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Some efficient Nordsieck integration
methods for IVPs

N. Barghi Oskouie, A. Abdi∗ and G. Hojjati

Abstract

In this paper, in continuation of the construction of efficient numerical
methods for stiff IVPs, we construct type two Nordsieck second derivative
general linear methods with order p = s, where s is the number of internal

stages, and stage order q = p. Implementation of the constructed methods
with fixed and variable stepsize is discussed which verifies their efficiency.

Keywords: Stiff differential equations; Nordsieck second derivative general
linear methods; A- and L-stability; Variable stepsize implementation.

1 Introduction

Second derivative general linear methods (SGLMs) for the numerical solu-
tion of autonomous ordinary differential equations (ODEs) with initial value
problem

y′(x) = f(y(x)), x ∈ [x0, x],

y(x0) = y0,
(1)
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where f : Rm → Rm and m is the dimensionality of the system, have
been studied in recent years. These methods were introduced by Butcher
and Hojjati in [11] and investigated more in [2–6] by Abdi and Hojjati. In
the construction of SGLMs which are extension of general linear methods
(GLMs) [10, 13–15, 17]), there are a lot of free parameters which allow us
to construct high order methods with a small number of internal stages to
reduce computational cost [1].

We recall that SGLMs are characterized by four integers, (p, q, r, s) where
p and q are, respectively, order and stage order of the method, r is the number
of input and output approximations, and s is the number of internal stages.

Let Y [n] = [Y
[n]
i ]si=1 be an approximation of stage order q to the vector

y(xn−1 + ch) = [y(xn−1 + cih)]
s
i=1, and let the vectors f(Y [n]) = [f(Y

[n]
i )]si=1

and g(Y [n]) = [g(Y
[n]
i )]si=1 denote the stage first and second derivative values,

where g(·) = f ′(·)f(·), respectively. If r = p + 1, we can assume the input
and output vectors at the step number n, y[n−1] and y[n], are approximations
of order p to the Nordsieck vectors

y(xn−1)

hy′(xn−1)
...

hpy(p)(xn−1)

 and


y(xn)

hy′(xn)
...

hpy(p)(xn)

 ,

respectively. In an SGLM used for the numerical solution of (1), these values
are related by

Y [n] = h(A⊗ Im)f(Y [n]) + h2(A⊗ Im)g(Y [n]) + (U ⊗ Im)y[n−1],

y[n] = h(B ⊗ Im)f(Y [n]) + h2(B ⊗ Im)g(Y [n]) + (V ⊗ Im)y[n−1],
(2)

where n = 1, 2, . . . , N, Nh = x−x0, h is the stepsize, and ⊗ is the Kronecker
product of two matrices. Here A,A ∈ Rs×s, U ∈ Rs×r, B,B ∈ Rr×s, and
V ∈ Rr×r. The coefficients matrix V in the Nordsieck SGLM (2) has the
form

V =

[
1 vT

0 V̇

]
,

v = [v1 v2 · · · vr−1]
T , V̇ ∈ R(r−1)×(r−1). In this paper, the methods will

be restricted to the case where p = q = r − 1 = s and the eigenvalues of V̇
are zeros. The latter condition ensures zero-stability of the method.

An SGLM in Nordsieck form has order p and stage order q = p if and
only if [11]
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U = C −ACK −ACK2,

V = E −BCK −BCK2,

where the matrices C ∈ Rs×(p+1), K ∈ R(p+1)×(p+1), and E ∈ R(p+1)×(p+1)

are defined by

C :=

[
1

c

1!

c2

2!
· · · cp

p!

]
, K := [0 e1 e2 · · · ep ] ,

and

E := exp(K) =



1 1
1!

1
2! · · ·

1
p!

0 1 1
1! · · ·

1
(p−1)!

0 0 1
. . .

...
...
...

...
. . . 1

1!

0 0 0 · · · 1


,

with ej as the jth vector of canonical basis in Rp+1, respectively.

The stability behavior of SGLMs is defined using the standard test prob-
lem of Dahlquist y′ = ξy, where ξ is a complex number. If method (2) is
applied to this problem, then the stability matrix is

M(z) = V +
(
zB + z2B

)(
I − zA− z2A

)−1
U,

where z = hξ and the stability function of the method is defined as the
characteristic polynomial of M(z); that is,

p(w, z) = det
(
wI −M(z)

)
.

If p(w, z) = wr−1
(
w − R(z)

)
, the method is said to possess “Runge–Kutta

stability (RKS)”. GLMs and SGLMs with RKS property were studied by
Butcher and Jackiewicz in [9, 12–14] and by Abdi and Hojjati in [2–7], re-
spectively.

For economical implementation, it is assumed that the matrices A and
A have a lower triangular form with the same diagonal entries λ and µ,
respectively. SGLMs are divided into four types, depending on the nature
of the differential system to be solved and the computer architecture that is
used to implement these methods. Types 1 and 2 are those with arbitrary
aij and aij , where λ = µ = 0 and λ > 0, µ < 0, respectively. Such methods
are appropriate, respectively, for nonstiff and stiff differential systems in a
sequential computing environment. Requiring aij = aij = 0, cases λ = µ = 0
and λ > 0, µ < 0 lead, respectively, to types 3 and 4 methods which can
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be useful, respectively, for nonstiff and stiff systems in a parallel computing
environment.

The construction and implementation of type 2 SGLMs with p = s + 1
were discussed in [4]. Also, the construction of parallel Nordsieck SGLMs
with p = s and their order barriers were studied in [5]. These order barriers
were obtained under the assumption of RKS property. In this paper, we are
going to construct type 2 Nordsieck SGLMs with p = s, which are efficient
methods for stiff systems. Also, efficiency of the constructed methods are
shown by their implementation in a variable stepsize environment.

Next sections of this paper are organized as follows: In section 2, we con-
struct A- and L-stable SGLMs in the Nordsieck form with RKS property of
orders 2, 3, and 4. Considering Nordsieck SGLMs in the variable stepsize
mode, implementation issues including local error estimation, and stepsize
control are discussed in section 3. Finally, in section 4, some results of nu-
merical experiments on some stiff test systems are presented and compared
with those obtained by Nordsieck SGLMs of the same order.

2 Construction of type 2 methods

In this section, the construction of type 2 Nordsieck SGLMs of order p and
stage order q = p with some desired stability properties is explained.

2.1 Methods with p = q = s = r − 1 = 2

We construct methods with p = q = s = r − 1 = 2 and RKS property. We
look for methods which their stability function has the form [5]

R(z) =
1 + n1z + n2z

2 + n3z
3

(1− λz − µz2)2
,

where

1 +
3∑

k=1

nkz
k = exp(z)(1− λz − µz2)2 − Cz3 +O(z4)

with C as the error constant of the method. For this method to be A-stable,
it is necessary and sufficient that λ > 0, µ < 0, and so that the E(y) is
non-negative for all real y, where the E-polynomial is defined by

E(y) =
∣∣1− λiy + µy2

∣∣4 − ∣∣1 + n1iy − n2y
2 − n3iy

3
∣∣2.

By choosing C = 10−4, a detailed calculation shows that
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E(y) = y4
(
E0 + E1y

2 + E2y
4
)
,

where

E0 =
1247

15000
+ 2µ2 + λ2 − 2µ− 4997

7500
λ+ 4λµ,

E1 = − 24970009

900000000
− λ4 + 2λ3 − 19997

15000
λ2 − 4µ2 +

4997

7500
µ+

4997

15000
λ

+4µ3 − 2λ2µ2 − 4λ3µ+ 8λµ2 + 8λ2µ− 34997

7500
λµ,

E2 = 7µ4.

Pairs of (λ, µ) with values in domain [0, 2] × [−2, 0] giving L-stability are
shown in Figure 1.

λ

µ

0.50 1 1.5 2
−0.75

0

−0.25

−0.5

Figure 1: L-stable choices of (λ, µ) for p = s = 2 corresponding to C = 10−4.

We select a single example, characterized by λ = 4
5 , µ = − 1

5 and c =
[ 12 1]T . The coefficients of the method are

[
A A U

B B V

]
=



4
5 0 − 1

5 0 1 − 3
10 − 3

40

− 967
18750

4
5

494
3375 − 1

5 1 4717
18750 − 253

12500

− 967
18750

4
5

494
3375 − 1

5 1 4717
18750 − 253

12500

0 1 0 0 0 0 0

0 0 0 1 0 0 0


.
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2.2 Methods with p = q = s = r − 1 = 3

We construct methods with p = q = s = r − 1 = 3 and RKS property. We
look for methods which their stability function has the form [5]

R(z) =
1 + n1z + n2z

2 + n3z
3 + n4z

4 + n5z
5

(1− λz − µz2)3
,

where

1 +

5∑
k=1

nkz
k = exp(z)(1− λz − µz2)3 − C1z4 − C2z5 +O(z6).

Here C1 is the error constant of the method and C2 is an arbitrary number.
The E-polynomial has the form

E(y) = y6
(
E0 + E1y

2 + E2y
4 + E3y

6
)
.

For these methods to be A-stable, it is necessary and sufficient that λ > 0,
µ < 0, and so that E0 + E1x + E2x

2 + E3x
3 + E4x

4 is non-negative for
all positive real numbers x, where E0, E1, E2, E3, and E4 are complicated
expressions in terms of λ and µ. By choosing C1 = C2 = 10−4, pairs of (λ, µ)
with values in domain [0, 2] × [−2, 0] giving L-stability are shown in Figure
2.

λ

µ

0

−0.1

−0.2

−0.3
0 0.5 1 1.5

Figure 2: L-stable choices of (λ, µ) for p = s = 3 corresponding to C1 = C2 = 10−4.

Here, we represent an example, characterized by

λ =
1

2
, µ = − 1

15
, c = [

1

3

2

3
1]T .
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The coefficients of the method are

A =


0.5000000000000000 0 0

1.4279081052775164 0.5000000000000000 0

1.0000000000000000 −0.3168631901664915 0.5000000000000000

 ,

A =


−0.0666666666666667 0 0

−0.3067166674763493 −0.0666666666666667 0

−0.0602082721233515 0.0288951398441268 −0.0666666666666667

 ,

B =



1.0000000000000000 −0.3168631901664915 0.5000000000000000

0 0 1

0 0 0

84.1340111524194390 −15.9895442199910120 −37.9511333307057703

 ,

B =



−0.0602082721233515 0.0288951398441268 −0.0666666666666667

0 0 0

0 0 1

0 −1.7866934603873189 20.0458159571414841

 ,

U =


1.0000000000000000 −0.1666666666666667 −0.0444444444444444 0.0006172839506173

1.0000000000000000 −1.2612414386108497 −0.2136971453939340 0.0056267104705261

1.0000000000000000 −0.1831368098335086 −0.0241114076097811−0.0010021824846360

 ,

V =



1.0000000000000000 −0.1831368098335086 −0.0241114076097811−0.0010021824846360

0 0 0 0

0 0 0 0

0 −30.1933336017226565 2.3070365964725901 0

 .

2.3 Methods with p = q = s = r − 1 = 4

In this part, we construct methods of the Nordsieck SGLMs of type 2 with
p = q = s = r − 1 = 4 and c = [0 0 0 1]T . Setting some free parameters
in order to make calculation easier, RKS conditions make the coefficients
matrices of the method to take the following forms
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1
2 0 0 0 − 1

12 0 0 0 1 −1
2

1
12 0 0

1
2

1
2 0 0 −1

4 − 1
12 0 0 1 −1 1

3 0 0

1
2 1 1

2 0 −1
4 1 − 1

12 0 1 −2 − 2
3 0 0

1
2−1 1 1

2 −1
4 1 −1 − 1

12 1 0 1
3 0 0

1
2−1 1 1

2 −1
4 1 −1 − 1

12 1 0 1
3 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

6 0 0−6 2 0 0 4 0 0 0 0 0

12 0 0−12 7 −1 0 6 0 0 0 0 0



.

For this method the only nonzero eigenvalue of M(z) is

R(z) =
1 + z

2 + z2

12

1− z
2 + z2

12

,

consequently, by the Ehle conjecture [19], the method is A-stable. The error
constant of the method is C = 1

720 .

3 Implementation of the methods in a variable stepsize
mode

In this section, we recall some implementation strategies given in [4], to apply
the constructed methods in variable stepsize environment.

A Nordsieck SGLM in the variable stepsize mode takes the form

Y [n] = hn(A⊗ Im)f(Y [n]) + h2n(A⊗ Im)g(Y [n]) + (UD(δn)⊗ Im)y[n−1],

y[n] = hn(B ⊗ Im)f(Y [n]) + h2n(B ⊗ Im)g(Y [n]) + (V D(δn)⊗ Im)y[n−1],
(3)

where
D(δn) := diag(1, δn, δ

2
n, ..., δ

p
n), δn = hn/hn−1.

Due to the structure of the matrices V and D(δn), the matrix V D(δn) has
one eigenvalue with magnitude one and a zero eigenvalue with multiplicity p,
for any value of δn.

To achieve a suitable choice of stepsize for the next step, we first need
to estimate the leading term in the local truncation error. To do this, we
approximate hp+1y(p+1)(xn); so that LTE(xn) = Cphp+1y(p+1)(xn) can be
calculated as an approximation to the local truncation error.
For the methods with p = s = 2 and abscissas c = [ 12 1]T , we use the linear
combination of the form
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est(xn) := Cp
(
α1hf(Y1) + α2hf(Y2) + βh2g(Y1)

)
,

with
α1 = −8, α2 = 8, β = −4.

For the methods with p = s = 3 and abscissas c = [ 13
2
3 1]T , we use the

linear combination of the form

est(xn) := Cp
(
α1hf(Y1) + α2hf(Y2) + α3hf(Y3) + βh2g(Y1)

)
,

with

α1 =
243

2
, α2 = −162, α3 =

81

2
, β = 27.

For the methods with p = s = 4 and abscissas c = [0 0 0 1]T , we use the
linear combination of the form

est(xn) := Cp
(
α1hf(Y3) + α2hf(Y4) + β1h

2g(Y3) + β2h
2g(Y4) + γy

[n−1]
4

)
,

with
α1 = 72, α2 = −72, β1 = 48, β2 = 24, γ = 12.

To control the stepsize, we use the following strategy

est(xn) ≤ Rtol ·max{∥yn∥, ∥yn+1∥}+Atol, (4)

where Atol and Rtol are given absolute and relative tolerances, respectively.
If the control (4) is not satisfied, the current step is repeated with a halved
stepsize. Otherwise, the current step is accepted and we carry out the next
step with the new stepsize defined as

hn+1 = δn+1hn,

where

δn+1 = min
{
facmax,

( fac · tol
∥est(xn)∥∞

) 1
p+1

}
.

Here, facmax and fac are safety factors built into a code to prevent the
step from increasing too rapidly and to avoid an excessive number of rejected
steps. We have chosen Atol = Rtol = tol, facmax = 2, and fac = 0.9.

4 Numerical result

In this section we present the results of numerical experiments to show effi-
ciency of the constructed methods in section 2 for fixed and variable stepsize
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mode using the provided techniques in section 3. We consider the following
test problems:

• Problem 1. The nonlinear stiff system of ODEs{
y′1(x) = −1002y1(x) + 1000y22(x),

y′2(x) = y1(x)− y2(x)(1 + y2(x)),

whose exact solution is [y1(x), y2(x)]
T = [exp(−2x), exp(−x)]T and

x ∈ [0, 2]. This problem is stiff with an approximate stiffness ratio of
103 near to x = 0.

• Problem 2. A system of differential equation, is called CUSP, resulting
from discretization of the diffusion terms by the method of line the
periodic boundary-value problem [16], is as below

∂y
∂t = −1

ε (y
3 + ay + b) + σ ∂2y

∂x2 ,

∂a
∂t = b+ 0.07ν + σ ∂2a

∂x2 ,

∂a
∂t = (1− a2)b− a− 0.4y + 0.035ν + σ ∂2b

∂x2 ,

where
ν =

u

0.1 + u
, u = (y − 0.7)(y − 1.3).

This problem takes the form
ẏi = −ε−1(y3i + aiyi + bi) +D(yi−1 − 2yi + yi+1),

ȧi = bi + 0.07νi +D(ai−1 − 2ai + ai+1), i = 1, 2, . . . , N,

ḃi = (1− a2i )bi − ai − 0.4yi + 0.035νi +D(bi−1 − 2bi + bi+1),

where

νi =
ui

0.1 + ui
, ui = (yi − 0.7)(yi − 1.3), D = σN2,

with periodic boundary condition

y0 := yN , a0 := aN , b0 := bN ,

yN+1 := y1, aN+1 := a1, bN+1 := b1.

We take σ = 1
144 , ϵ = 10−4, N = 32, and the initial values as

yi(0) = 0, ai(0) = −2 cos(
2iπ

N
), ai(0) = 2 sin(

2iπ

N
), i = 1, 2, . . . , N,

with tout = 1.1.
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• Problem 3. For the ODE case, the Ring modulator problem originates
from electrical circuit analysis is of the form [18]

y′1 = C−1(y8 − 0.5y10 + 0.5y11 + y14 −R−1y1),

y′2 = C−1(y9 − 0.5y12 + 0.5y13 + y15 −R−1y2),

y′3 = C−1
s

(
y10 − q(UD1) + q(UD4)

)
,

y′4 = C−1
s

(
− y11 + q(UD2)− q(UD3)

)
,

y′5 = C−1
s

(
y12 + q(UD1)− q(UD3)

)
,

y′6 = C−1
s

(
− y13 − q(UD2) + q(UD4)

)
,

y′7 = C−1
p

(
R−1

p y7 + q(UD1) + q(UD2)− q(UD3)− q(UD4)
)
,

y′8 = −L−1
h y1,

y′9 = −L−1
h y2,

y′10 = L−1
s2 (0.5y1 − y3 −Rg2y10),

y′11 = L−1
s2 (−0.5y1 + y4 −Rg3y11),

y′12 = L−1
s3 (0.5y2 − y5 −Rg2y12),

y′13 = L−1
s3 (−0.5y2 + y6 −Rg3y13),

y′14 = L−1
s1

(
− y1 + Uin1(t)− (Ri +Rg1)y14

)
,

y′15 = L−1
s1

(
− y2 − (Rc +Rg1)y15

)
.

The auxiliary functions UD1, UD2, UD3, UD4, q, Uin1, and Uin2 are given
by 

UD1 = y3 − y5 − y7 − Uin2(t),

UD2 = −y4 + y6 − y7 − Uin2(t),

UD3 = y4 + y5 + y7 + Uin2(t),

UD4 = −y3 − y6 + y7 + Uin2(t),

q(U) = γ(eδU − 1),

Uin1(t) = 0.5 sin(2000πt),

Uin2(t) = 2 sin(20000πt).

The values of the parameters are
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C = 1.6× 10−8, Cs = 2× 10−12, Cp = 10−12, Lh = 4.45,

Ls1 = 0.002, Ls2 = 5× 10−4, Ls3 = 5× 10−4,

R = 25000, Rp = 50, Rg1 = 36.3, Rg2 = 17.3,

Rg3 = 50, Ri = 50, Rc = 600,

δ = 17.74933332, γ = 40.67286402× 10−9,

with the initial vector y0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T and t ∈
[0, 10−3].

4.1 Fixed stepsize experiments

We first present fixed stepsize numerical results in order to show accuracy
of constructed Nordsieck SGLMs and validate the order of these methods in
the integration of stiff differential systems. To do this, we have applied the
methods of order 2, 3, and 4 to the Problem 1. We have implemented the
methods with a fixed stepsize h = 1/2k, with several integer values of k. The
results of numerical experiments for type 2 Nordsieck SGLMs are shown in
the Tables 1, 2, and 3. In these tables, we have listed the norm of error
∥eh(x)∥ at the endpoint of integration x = 2 and numerical estimate to the
order of convergence, p, computed by the formula

p =
log(∥eh(x)∥/∥eh/2(x)∥)

log(2)
,

where eh(x) and eh/2(x) are errors corresponding to stepsizes h and h/2 for
Nordsieck SGLMs. Also, to show that the constructed methods are com-
petitive with the efficient existing methods, we have reported the numerical
results of type 2 methods which have been constructed in [2].

Table 1: Numerical results for Nordsieck SGLMs of order p = q = 2.

k
Type 2 method of order 2 [2] Nordsieck SGLM of order 2

eh(x) p eh(x) p

10 1.78× 10−11 1.35× 10−10

11 5.44× 10−12 1.71 3.31× 10−11 1.88

12 1.43× 10−12 1.93 8.18× 10−12 1.94

13 2.64× 10−13 2.44 2.03× 10−12 1.98
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Table 2: Numerical results for Nordsieck SGLMs of order p = q = 3.

k
Type 2 method of order 3 [2] Nordsieck SGLM of order 3

eh(x) p eh(x) p

4 4.07× 10−6 6.58× 10−8

5 5.66× 10−7 2.85 8.66× 10−9 2.93

6 7.43× 10−8 2.92 1.11× 10−9 2.96

7 9.50× 10−9 2.96 1.40× 10−10 2.99

Table 3: Numerical results for Nordsieck SGLMs of order p = q = 4.

k
Type 2 method of order 4 [2] Nordsieck SGLM of order 4

eh(x) p eh(x) p

4 6.22× 10−8 5.81× 10−9

5 4.21× 10−9 3.88 3.63× 10−10 4.00

6 2.74× 10−10 3.94 2.27× 10−11 4.00

7 1.75× 10−11 3.97 1.42× 10−12 4.00

4.2 Variable stepsize experiments

We first investigate the potential for efficient implementation in a variable
stepsize environment by the reliability of the estimation error for Problem
1. The obtained results for the methods of order 2, 3, and 4 have plotted
in Figures 3, 4, and 5, respectively. These figures confirm efficiency of the
used estimation for the local truncation error. To compare, we also present
the results of numerical experiments of the L-stable Nordsieck SGLM given
in [5]. In the implementation of considered SGLMs, we apply the same in-
troduced implementation strategies, including the starting procedures, stage
predictors, local error estimation, and the changing stepsize. In our numerical
results, we use the following abbreviations:

ns: the number of steps
nrs: the number of rejected steps
nfe: the number of function evaluations
nJe: the number of Jacobian evaluations
ge: the global error
tol: given tolerance
NSGLM2p: type 2 Nordsieck SGLM of order p
NSGLM4p: type 4 Nordsieck SGLM of order p
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Figure 3: Local errors and local error estimates versus x of the method of order 2 for
problem 1 with h0 = 10−5 and tol = 10−8.
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Figure 4: Local errors and local error estimates versus x of the method of order 3 for
problem 1 with h0 = 10−5 and tol = 10−8.
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Figure 5: Local errors and local error estimates versus x of the method of order 4 for
problem 1 with h0 = 10−5 and tol = 10−8.
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Table 4: Numerical results for Problem 2 solved by NSGLM2p and NSGLM4p of orders
2, 3, and 4 with h0 = 10−3.

tol Method ge ns nrs nfe nJe

10−6 NSGLM22 3.61× 10−5 169 26 1644 1256
NSGLM42 2.02× 10−4 1313 11 6693 4047

10−8 NSGLM22 1.07× 10−6 690 12 3718 2316
NSGLM42 8.84× 10−6 5997 14 24187 12167

10−10 NSGLM22 4.58× 10−8 3154 15 12847 6511
NSGLM42 3.99× 10−7 27572 14 110499 55323

10−6 NSGLM23 2.95× 10−5 178 36 2339 1700
NSGLM43 5.80× 10−5 426 17 3248 1922

10−8 NSGLM23 6.57× 10−7 474 14 4047 2586
NSGLM43 1.28× 10−6 1341 23 8308 4219

10−10 NSGLM23 1.47× 10−8 1450 18 8998 4597
NSGLM43 5.59× 10−9 26879 646 165153 82581

10−6 NSGLM24 9.16× 10−5 337 25 3308 1864
NSGLM44 9.66× 10−5 313 14 3420 2116

10−8 NSGLM24 2.14× 10−6 2040 50 16864 8508
NSGLM44 2.19× 10−6 787 14 6599 2399

10−10 NSGLM24 3.77× 10−8 2696 141 22752 11408
NSGLM44 4.59× 10−8 1700 18 13934 7066

Some numerical results for Problem 2 and 3 demonstrating the computational
cost of NSGLM2p are given in Tables 4 and 5 and compared with those in
NSGLM4p for p = 2, 3, 4. Also, in Figures 6 and 7, we compare the accepted
stepsizes of NSGLM23 with those in NSGLM24 and the accepted stepsizes of
NSGLM43 with those in NSGLM44 through integration for Problem 2 and
3, recpectively. The numerical results show that the proposed methods are
capable in solving stiff problems and competitive with the existing methods.

5 Conclusion

We constructed type 2 Nordsieck SGLMs of orders 2, 3, and 4 with RKS
property. Order 2 and 3 methods are L-stable and order 4 method is A-
stable. These methods have been equipped to the variable stepsize using
Nordsieck technique. The capability of the proposed methods in solving stiff
problems with long interval of integration and badly scaled solution have
been validated by some numerical experiments and comparisons.
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Table 5: Numerical results for Problem 3 solved by NSGLM2p and NSGLM4p of orders
2, 3, and 4 with h0 = 10−6.

tol Method ge ns nrs nfe nJe

10−6 NSGLM22 1.18× 10−5 3336 492 24233 16579
NSGLM42 8.95× 10−5 27540 475 139942 83914

10−8 NSGLM22 5.94× 10−7 14721 486 77469 47057
NSGLM42 3.94× 10−6 126749 427 508703 254353

10−10 NSGLM22 2.05× 10−8 67411 469 271519 135761
NSGLM42 8.61× 10−8 272719 396 1092456 546228

10−6 NSGLM23 1.71× 10−5 2790 476 30994 21199
NSGLM43 1.68× 10−5 8243 499 61705 35482

10−8 NSGLM23 1.46× 10−7 8729 705 76184 74885
NSGLM43 5.31× 10−7 14444 450 155761 77884

10−10 NSGLM23 5.59× 10−9 26879 646 165153 82581
NSGLM43 1.61× 10−8 80230 414 483861 241932

10−6 NSGLM24 1.75× 10−3 4070 642 42363 23519
NSGLM44 2.11× 10−3 4563 591 51425 30813

10−8 NSGLM24 4.86× 10−5 13440 1198 117655 59107
NSGLM44 5.47× 10−5 10954 612 92614 46356

10−10 NSGLM24 8.86× 10−7 24087 5512 236786 118394
NSGLM44 1.35× 10−6 26896 602 219980 109992
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Figure 6: Accepted stepsizes versus x for Problem 2 with h0 = 10−3 and tol = 10−6:
(a) NSGLM23 and NSGLM43, (b) NSGLM24 and NSGLM44.
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Figure 7: Accepted stepsizes versus x for Problem 3 with h0 = 10−6 and tol = 10−6:
(a) NSGLM23 and NSGLM43, (b) NSGLM24 and NSGLM44.
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