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Image magnification by least squares
surfaces

A.M. Esmaili Zaini, G.B. Loghmani*, and A.M. Latif

Abstract

Image magnification is one of the current issues of image processing in
which keeping the quality and structure of images is the main concern. In im-
age magnification, it is necessary to insert information in extra pixels. Adding
information to an image should be compatible with the image structure with-
out making artificial blocks. In this research, extra pixels are estimated using
the surface of least squares, and all the pixels are reviewed according to the
suggested edge-improving algorithm. The suggested method keeps the edges
and minimizes the magnified image opacity and the artificial blocks. Numer-
ical results are presented by using PSNR and SSIM fidelity measures and
compared to some other methods. The average PSNR of the original image
and image zooming is 32.79 which it shows that image zooming is very similar
to the original image. Experimental results show that the proposed method
has a better performance than others and provides good image quality.

Keywords: Image Magnification; Least Squares Surface; Interpolation.

1 Introduction

Image magnification is, indeed, image resolution increasing to achieve a
higher- quality image. It plays an important role in image processing and
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machine vision. Image magnification has various applications in electronic
publishing industries, digital cameras, medical imaging, images on the web,
license plate recognition, and face recognition systems in law functions.

Recent studies indicate that the main emphasis is on the visual quality
of images in many applications. Resolution edges and lack of blur and addi-
tional artifacts are two important factors in image quality. Many enlarging
image algorithms use interpolation methods. Interpolation means to find a
set of unknown pixel values in a set of known pixel values in the picture.
In magnification, the following few basic parameters affect the image qual-
ity [11]:

1- An efficient magnification method should preserve the edges and bound-
aries.

2- The method should not produce undesirable constant piecewise or blocks
of other regions.

3- The magnification method should be computationally efficient but not too
dependent on the internal parameters of the image.

Traditional technologies in image magnification use linear interpola-
tion for high-resolution samples. Pixel replication, bilinear interpolation,
quadratic interpolation, bi-cubic interpolation, and spline interpolation are
some of these methods [6,8,17]. These methods tend to smooth edges or
produce blocky interpolated images with staircase edges. Therefore, the out-
put of these methods produces blurred images. This indicates the inability
of linear technologies to transfer new information to an image.

One of the features of the two linear interpolation methods is that, in
the magnification ratio, artificial blocks and visual effects are undesirable,
but edges are preserved at an acceptable level. In bi-cubic interpolation
method with a high zoom ratio, artificial blocks and undesirable visual effects
are lower, and the edges are preserved. Although determining the image
quality is not easy in this method, for image magnification, the quadratic
interpolation is better than bilinear interpolation, bi-cubic interpolation is
better than quadratic interpolation, and spline interpolation is better than
bi-cubic interpolation [16].

In recent years, nonlinear interpolation methods have been used to reform
linear methods for improving image quality and solving the blur problem.
The change of non-linear methods depends on the interpolation method. This
means that the performance of these methods with sharp edges is different
from their performance on soft tissues, while linear methods with all the
pixels act in the same way [1,3,7]. In order to maintain the image quality
and edges in non-linear methods, estimation methods of a subset of edge
pixels [1], resampling and optimization parameters, implicit interpolation,
and straight edges have been used [4,14,22].

In [22], a statistical method that tunes interpolation coefficients according
to local edge structures is proposed. The technique of [4] uses a modified
bilinear method, where the interpolation error theorem in an edge-adaptive
fashion.
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In [21], an edge-directed nonlinear interpolation technique is presented
through directional filtering and data fusion. This algorithm interpolates a
missing pixel in multiple directions, and then fuses the directional interpola-
tion results by linear minimum mean square-error estimation.

In [2], the local adaptive magnification (LAZ) method uses the discon-
tinuities information or sharp brightness changes, finds edges in different
directions by taking two threshold values, and estimates the unknown pixels
with respect to the edge pixels.

In [20], the artificial neural networks methods uses for doing zoom oper-
ations on digital images.

In [10], presents a nonlinear image interpolation algorithm that is based on
the moving least squares technique. This methods ability to image zooming
and preserving edge features.

In this paper, another least squares surface method is suggested, in which
necessary pixels are obtained by calculating their coefficients using the least
squares theory and edge-directed algorithms.

This paper continues as follows. In the second part, quadratic surfaces
and the theory of least squares will be discussed. In the third part, the
least square planes, suggested algorithms, and evaluation parameters will be
proposed. The fourth section compares the results of implementation by
other methods. In the last section, conclusions and recommendations will be
presented.

2 Quadratic surfaces and least squares theory

The purpose of a quadratic surface in R? space composed of z, y and z is
formed as equation (1), in which none of the coefficients A, B, C, D, FE and
F' is zero. This equation called quadratic surfaces is an extension of a cone
in R? space.

Az + By? + C22 + Doy + Fxz + Fyz+Ge + Hy + Iz +J=0. (1)

Without losing any generality, the coefficients of product terms can be
zero by a three-dimensional rotation, and convert equation (1) into a conven-
tional or canonical form by a transfer, whose diagram is recognizable. The
canonical equation for a quadratic surface is as in (2), the most famous sec-
tions of which are elliptical, hyperbolic, parabolic, and conic sections.

For example, the overall shape of an elliptical equation and parabolic surface
are introduced according to equations (3) and (4), respectively:
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A? + B> + C22+ G+ Hy+ 12+ J =0 (2)
A + By +C2+Gr + Hy+ 1z =1 (3)
Ax* + By* + +Gz + Hy = Iz (4)

2.1 Least Squares Theory

Suppose f(x) is a continuous function on the [a,b] interval and p(x) is a
polynomial of the maximum degree n that is defined according to equation
(5), in which ¢; constants for ¢ = 0,1,2,...,n are real numbers.

p(x) = quz (5)

The problem of approximating function f(x) by polynomial p(x) can be
considered by finding ¢; constants for ¢ = 0,1,2,...,n to minimize ||f(z) —
p(x)|]. The purpose of ||.|| is Euclidean norms. To calculate the coefficients
of ¢;, Theorem 1 is used.

Theorem 1. Let f(x1,x2,...,2,) be a function of n variables which has
a local extremum at the point (a1,as,...,a,). Then either f is non- dif-
ferentiable at (a1,ase,...,a,) , or it is differentiable at (a1,aq,...,a,) and

Vf(ai,a2,...,a,) =0 or 87(@1,@2,---76%) =0, 1=0,1,2,...,n
Z;

If a set of data are in the form of {(z;,v;) |¢ = 1,2, ..., N} and the suitable
mathematical model for data relationship is a line, then the general problem is
finding the best least squares line. A mathematical model for the relationship
of the data is the polynomial of degree n in general for which n < N., Then
the problem is to find the least squares polynomial. Therefore, if the discrete
data based on Euclidean norms are considered as in expression (6) according
to Theorem 1, equation (7) should be established.

N

E:Z(yi—(00+C133i+--~+0n33in))2 (6)
i=1

OF

— =0 1 =0,1,2,...,n. 7

ac‘] ) .] bt B 7n ()

After calculating the partial derivatives and simplifying them, the linear sys-
tem of (n+ 1) equations called normal form is obtained as in (8) for distinct
xi, fori =1,2,..., N. This linear system of equations has a unique solution.
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If f(x,y,2) = 0 is a surface equation in the R® space, z depends on z and
y. In addition, {(x;,y;,2:) i =1,2,..., N} is a set of discrete data obtained
from the process of data collection, non of which lie on a known surface,
either elliptical, or parabolic, or plane. Then according to 1 and the sum
squares error, appropriate coefficients can be calculated.

Suppose z = Ax + By + C is a surface equation in the R? space for
{(zi,yi,2z) i =1,2,...,N} points. To obtain the surface of least squares
Theorem 1 and error (9), the coefficients of A, B, C are calculated after solv-
ing normal equations (10).

N
EZZ(ALL‘i-FByi-FC—Zi)Q (9)

i=1

N N N N
AN 224+ BY xyyi + Oz, = >z,
i=1 i=1 i=1 i=1

N N 9 N N
AN xiyi+B;y¢+CZ yi=§yiz (10)

i=1 7 i=1

N N N N
AY z; +BY yi+CY 1= 2.
i=1 i=1 =1 =1

If Az?2 4+ By? + Cx+ Dy =1 — 22 is an elliptical surface in the space R3 and
{(xi,¥:i,2) |t =1,2,..., N} points are provided, calculation of the elliptical
least-squares surface can be done according to Theorem 1 and deviation (11),
with coefficients A, B, C, D achieved after solving linear device (12).

E =

g

(Az? + By? + Cax; + Dy; + 22 — 1) 2 (11)

N
=1
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N N N N N

AY af+ BY aiy; + CY a} + DY yiw? = Y a7 (1 - 27)
i=1 =1 =1 =1 =1
N N N N N

AY afyt+ BYyl + CL awf + DXyl = Yo (1= 2F)
i= i= i= i= i=

N N N N N (12)
AY, a2+ BY zy} +CY 2} + DY, yiw; = Y, x; (1 —27)

=1 =1 =1 =1 i=1

N N, N NN )
AY  xiy+ By yp; + O wiy, + DY yi = Yy (1_Zi)'
i=1 i=1 i=1 i=1 i=1

Similarly, if Az? + By? + Cx + Dy = z is parabolic surface in the space
R3 and {(x;,yi,2)]i =1,2,..., N} points are provided, calculation of the
parabolic least-squares surface can be done according to Theorem 1 and de-
viation (13), with coefficients A, B, C, D achieved after solving linear device
(14).

E=

9

N
(Axf + Byi2 + Cxz; + Dy; — zi)Q, (13)
=1

N N N N
AY ai+ By afyl + CY 2l + DYy} =
i=1 i=1 ' '

i=1 =1

2
Liz4

N N N N

AY 2+ B b + O a2 + DY P = ¥ v22,
i=1 =1 =1 =1 =1
N N N

AY a3+ BY a2 +CY a2+ D
3 =1 =1

=1 %

N (14)

N
Vit = ) %
7 i=1

1

N N
AY xiy+ BY yi +C
=1 =1

K2

N N N
vy, + DY yi = D0 Y%
i=1 i=1 i=1

Here, the linear equations system can be obtained for the quadratic surface.

3 Least Squares Surfaces and Image Magnification

In the image magnification, some new pixels are placed in the original pixels
of the image. The purpose of magnification is to determine new pixels, which
are determined based on their neighbouring pixels. There are two types of
neighbourhood in two-dimensional images, which are known as the 4 and 8
cell. Neighbourhoods are shown in Figure 1.

In most of proposed methods, magnification rate is tried to be squared,
or to a power of two, but it should be noted that the algorithm presented
here is used for every magnification rate.

The first stage is the simplest one and requires expanding the source n xn
pixels image onto a regular grid of size (2n — 1) X (2n —1). More precisely, if
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1 2 3 1 2 3
1 1
2 2
3 + 3
4% neighborhoods 8" neighborhoods

Figure 1: Types of neighbourhood.

S(i,7) denotes the pixels in the i*" row and ;" column of the source image
and Z(l, k) denotes the magnified image pixel in the [** row and k" column
in the zoomed picture, the f function [5] puts the original image pixel in the
interlaced places of the new image:

f:S—=Z
f(SG))=212i—1,2j—-1) i,j=12,...,n

The result is shown in Figure 2. The original image pixel is indicated by
symbol e, and the other pixels which must be estimated have been identified
by 11,10 and 01. To estimate the pixel values, the multi-stage least squares
method is used along with a review of the surfaces.

In this algorithm, a new pixel value is estimated with its four neigh-
bourhoods in the corner (pixel 11) by the proposed method. Since, all the
neighbourhoods on the central pixels are equal in term of distance from the
central pixel, all of them are attributed the same weight. The results are
shown in Figure 3, and M is replaced by the estimated pixels. In the next
stage, the pixels indicated by 1 are estimated by their four neighbourhoods.
These pixels have two main pixels in the left and the right and two esti-
mated pixels up and down the neighbourhoods. In estimation, pixels that
are indicated with number 01 have the weight of 1, and the estimated pixels
assigned with the weight of 0.5. Pixels with number 10 are estimated in the
same manner. The results are shown in Figure (4), in which the symbols OJ
and < are replaced by the estimated pixels.

3.1 Least squares surface algorithm

In this algorithm, a point (e) refers to the pixel coordinates of the image
whose brightness and number of rows and columns are considered as a point
in a three-dimensional space.
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10 11 10 11 10
& 01 L 01 ®
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e 01 . 01 ®

Figure 2: Copying value to the magnified image.

o 01 ° 01 ]
10 . 10 . 10
L) 01 . 01 ®
10 . 10 . 10
. 01 . 01 .

Figure 3: Estimation of neighbourhood pixels.

L m] L m] e
¢ - ¢ - ¢
] m] - m -

Figure 4: Estimation of neighbourhood pixels.

To estimate the required pixels in image magnification based on four
neighbourhoods, initially by selection the four points and solving the linear
least-squares surface equation, the desired pixel is estimated. It should be
noted that, two adjacent pixels are used in the rows and columns of pixels to
approximate the first and last of the average.

The proposed algorithm steps are as follows:

Step 1. Establish a linear system according to the chosen least-square sur-
face.

Step 2. Solve linear equations and calculating surface coefficients.
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Step 3. Estimate the desired pixel by replacing the number of rows and
columns on the selective surface.

Step 4. Repeat steps 1 to 3 in three stages according to the zooming algo-
rithm and estimating the required pixel

Step 5. Review all the estimated pixels based on the conducted sub-algorithm
of the edge (3-2).

3.2 The modified sub-algorithm of the image edges

After estimating all the required image pixels, all estimated pixels are re-
viewed to improve the edges (Figure.5) based on the following conditions. A, B,
C, and d are the main pixels, and X,Y2, Y1, Z1, and Z2 are the estimated
pixels. The advantage of the sub-algorithm is the lack of any provinces for
edges. The proposed algorithm steps are as follows:

Step 1. If |[A— D| > |[B—C|, then X + £ | In fact, the edge is in the
northeast-southwest direction.

Step 2. If [A— D| < |[B—C|, then X « 412, In fact, the edge is in the
northwest-southeast direction.

Step 3. If (A— D) (B —C) >0, then Y1 + 48 and Y2 «+ <2 In fact,
the edge is in the north-south direction.

Step 4. If (A— D) (B —C) <0, then Z1 + #f%and 72 «+ L2 . In fact,
the edge is in the west-east direction.

Ay | vz [Be
zZL | X% |22
Co |12 |Fe

Figure 5: Design for modifying the image edge.

3.3 Assessment criteria

To compare two images in terms of their similarity, PSNR and SSIM criteria
are used. The PSNR value is bigger and the SSIM is closer to 1, the images
have more conformity [18,19]. The PSNR criterion is calculated based on
equation (15) and (16):
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MAX?
PSNR =10x* Logo ( ASE ) (dB) (15)
1 m—1n—1
i=0 j=0

where I (i,7) and K (4, j) are the main image pixels and the estimated image,
respectively, and M AX is the maximum image pixles.

SSIM criterion, which includes the image structural elements and measures
the structural quality of the image as well as the similarity between the two
images, has a value between 0 and 1. This means that 1 is the highest and 0
is the lowest similarity, which is calculated by equation (17).

(Qpiatty + 1) (200, + c2)
(24123 + 1) (02 + 03 +02)

SSIM (z,y) = (17)

where 1 , 0% and 0.y are the average, variance, and covariance of the pixels
in the image, respectively, and ¢; and ce are two unknown constants that
prevent the fraction denominator from being zero.

4 Simulation results

To evaluate the proposed method, first, a digital image is considered as an
original image, and then its size is reduced by removing alternative rows of
columns by half, then, it is tried to make image size double using the pro-
posed method and the other methods. As expected, the closer the degree
of similarity is to the original image size, the algorithm has a better perfor-
mance.

Implementation of the results of the suggested algorithm done in MAT-
LAB. The results are presented in Tables 1 and 2. In Table 1, the PSNR
criterion is used for zooming, and ten different and standard images [15] are
applied according to Figure 6. Their dimensions all are 512 x 512. The results
of the suggested least square plane (LSP) and least square ellipsoid (LSE)
methods, bilinear interpolation (BIL) method, bi-cubic interpolation (BIC)
method, and curvature interpolation (CIM) method [9] have been compared.
The least difference of PSNR between LSP method and CIM method is 0.38,
the most is 3.18, and its average is 1.71. Comparing LSE with CIM and
PSNR scale, the minimum difference is 0.13, the maximum is 3.12, and the
average is 1.52. With regard to each row and comparing the results, it can be
concluded that the proposed method of LSP has a better performance than
other methods on the selected image.
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Lena Elaine Disk

Balloons  House Airplane

Figure 6: Different images and standards for image magnification.

Table 2 illustrates the results of comparing the suggested method and the
other methods for the images in Figure 6, by SSIM criterion. The results show
that the proposed method has a better performance than other methods with
a good approximation. The minimum difference in SSIM for LSP by CIM is
0.0011, the maximum is 0.02, and the average is 0.0096. In a comparison of
LSE method with CIM and SSIM criterion, the minimum difference is 0.001,
the maximum is 0.099, and the average is 0.0095.

From a visual point of view, for example, the magnified image of Elaine
is shown by LSP and LSE proposed methods, by BIL, BIC methods, as well
as CIM method in Figure 7. Obviously, the images of the proposed method
are more transparent and have less blur and good performance on the edges.

CIM LSP LSE

Figure 7: The results of Elaine’s image magnification by the factor of 2 and using different
methods.
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Table 1: Comparison of the least square surface method and other methods by PSNR

criterion.

Methods | BIL BIC | CIM | Proposed method | Proposed method
LSP LSE
lena 30.20 | 30.11 | 30.58 33.47 33.34
Elaine | 31.26 | 31.08 | 31.49 34.67 34.61
Disk 30.94 | 30.82 | 31.56 33.07 32.70
Fire 31.66 | 31.71 | 31.82 32.20 31.95
Swan 31.19 | 30.74 | 31.44 33.22 32.73
Dog 31.83 | 31.37 | 32.05 33.94 33.63
Balloons | 31.29 | 31.73 | 32.28 33.52 34.07
House | 32.64 | 32.60 | 32.97 34.00 33.83
Airplane | 29.70 | 29.59 | 30.12 31.34 31.30
Fruits 26.17 | 26.08 | 26.49 28.44 28.20
| Average | 30.69 [ 30.58 | 31.08 | 32.79 32.60

Table 2: Comparison of the least square surface method and other methods by SSIM

criterion.

Methods BIL BIC CIM | Proposed method | Proposed method
LSP LSE
lena | 0.9504 | 0.9469 | 0.9514 0.9714 0.9713
Elaine | 0.9536 | 0.9479 | 0.9578 0.9589 0.9588
Disk | 0.9908 | 0.9908 | 0.9922 0.9956 0.9953
Fire | 0.9770 | 0.9767 | 0.9779 0.9857 0.9854
Swan | 0.9737 | 0.9727 | 0.9758 0.98420 0.9841
Dog | 0.9701 | 0.9691 | 0.9708 0.9814 0.9813
Balloons | 0.9815 | 0.9808 | 0.9856 0.9893 0.9894
House | 0.9771 | 0.9763 | 0.9777 0.9867 0.9866
Airplane | 0.9698 | 0.9696 | 0.9703 0.9831 0.9831
Fruits | 0.9518 | 0.9513 | 0.9523 0.9714 0.9712
| Average | 0.9696 | 0.9682 | 0.9712 0.9808 0.9807
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5 Conclusion

In this paper, a new method of the least squares surface has been used to
enlarge images. Despite simple implementation and low computational com-
plexity, this method provides more satisfactory results than bilinear interpo-
lation methods, such as bicubic and curvature do. The study, has been con-
ducted using one of the edge- improving techniques. The proposed method
can be elaborated on in future studies through other edge- improving methods
or nonlinear methods such as bivariate interpolation or radial basis functions
interpolation with edge- shaving techniques.
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