − 0.1463ā2 − 0.6580ā3 = 0,
0.2955 + 1.2546ā0 − 2.3019ā1 + 0.1105ā2 + 0.9501ā3 = 0,
1.8965 + 1.9975ā0 + 1.4564ā1 + 0.9933ā2 + 0.5830ā3 = 0,

which its solution gives by

ā0 = −0.75, ā1 = −0.25, ā2 = −0.0833, ā3 = 0.0833.

Consequently the discrete collocation solution ȳ3(x) represents by

ȳ3(x) = −5.2953× 10−7 − x− 1.3027× 10−7 lnx+ 0.9999x lnx.

The L2-norm of the error function is 1.3445 × 10−13 that is in a very
good agreement with the exact ones whereas the approximation degree is
very small(N = 3).

Example 2. Consider the following problem;

y(x) = g(x) +

x∫
0

ln (x− t)ex+ty(t)dt,

with

g(x) = e−x lnx+
xex

6

(
− 12 + π2 − 6 lnx(−2 + lnx)

)
,

and y(x) = e−x lnx, as the exact solution.

We solve the problem and report the obtained results in Table 1 and Fig-
ure 1. In Figure 1, we plot the L2-norm of the error function in terms of
the various values of the degree of approximation N . Figure 1 shows that
the proposed algorithm obtains a good accuracy with suitable values of N .
Moreover to make a comparison, we also solve this problem by implementing
the well-known Chebyshev collocation method [9, 27] and give the obtained
results in Table 1. Based on Table 1, we confirm that the Müntz-logarithmic
polynomials makes faster rate of convergence for the discrete collocation so-
lution of this problem compared with the classical Chebyshev polynomials.

Example 3. Consider the following problem:

y(x) = g(x) + x

x∫
0

ln (x− t)t2y(t)dt,

with

g(x) = x
5
2 − 2x

13
2 (−13016 + 6930 ln 2 + 3465 lnx)

38115
,
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Table 1: The numerical errors of Example 2

Numerical Errors

N Our Method Chebyshev collocation Method [9,27]

2 3.61× 10−3 1.3× 10−1

4 8.13× 10−6 4.22× 10−2

6 9.38× 10−8 2.14× 10−2

8 9.84× 10−10 1.3× 10−2

10 3.44× 10−12 8.73× 10−3

12 6.37× 10−15 6.28× 10−3

2 4 6 8 10 12
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-12
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-8

-6

-4
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N

L
og

10
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rr
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L

Figure 1: Obtained L2− norm of the error function versus N for Example 2

and y(x) = x2
√
x as the exact solution.

We have calculated the approximate solution with different values of N
and displayed the obtained results in Table 2 and Figure 2. Table 2 and
Figure 2, present the L2-norm of the error functions versus N . As it can be
observed although the exact solution has singularity at zero, the numerical
errors are decreased with an appropriate rate as the approximation degree N
is increased.

Example 4. Consider the following problem:

y(x) = g(x) +

x∫
0

ln (x− t)y(t)dt
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Table 2: The numerical errors of Example 3

N Numerical Errors

2 2.69× 10−2

4 3.32× 10−4

6 1.18× 10−7

8 1.4× 10−10

10 1.84× 10−12

12 5.43× 10−15
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og
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L

Figure 2: Obtained L2− norm of the error function versus N for Example 3

with
g(x) = ex

(
1 + γ + Γ(0, x)

)
+ lnx,

where γ is Euler’s constant with the numerical value≃ 0.577216 and Γ(0, x)
is incomplete gamma function satisfies

Γ(a, z) =

∞∫
z

ta−1e−tdt.

Here the exact solution is given by y(x) = ex.

The obtained numerical results from implementation of the proposed dis-
crete collocation scheme are reported in Table 3 and Figure 3. The presented
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Table 3: The numerical errors of Example 4

N Numerical Errors

2 6.08× 10−3

4 2.01× 10−4

6 2.68× 10−6

8 1.78× 10−8

10 6.99× 10−11

12 1.85× 10−13

results confirm that our scheme provides reliable results for smooth solutions
of (1).
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Figure 3: Obtained L2− norm of the error function versus N for Example 4
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6 Conclusion

In this article, we developed a new discrete collocation method based on
the Müntz-logarithmic polynomials as basis functions. Moreover, we used
highly accurate Jacobi–Gauss and generalized Jacobi–Gauss quadratures to
approximate the integrals with Jacobi and logarithmic weights, respectively.
Convergence analysis of the proposed method were presented and some nu-
merical examples were illustrated to confirm the applicability of the presented
discrete collocation scheme.
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13asel/ Switzerland.

19. Mokhtary, P.Reconstruction of exponentially rate of convergence to Leg-
endre collocation solution of a class of fractional integro-differential equa-
tions, J. Comput. Appl. Math., 279 (2015), 145–158.

20. Mokhtary, P.Numerical treatment of a well-posed Chebyshev Tau method
for Bagley-Torvik equation with high-order of accuracy, Numer. Algo-
rithms, 72 (2016), 875–891.

21. Mokhtary, P.Discrete Galerkin method for fractional integro-differential
equations, Acta. Math. Sci., 36 (2016), no. B(2), 560–578.

22. Mokhtary, P. Numerical analysis of an operational Jacobi Tau method
forfractional weakly singular integro-differential equations, Appl. Numer.
Math., 121 (2017), 52–67.

23. Mokhtary, P. and Ghoreishi, F. Convergence analysis of spectral Tau
method for fractional Riccati differential equations, Bull. Iranian Math.
Soc., 40 (2014), no. 5, 1275–1296.



G
al
le
y
P
ro
of

Discrete collocation method for Volterra type weakly singular ... 117
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لگاریتمی های هسته با تکین ضعیف بطور ولترا انتگرالی معادلات برای گسسته محلی هم روش

مختاری پیام

ریاضی گروه پایه، علوم دانشکده تبریز، سهند صنعتی دانشگاه

١٣٩٧ خرداد ٢٣ مقاله پذیرش ،١٣٩٧ اردیبهشت ٢۶ شده اصلاح مقاله دریافت ،١٣٩۵ آذر ١۵ مقاله دریافت

تکین ضعیف بطور ولترا انتگرالی معادلات حل منظور به مناسب گسسته محلی هم روش یک : چکیده
در که است این معادلات این های ویژگی از یکی است. گرفته قرار بررسی مورد لگاریتمی های هسته با
در است. ناپیوسته مبدا در که کند می رفتار لگاریتمی تابع یک مانند جواب اول مرتبه مشتق کلی حالت
معرفی را جدید محلی هم رویکرد یک واقعی جواب با راستا هم تقریبی جواب یک ساخت برای مقاله این
چون بعلاوه، شود. می برده بکار ای پایه توابع عنوان به مونتز-لگاریتمی ایهای جمله چند آن در که کنیم می
روش به آنها حل اغلب که شود می لگاریتمی های تکینی با هایی انتگرال به منجر رویکرد این سازی پیاده
درآن که بریم می بکار را لگاریتمی وزن توابع با مناسب عددی گیری انتگرال روش یک است، مشکل عددی
روشهای منظور بدین شود. می محاسبه دقیق بطور لگاریتمی وزن توابع با ها ای جمله چند های انتگرال
می تعمیم لگاریتمی وزن توابع با انتگرالهای برای آنرا سپس و نموده یادآوری را گاوس-ژاکوبی انتگرالگیری
مناسب و دقت تایید منظور به عددی نتایج برخی و شود می ارائه پیشنهادی روش همگرایی آنالیز دهیم.

شود. می ارائه پیشنهادی روش بودن

عددی؛ انتگرالگیری روش مونتز-لگاریتمی؛ های ای جمله چند گسسته؛ محلی هم روش : کلیدی کلمات
لگاریتمی. های هسته با تکین ضعیف بطور ولترا انتگرالی معادلات
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