1. Bale, D. S., LeVeque, R. J., Mitran, S. and Rossmanith, J. A. A wave propagation method for conservation laws and balance laws with spatially varying flux functions, SIAM J. Sci. Comput. 24 (3) (2003), 955–978.
2. Botta, N., Klein, R., Langenberg, S.and Lutzenkirchen, S. Well balanced finite volume methods for nearly hydrostatic flows, J. Comput. Phys. 196 (2004), 539-565.
3. Chandrashekar, P. and Klingenberg, C. A second order well-balanced finite volume scheme for euler equations with gravity SIAM J. Sci. Comput. 37(3) (2015) B382–B402.
4. Courant, R., Friedrichs, K. O. and Lewy, H. Uber die partiellen differenzeengleichungen der mathematischen physik. Mass.Ann. 100 (1928) 32–74.
5. KAppeli, R. and Mishra, S. Well-balanced schemes for the euler equa-tions with gravitation J. Comput. Phys. 259 (Supplement C) (2014), 199–219.
6. LeVeque, R. J. Balancing source terms and flux gradients in highresolution godunov methods: The quasi-steady wave-propagation algorithm J. Comput. Phys. 146 (1998), 346–365.
7. LeVeque, R. J., Finite volume methods for hyperbolic problems Cambridge University Press, 2002.
8. LeVeque, R. J. and Bale, D. S. Wave propagation methods for conserva tion laws with source terms In: in Proceedings of the 7th International Conference on Hyperbolic Problems (1998), pp. 609–618.
9. Li, G. and Xing, Y.,High order finite volume WENO schemes for the euler equations under gravitational fields J. Comput. Phys. 316 (2016), 145–163.
10. Luo, J., Xu, K. and Liu, N. A well-balanced symplecticity-preserving gas kinetic scheme for hydrodynamic equations under gravitational field SIAM J. Sci. Comput. 33 (5) (2011), 2356–2381.
11. Mahdizadeh, H., Stansby, P. K. and Rogers, B. D. On the approximation of local efflux/influx bed discharge in the shallow water equations based on a wave propagation algorithm Int J. Numer. Methods. Fluids. 66 (10)(2011), 1295–1314.
12. Mahdizadeh, H., Stansby, P. K. and Rogers,B. D. Flood wave modeling based on a two-dimensional modified wave propagation algorithm coupled to a full-pipe network solver J. Hydraul. Eng. 138 (3) (2012), 247–259.
13. Press, W. H., ATeukolsky, S., Vetterling, W. T. and Flannery, B. P. Numerical Recipes in Fortran 77 Cambridge University Press, 1992.
14. Roe, P. Approximate riemann solvers, parameter vectors, and difference schemes J. Comput. Phys. 43 (2) (1981), 57–372.
15. Tian, C., Xu, K., Chan, K. and Deng, L. A three-dimensional multidimensional gas-kinetic scheme for the navierˆastokes equations under grav itational fields J. Comput. Phys. 226 (2) (2007), 2003– 2027.
16. Toro, E. F. Riemann Solvers and Numerical Methods for Fluid Dynamics Springer, 1997.
17. Toro, E. F., Castro, C. E. and Lee, B. J. A novel numerical flux for the 3d euler equations with general equation of state J. Comput. Phys. 303 (2015), 80–94.
18. Xing, Y. and Shu, C.-W. High order well-balanced weno scheme for the gas dynamics equations under gravitational fields J. Sci. Comput. 54 (2)(2013), 645–662.
Send comment about this article