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A new dwindling nonmonotone filter
method without gradient information

for solving large-scale systems of
equations

F. Arzani and M.R. Peyghami∗

Abstract

In this paper, we present a new derivative-free spectral residual method
for solving large-scale systems of equations. Our algorithm is equipped with
a dwindling multidimensional nonmonotone filter in which whose envelope

is dwindling as the step-length of line search is decreasing. The proposed
algorithm is also combined with a relaxed nonmonotone line search technique
which allows the algorithm to enjoy the nonmonotone property from scratch.
Under some standard assumptions, the global convergence property of the

proposed algorithm is established. Numerical results on some test problems
show the efficiency and effectiveness of the new algorithm in practice.

Keywords: Dwindling filter technique; Systems of equations; Nonmonotone
line search; Global convergence.

1 Introduction

In this paper, we deal with the following nonlinear systems of equations:
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F (x) = 0, (1)

where F : Rn → Rn is a continuously differentiable map. We assume that (1)
is symmetric; that is, its Jacobian is a symmetric matrix. Associated with
(1), the norm function is defined by

f(x) =
1

2
∥F (x)∥2.

Several methods in the literature have been proposed for solving (1), such
as Newton and quasi-Newton methods, Gauss–Newton method, Levenberg–
Marquardt method [20], trust-region methods, spectral gradient, and residual
methods [10, 24] and conjugate gradient methods [9]. The main factor in
these methods is how the procedure deals with large-scale settings. The
spectral gradient and conjugate gradient methods are a class of methods
that can suitably cope with large-scale systems of equations. The spectral
gradient method was first introduced in [7] for unconstrained optimization
and has been successfully extended for solving large-scale nonlinear systems
of equations; see, for example, [25,29], and the references therein.

The so-called nonmonotone line search techniques for unconstrained op-
timization was introduced by Grippo, Lampariello, and Lucidi in [17]. In
their approach, at the point xk, for a given positive integer M , the stepsize
λ ∈ (0, 1] is chosen such that

f(xk + λdk) ≤ max
0≤j≤min{k,M}

f(xk−j) + γλ∇f(xk)T dk,

where γ ∈ (0, 1) is a given scalar. An extension and adaption of this technique
in the framework of a globalization technique for the Barzilai-Browein (BB)
gradient method has been proposed in [18]. It is well known that the Grippo’s
nonmonotone technique suffers from some drawbacks; some of them have
been listed in [1]. In order to overcome these difficulties, Ahookhosh, Amini,
and Peyghami in [2] introduced a nonmonotone term as follows:

Rk = ϵkfℓ(k) + (1− ϵk)fk, (2)

where
fℓ(k) = max

0≤j≤min{k,M}
fk−j , (3)

fk = f(xk), and ϵk ∈ [ϵmin, ϵmax] ⊂ [0, 1]. The motivation behind this non-
monotone term is that the best convergence results are obtained by stronger
nonmonotone strategy whenever the iterates are far from the minimizer and
by weaker nonmonotone strategy whenever iterates are close enough to that,
see, for example, [30]. Although, (2) enjoys the strong and weak nonmono-
tone properties; it does not allow the iterates to act as a nonmonotone iterate
in the first iterations. Ataee Tarzanagh, Saeidian, Peyghami, and Mesgarani
in [6] proposed a nonmonotone term by replacing Rk with (1+ψk)Rk in the
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trust region ratio, where ψk is determined by

ψk =

{
ηk if Rk > 0,
0 if Rk ≤ 0,

and {ηk} is a positive sequence satisfying the following condition:

∞∑
k=1

ηk ≤ η <∞. (4)

This substitution causes an increase in the function value in the first itera-
tions.

Since the Jacobian of (1) might not available or requires a prohibitive
amount of storage, derivative-free methods have been widely developed for
solving large-scale nonlinear systems of equations. For the square systems,
La Cruz, Mart́ınez, and Raydan in [24] proposed a derivative-free spectral
residual method, named as DF-SANE, based on a combination of the Li and
Fukushima’s line search [26] and the Grippo’s nonmonotone technique. In
their method, the step-length αk is determined by one and only one of the
following two conditions:

f(xk − αkdk) ≤ fℓ(k) + ηk − γαk∥F (xk)∥2,
f(xk + αkdk) ≤ fℓ(k) + ηk − γαk∥F (xk)∥2,

where dk := σkF (xk) and σk is the BB spectral coefficient, which is computed
by [7]

σk =
sTk sk
yTk sk

,

where sk = xk+1 − xk and yk = F (xk+1)− F (xk).

Several variants of DFSANE algorithm for the square systems have been
proposed and applied on some specific systems of equations; see, for example,
[21–23]. Cheng and Li in [11] introduced another derivative-free spectral
residual method for the square systems, named as NDFSANE, in which the
nonmonotone term fℓ(k) is replaced by that of proposed in [30]. Later, the
performance of DFSANE algorithm for the square systems is improved in
SDFSANE algorithm [10] by using an approximation of the steepest descent
direction.

Recently, La Cruz in [22] presented a residual spectral algorithm for solv-
ing monotone equations on the Hilbert space which is an extension of the
SANE and DFSANE algorithms for systems of equations. This algorithm
uses in a systematic way the residual d = F (xk) as a search direction, com-
bined with a suitable step-length and a nonmonotone line search globalization
strategy. The main objective of this algorithm is to guarantee the conver-
gence without any necessity to the differentiability of F .
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The concept of filter for constrained optimization problems was first in-
troduced by Fletcher and Leyffer in [15] in order to avoid the difficulty of
adjusting penalty parameter in penalty methods. Accepting/rejecting of a
trial step in the filter methods is inspired from the same idea in multiobjec-
tive optimization. Indeed, a trial point is accepted by the filter if it is not
dominated by any other points in the filter. In this situation, the filter is
updated by removing all the points that are dominated by the new point;
see, for example, [15, 16, 27], and the references therein. The fixed envelope
of a multidimensional filter keeps an acceptable trial point far from iterates
in the filter. However, the trial point with a tiny step-length may get close
to the current iterate and be rejected by the filter due to its fixed envelope.
Due to this fact, Chen and Sun in [8] proposed a dwindling multidimensional
filter line search method for unconstrained optimization. Their idea is to
incorporate step-length in the framework of multidimensional filter, and let
the envelope of the filter become thin as the step-length approaches zero.
Recently, Arzani and Peyghami in [4] proposed a dwindling filter technique
for solving positive definite generalized eigenvalue problem.

Our aim in this paper is to introduce a new dwindling nonmonotone filter
DFSANE method for solving large-scale nonlinear systems of equations. Our
approach is a new version of DFSANE algorithm which is installed by a filter
technique. The concept of filter leads to save some points that are eliminated
by the DFSANE algorithm. The accumulated points in the filter helps the
algorithm to reach the optimal point as quickly as possible. Moreover, our
approach uses some relaxations in its structure and is equipped with the non-
monotone term as proposed in [6]. Besides, by using dwindling technique, we
have more flexibility for the acceptance of the trial step. Under some stan-
dard and suitable assumptions, the global convergence property of the new
proposed algorithm is constructed. Numerical results on some test problems
validate that the proposed algorithm is practically efficient and robust and
it has some priorities to that provided in [31].

The rest of the paper is organized as follows. Section 2 is devoted to
describe the new algorithm in details. In Section 3, we establish the global
convergence property of the new proposed algorithm under some suitable
assumptions. Some preliminary numerical results of applying the new algo-
rithm on some test problems are given in Section 4. Finally, we end up the
paper by some concluding remarks in Section 5.

2 The new algorithm

In this section, we propose a new dwindling nonmonotone filter DFSANE
algorithm for solving large-scale nonlinear systems of equations. To do so,
we first recall the filter that is used in this paper and then describe the new
algorithm.
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Recently, Fatemi and Mahdavi-Amiri in [13] introduced a new filter that
controls the size of the filter. In their proposed filter, a tentative point xk is
acceptable with respect to xl if there exists j ∈ {1, . . . , n} such that

|gj(xk)|µ2 + θ2 ∥g(xk)∥µ1 ⩽ |gj(xl)|µ2 + θ1 ∥g(xl)∥µ1 , (5)

where g(x) = ∇f(x), µ1, and µ2 are positive constants and θ1 and θ2 satisfy
the following relation:

0 ⩽ θ1 < θ2 <
1√
n
. (6)

Therefore, a point xk is accepted to the filter F if it is accepted with respect
to every xl with g(xl) ∈ F . In the case of acceptance of xk, g(xk) is added
to the filter and any g(xl) ∈ F with the following property is removed:

|gj(xk)|µ2 + θ2 ∥g(xk)∥µ1 ⩽ |gj(xl)|µ2 + θ1 ∥g(xl)∥µ1 ∀ j ∈ {1, . . . , n}.

In our dwindling filter, the parameters θ1 and θ2, satisfying (6), are consid-
ered as a function of the step-length. Since the step-length α in line search
techniques is normally less than or equal to one, in our setting, we use the
following parameters in the filter (5):

θ̂1 = ϕ(α)θ1 and θ̂2 = ϕ(α)θ2,

where θ1 and θ2 satisfy (6) and ϕ : [0, 1] → R+ is a monotonically increasing
continuous function with the following properties:

lim
α→0+

ϕ(α)

α
= 0,

ϕ(α) = 0 if and only if α = 0 (7)

such that (6) holds for θ̂1 and θ̂2.
Now, let us briefly describe one iteration of our new algorithm. Given xk,

if the stopping criteria do not hold, the trial step dk = −σkFk is computed
where σk is the so called spectral coefficient. Assuming α+ = α− = 1, the
trial point x+k+1 = xk+α+dk and x−k+1 = xk−α−dk are introduced and with

the priority of x+k+1 are verified for acceptance to the filter. In case of rejecting
both trial points by the filter, these points with the same priority are checked
for acceptance by a nonmonotone line search conditions. If the trial points are
rejected by the filter and line search conditions, then a backtracking scheme
is done on α+ and α− and the above mentioned procedure is repeated until
one of the trial points is accepted by the filter or nonmonotone line search
conditions.

The structure of the new proposed algorithm is outlined in Algorithm 1.
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Algorithm 1. : A new dwindling derivative free filter algorithm

Step 0. Given x0 ∈ Rn, integer M ≥ 0, 0 < γ < 1, ϵ > 0, 0 < σmin <
σmax < ∞, 0 ⩽ θ1 < θ2 <

1√
n
, 0 ≤ τmin < τmax < 1, and a monoton-

ically increasing continuous function ϕ satisfying (7); set F0 = Ø and
k := 0.

Step 1. If ∥F (xk)∥ ≤ ϵ, then stop.

Step 2. Choose the spectral coefficient σk such that |σk| ∈ [σmin, σmax], and
compute fℓ(k) by using (3). Set dk = −σkF (xk), α+ = 1 and α− = 1.

Step 3. Compute x+k+1 = xk + α+dk, x
−
k+1 = xk − α−dk, and Rk by (2).

If x+k+1 is accepted by the filter, then set xk+1 = x+k+1 and add xk+1 to
the filter Fk. Update the filter to form Fk+1. Set k := k+ 1, αk = α+,
and goto Step 1.
Else if x−k+1 is accepted by the filter, then set xk+1 = x−k+1 and add
xk+1 to the filter Fk. Update the filter to form Fk+1. Set k := k + 1,
αk = α−, and goto Step 1.
Else if

f(x+k+1) ≤ (1 + ψk)Rk − γα+
2f(xk), (8)

then set xk+1 = x+k+1, k := k + 1, αk = α+, and goto Step 1.
Else if

f(x−k+1) ≤ (1 + ψk)Rk − γα−
2f(xk), (9)

then set xk+1 = x−k+1, k := k + 1, αk = α−, and goto Step 1.

Step 4. Choose α+ ∈ [τminα+, τmaxα+] and α− ∈ [τminα−, τmaxα−], and
goto Step 3.

Remark 1. Since ψk > 0, Rk > 0, and Rk ≥ f(xk), due to Lemma 2.2 in [2],
it is easily seen that after finite number of reductions of α+ or α− in Step 4
of Algorithm 1, one of the conditions (8) and (9) is necessarily satisfied. This
shows that the proposed algorithm is well-defined.
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3 Convergence analysis

In this section, our goal is to analyze the global convergence property of
Algorithm 1. For this purpose, let

P1 = {k|xk ∈ Fk},

and let
P2 = {k|xk satisfies (8) or (9)}.

It is easily seen that P1 ∩ P2 = Ø. Before going further, we first consider
the following assumptions on the problem (1):

A1. F is a continuously differentiable function map over Rn.

A2. For a given η, as in (4), the level set L0 = {x ∈ Rn|f(x) ≤ eηf(x0)}
is closed and bounded.

A3. The sequence {xk}, generated by Algorithm 1, is contained in a
bounded and closed set Ω ⊂ Rn. Let {xk} be the sequence generated by
Algorithm 1. Then, Algorithm 1 either stops at a certain iteration k0 with
∥F (xk0)∥ = 0, or generates an infinite sequence. In the latter case, it is
shown that there exists a subsequence of {xk} which converges to a stationary
point of F . Therefore, from now on, we assume that |P1 ∪ P2| = ∞. Two
possibilities are recognized for the cardinality of P1 and P2, |P1| = ∞ or
|P2| = ∞.

3.1 Analysis of the case |P1| = ∞

Consider the filter Fk and its acceptance criterion, which is given by (5).
Due to Lemma 4 in [13], the size of Fk is finite. Although, Fk contains fi-
nite number of elements; it may happen that an infinite number of iteration
points is accepted by the filter. The following lemma states the behaviour of
the algorithm in this case.

Lemma 1. Let Assumptions A1–A3 hold, and let |P1| = ∞. Then,

lim
k→∞, k∈P1

∥Fk+1∥ = 0. (10)

Proof. The proof is similar to the proof of Lemma 5.4 in [14] by setting
θ(x) = F (x) and using the fact that based on the definition of ϕ(α) and the
initial values of α+ = α− = 1 in Step 2, the condition 0 ⩽ θ1 < θ2 <

1√
n

implies that 0 ⩽ θ̂1 < θ̂2 <
1√
n
.
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From Lemma 1, for the case |P1| = ∞, it is concluded that there exists
a limit point of subsequence {xk}k∈P1 which is a stationary point of f ; that
is,

lim
k→∞, k∈P1

inf ∥Fk∥ = 0. (11)

3.2 Analysis of the case |P2| = ∞

First of all, without loss of generality, we may assume that |P2| = ∞ and that
|P1| is finite, as for the case |P1| = ∞ (11) holds. Under this assumption,
we show that there exists a limit point of subsequence {xk}k∈P2 satisfying
the first-order necessary condition; that is,

lim
k→∞, k∈P2

inf ∥Fk∥ = 0.

Since |P1| is finite and |P2| = ∞, there exists a positive integer M0 such
that for every k ≥ M0, we have k ∈ P2. Without loss of generality and in
order to establish simple analysis, in what follows, we assume that M0 = 0,
and therefore

P2 = {0, 1, 2, . . .}. (12)

To construct convergence property of Algorithm 1 in this case, we first state
some technical lemmas.

Lemma 2. Suppose that {xk}k∈P2 is generated by Algorithm 1. Then, we
have

fk+1 ≤ |f0|
k∏

i=0

(1 + ψi)− ωk,

where ωk = γαk
2f(xk).

Proof. The proof is similar to the proof of Lemma 3 in [5], and therefore we
omit it here.

The following lemma shows that all the iteration points that are gener-
ated by Algorithm 1 are contained in the level set L0. Using Lemma 2, its
proof is the same as the proof of Lemma 4 in [5] and Lemma 3.4 in [28].

Lemma 3. For the sequence {xk}k∈P2, generated by Algorithm 1, we have
{xk} ⊆ L0.

Remark 2. Let {xk}k∈P2 be generated by Algorithm 1, and let |P2| = ∞.
Then, due to the (12), for a given positive integer M , one can rewrite P2 as
below:
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P2 = {LM + r | L ∈ N ∪ {0}, 0 ≤ r ≤M − 1}.

Lemma 4. Assume that {xk}k∈P2 is an infinite sequence, generated by
Algorithm 1 and that M is the constant as given by (3). Then, for every
k ∈ P2, there exist a non-negative integer L and 0 ≤ r ≤ M − 1 such that
k = LM + r and

fk+1 = fLM+r+1 ≤ |f0|
LM+r∏
i=0

(1 + ψi)−
L∑

i=0

ωs(i), L = 0, 1, 2, . . . ,

where ωs(i) = min
iM≤j≤(i+1)M−1

ωj and ωj is defined as in Lemma 2.

Proof. The proof is similar to the proof of Lemma 6 in [5].

Lemma 5. Suppose that Assumptions A1 and A2 hold and that {xk}k∈P2

is the infinite sequence generated by Algorithm 1. Then, one has

lim
i→∞

ωs(i) = 0,

where ωs(i) is defined as in Lemma 4.

Proof. Using Lemmas 3 and 4, for 1 ≤ r ≤M and LM + r ∈ I, we have

L∑
i=0

ωs(i) ≤ |f0|
LM+r−1∏

i=0

(1 + ψi)− fLM+r ≤ eη|f0| − fLM+r.

By taking limit from both side of this inequality, as L → ∞, and using
Assumption A1, we conclude that

∑∞
i=0 ωs(i) <∞, which implies that

lim
i→∞

ωs(i) = 0. (13)

This completes the proof of the lemma.

From now on, we define K = {s(i)|i = 1, 2, . . .}. The following theorem
establishes the global convergence of Algorithm 1.

Theorem 1. Let Assumptions A1–A3 hold, and let {xk} be the sequence
generated by Algorithm 1. Then, for every limit point x∗ of {xk}k∈K , one
has

⟨J(x∗)TF (x∗), F (x∗)⟩ = 0,

where ⟨., .⟩ stands for the inner product of two vectors in Rn.

Proof. From Lemma 5, we have

lim
k∈K, k→∞

ωs(k) = lim
k∈K, k→∞

min
kM≤j≤(k+1)M−1

γα2
j∥F (xj)∥2 = 0,



G
al
le
y
P
ro
of

28 F. Arzani and M.R. Peyghami

which implies that
lim

k∈K, k→∞
α2
k∥F (xk)∥2 = 0, (14)

using the fact that 0 < γ < 1. Since x∗ is a limit point of {xk}K , there exists
an infinite index set K1 ⊂ K such that limk∈K1, k→∞ xk = x∗. Besides, (14)
implies that

lim
k∈K1, k→∞

α2
k∥F (xk)∥2 = 0. (15)

To proceed, we consider the following two possible cases:
Case 1: limk∈K1 αk ̸= 0.
In this case, there exist an infinite sequence of indices K2 ⊂ K1 and a positive
constant c such that αk ≥ c > 0 for all k ∈ K2. Therefore, (14) implies that

lim
k∈K2

∥F (xk)∥2 = 0. (16)

Now, (16) along with the continuity of F imply F (x∗) = 0.
Case2: limk∈K1 αk = 0.
In this case, there exists k0 ∈ K1 such that αk < 1, for all k0 ≤ k ∈ K1.
Therefore, for infinitely many iterations, the line search is not immediately
successful and α+ and α− should be updated at least once based on Step 4
of Algorithm 1. Suppose that, in step k ∈ K1, α+ and α− are adapted mk

times in the line search procedure in Steps 3–4. Let α+
k and α−

k be the values
of α+ and α−, respectively, in the last unsuccessful line search process; that
is, inequalities (8) and (9) are violated. Now, form Step 4 of Algorithm 1,
for all k0 ≤ k ∈ K1, we have

αk ≥ τmk

min.

This inequality together with limk∈K1 αk = 0 and the fact that τmin < 1
imply that

lim
k∈K1

mk = ∞.

On the other hand, Step 4 of Algorithm 1 implies that α+
k ≤ τmk−1

max and
α−
k ≤ τmk−1

max . Therefore, using the fact that τmax < 1, we deduce that

lim
k∈K1

α+
k = lim

k∈K1
α−
k = 0.

Now, from the definition of α+
k and α−

k , for all k ≥ k0, k ∈ K1, we have

f(xk − α+
k σkF (xk)) > (1 + ψk)Rk − γ(α+

k )
2f(xk), (17)

f(xk + α−
k σkF (xk)) > (1 + ψk)Rk − γ(α−

k )
2f(xk). (18)

Since ψk > 0 and Rk > 0, then (1 + ψk)Rk > Rk ≥ 0. Besides, from Lemma
2.2 in [2], one has Rk > f(xk). Thus, (17) implies that

f(xk − α+
k σkF (xk))− f(xk) > −γ(α+

k )
2f(xk).
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From Lemma 3 and Assumptions A1–A2, {f(xk)} is a bounded above se-
quence. Thus

f(xk − α+
k σkF (xk))− f(xk) > −γ(α+

k )
2eηf(x0),

which implies that∥∥F (xk − α+
k σkF (xk))

∥∥2 − ∥F (xk)∥2 > −γ(α+
k )

2eηf(x0),

and therefore,∥∥F (xk − α+
k σkF (xk))

∥∥2 − ∥F (xk)∥2

α+
k

> −γα+
k e

ηf(x0).

Now, by Mean Value theorem, there exists ξk ∈ [0, 1] such that

σk⟨g(xk − ξkα
+
k F (xk)),−F (xk))⟩ ≥ −eηf(x0)γα+

k . (19)

Due to Algorithm 1, two possible cases may happen for σk, it might be
positive or negative for infinitely many indices. If σk > 0 for infinitely many
indices k, then (19) implies that

⟨g(xk − ξkα
+
k F (xk)), F (xk))⟩ ≤ eηf(x0)

γα+
k

σk
≤ eηf(x0)

γα+
k

σmin
. (20)

Using an analogous approach, from (18), we conclude that

⟨g(xk + ξk
′
α−
k F (xk)), F (xk))⟩ ≥ −eηf(x0)

γα−
k

σk
≥ −eηf(x0)

γα−
k

σmin
, (21)

for some ξk
′
∈ [0, 1].

Now, as α+
k → 0, α−

k → 0, and ∥σkF (xk)∥ is bounded, taking limit from both
sides in (20) and (21) leads to the following equality:

⟨J(x∗)TF (x∗), F (x∗)⟩ = 0. (22)

For the case in which σk < 0, for infinitely many indices, proceeding in a
similar approach, we can deduce (22) as well.

The following corollary is an immediate consequence of Theorem 1.

Corollary 1. Assume that x∗ is a limit point of the sequence {xk}k∈K

generated by Algorithm 1 and that ⟨J(x∗)v, v⟩ ̸= 0 for all 0 ̸= v ∈ Rn. Then,
F (x∗) = 0.

Lemma 6. For k ∈ N, let
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Lk := f(xℓ(kM)) = fℓ(kM),

where ℓ(kM) ∈ {(k− 1)M +1, . . . , kM} and fℓ(j) is defined as in (3). Then,
we have

Lk+1 := f(xℓ((k+1)M)) ≤

[
1 +

∞∑
i=kM

ηi +
∞∏

i=kM

ηi

]
Lk.

Proof. Using Step 3 of Algorithm 1, we have

f(xkM+1) ≤ (1 + ψkM )RkM ≤ (1 + ψkM )Lk

f(xkM+2) = (1 + ψkM+1)[εk max{Lk, f(xkM+1)}+ (1− εk)f(xkM+1)]

≤ (1 + ψkM+1)(1 + ψkM )Lk

= [1 + ψkM + ψkM+1 + ψkMψkM+1]Lk,

and so on. Therefore, by an inductive argument,

f(xkM+j) ≤

[
1 +

kM+j∑
i=kM

ηi +

kM+j∏
i=kM

ηi

]
Lk.

Since ℓ(k + 1) ∈ {kM + 1, . . . , (k + 1)M}, then, we have

Lk+1 = f(xl((k+1)M)) ≤

[
1 +

∞∑
i=kM

ηi +
∞∏

i=kM

ηi

]
Lk.

This completes the proof of the lemma.

Let us define K+ as below:

K+ = {ℓ(1), ℓ(2), . . .}.

One can easily observe that

ℓ(j + 1) ≤ ℓ(j) + 2M − 1, j = 1, 2, . . . . (23)

The following theorem states that in case of existing a limit point for the
sequence generated by Algorithm 1, all the limit points are the solutions of
the nonlinear system (1).

Theorem 2. Let x∗ be a limit point of the sequence {xk}, generated by
Algorithm 1, such that F (x∗) = 0. Then, we have

lim
k→∞

F (xk) = 0.
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Proof. Let K1 be an infinite subset of N such that

lim
k∈K1, k→∞

xk = x∗.

This relation together with Assumption A1 imply that

lim
k∈K1, k→∞

F (xk) = 0. (24)

Now, since xk+1 = xk ± αkσkF (xk) and |αkσk| < σmax, for all k ∈ N, using
(24), one can deduce that

lim
k∈K1, k→∞

∥xk+1 − xk∥ = 0,

and therefore,
lim

k∈K1, k→∞
xk+1 = x∗.

Proceeding by induction, one can easily show that for the fixed j ∈ {0, 1, . . . ,
2M − 1}, we have

lim
k∈K1, k→∞

xk+j = x∗. (25)

Now, using (23), for a given k ∈ K1, there exists µ(k) ∈ {0, 1, . . . , 2M − 1}
such that k + µ(k) ∈ K+. Since K+ is infinite, there exists ī ∈ {0, 1, . . . ,
2M − 1} such that, µ(k) = ī for infinitely many k ∈ K1. Assume that

K2 = {k + µ(k)|k ∈ K1 and µ(k) = ī}.

It is easily seen that K2 ⊂ K+, and by (25)

lim
k∈K2, k→∞

xk+1 = x∗.

Thus
lim

k∈K2, k→∞
F (xk) = 0.

Now, as K2 ⊂ K+, there exists an infinite subsequence {xℓ(j)}j∈J such that

lim
j∈J

xℓ(j) = x∗ and lim
j∈J

f(xℓ(j)) = lim
j∈J

Lj = 0. (26)

Let us write J = {j1, j2, j3, . . .}, where j1 < j2 < j3 < · · · . Then, (26)
implies that

lim
i→∞

Lji = 0. (27)

Now, from Lemma 6, we have

Lp ≤

1 + ∞∑
t=Mji

ηt +

∞∏
t=Mji

ηt

Lji ∀ p ∈ N, p > ji.
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Thus,

sup
p≥ji

Lp ≤

1 + ∞∑
t=Mji

ηt +
∞∏

t=Mji

ηt

Lji . (28)

On the other hand, from (4), we have

lim
i→∞

 ∞∑
t=Mji

ηt +
∞∏

t=Mji

ηt

 = 0.

Therefore, using (27) and (28), we conclude that

lim
i→∞

sup
p≥ji

Lp = 0,

which in turn implies that
lim
j→∞

Lj = 0.

Now, using the definition of Lj , we have

lim
k→∞

f(xk) = lim
k→∞

1

2
∥F (xk)∥2 = 0.

This completes the proof of the theorem.

4 Numerical results

In this section, our aim is to investigate the practical performance of Algo-
rithm 1, denoted by DF-DFSANE, along with the following algorithms on
some test problems:

• DFSANE: Algorithm 1 in [24].

• NF-DFSANE: Algorithm 1 in this paper in which the concept of filter
has been removed.

All the considered algorithms are implemented in MATLAB 7.10.0 (R2010a)
environment on a PC with CPU Intel 2.33 GHz Quad, 4GB RAM memory,
and double precision format. Test problems are mostly taken from [3, 19],
and the problem dimensions vary from 2 to 10000.

All the considered algorithms are being stopped whenever ∥ F (xk) ∥≤
10−6. Moreover, we declare that an algorithm is failed whenever the number
of iterations and the number of function evaluations exceed 10000 and 50000,
respectively. We have also utilized the advantages of the performance profile
of Dolan and Moré [12] in order to properly compare the considered algo-
rithms. The following parameters are considered in the relevant algorithms:



G
al
le
y
P
ro
of

A new dwindling nonmonotone filter method without gradient . . . 33

ϵ = 10−6, µ1 = 0.25, µ2 = 0.75, σmin = 10−6, σmax = 10+6,

M = 20, γ = 10−4, τmin = 0.1, τmax = 0.5, ηk =
1

(1 + k)2
, k ≥ 0.

Moreover, we utilized ϕ(α) = α
3
2 in the dwindling technique. It is worth

mentioning that the parameters are chosen from a set of values in which rea-
sonably better results are achieved while performing an algorithm. Numerical
results are given in Table 1. In this table, Problem, n, ni, and nf represent
the problem name, the problem size, the number of iterations, and the num-
ber of function evaluations, respectively. Based on the results of Table 1, we
have plotted the performance profile of the considered algorithms in Figures
1 and 2 in terms of ni and nf , respectively.

At a glance to Figure 1, one can easily find out that DF-DFSANE al-
gorithm solves roughly 93% of the test problems successfully while this per-
centage for NF-DFSANE and DFSANE algorithms is below 90%. Moreover,
DF-DFSANE algorithm solves about 62% of problems at the lowest value of
ni while this percentage for the NF-DFSANE and DFSANE algorithms are
40% and 10%, respectively.

Figure 2 reveals that when the DF-DFSANE, NF-DFSANE, and DF-
SANE algorithms are applied on the test problems; the DF-DFSANE al-
gorithm solves roughly 49% of the test problems in the lowest value of nf
while this number for the NF-DFSANE and DFSANE algorithms are 38%
and 10%, respectively. Moreover, DF-DFSANE algorithm solves about 90%
of the test problems without any failure. It has to be noticed that in the
cases that DF-DFSANE is not the best algorithm; its performance index is
roughly close to the performance index of the best algorithm.

Figure 1: Performance profile of the considered algorithms in terms of ni.
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Figure 2: Performance profile of the considered algorithms in terms of nf .

5 Conclusion

In this paper, a new dwindling nonmonotone filter DFSANE method for solv-
ing large-scale nonlinear systems of equations is proposed. In our approach,
a filter is set up on the so-called DFSANE algorithm which has been devel-
oped in [24]. Indeed, the concept of filter helps us to save some appropriate
points that are eliminated by the DFSANE algorithm. Moreover, the accu-
mulated points in the filter cause the algorithm to reach the optimal point
as quickly as possible. The proposed approach also uses some relaxations in
its structure and is equipped with the nonmonotone term as proposed in [6].
Furthermore, we have more flexibility for the acceptance of the trial step by
using a dwindling technique. Under some standard assumptions, the global
convergence property is established. Numerical results on some test problems
confirm that our proposed algorithm is practically efficient, robust, and has
some priorities to that provided in [31].
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Table 1: Test problems and numerical results.
DFSANE NF-DFSANE DF-DFSANE

Problem n ni/nf ni/nf ni/nf

Extended Beale [3] 1000 38/52 33/46 29/39
Extended Beale [3] 5000 53/79 47/57 38/52
Extended Beale [3] 10000 62/90 48/72 38/64
Extended penalty [3] 1000 17/39 13/35 10/24
Extended penalty [3] 5000 21/49 17/45 21/47
Extended penalty [3] 10000 23/49 21/51 22/50
Extended Three Exponential [3] 1000 18/32 16/24 15/19
Extended Three Exponential [3] 5000 29/43 18/32 14/30
Extended Three Exponential [3] 10000 30/62 20/34 20/32
Generalized Tridiagonal-2 [3] 1000 58/68 58/72 58/72
Generalized Tridiagonal-2 [3] 5000 Failed 193/296 126/258
Generalized Tridiagonal-2 [3] 10000 Failed 789/3299 440/1083
Extended PSC1 Function [3] 1000 18/26 14/21 14/20
Extended PSC1 Function [3] 5000 22/42 18/26 17/23
Extended PSC1 Function [3] 10000 36/42 22/34 17/23
Extended Block Diagonal BD1 [3] 1000 17/23 17/23 15/23
Extended Block Diagonal BD1 [3] 5000 19/25 15/23 20/24
Extended Block Diagonal BD1 [3] 10000 99/131 114/213 105/285
DQDRTIC (CUTE) [3] 1000 64/116 52/74 50/70
DQDRTIC (CUTE) [3] 5000 89/209 60/90 35/61
DQDRTIC (CUTE) [3] 10000 126/301 44/66 33/47
LIARWHD function [3] 1000 1/1 1/1 1/1
LIARWHD function [3] 5000 18/90 18/90 16/74
LIARWHD function [3] 10000 87/233 111/401 105/341
Extended DENSCHNF [3] 1000 1/1 1/1 1/1
Extended DENSCHNF [3] 5000 25/41 21/49 21/49
Extended DENSCHNF [3] 10000 52/76 25/41 22/40
Generalized Quartic [3] 1000 17/23 10/12 10/10
Generalized Quartic [3] 5000 20/28 10/12 2/4
Generalized Quartic [3] 10000 50/98 21/29 12/16
Diagonal 8 [3] 1000 8/9 6/7 5/6
Diagonal 8 [3] 5000 20/37 16/17 7/9
Diagonal 8 [3] 10000 38/95 5/38 7/9
Full Hessian FH3 [3] 1000 4/24 4/24 4/22
Full Hessian FH3 [3] 5000 5/31 4/30 4/28
Full Hessian FH3 [3] 10000 Failed Failed Failed
SINCOS [3] 1000 18/26 14/21 11/16
SINCOS [3] 5000 27/33 18/26 17/23
SINCOS [3] 10000 36/42 30/36 17/23
HIMMELH (CUTE) [3] 1000 1/1 1/1 1/1
HIMMELH (CUTE) [3] 5000 14/18 14/18 8/10
HIMMELH (CUTE) [3] 10000 Failed Failed Failed
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Table 1: Test problems and numerical results (Continued).
DFSANE NF-DFSANE DF-DFSANE

Problem n ni/nf ni/nf ni/nf

Power [3] 1000 75/91 74/90 54/62
Power [3] 5000 152/176 123/142 120/134
Power [3] 10000 224/345 210/311 129/135
FLETCHCR function (CUTE) [3] 1000 750/1404 712/1201 425/689
FLETCHCR function (CUTE) [3] 5000 Failed 1012/4865 994/4752
FLETCHCR function (CUTE) [3] 10000 Failed Failed Failed
Problem 2 [19] 2 46/49 25/31 2/6
problem 4 [19] 5 1/2 1/2 1/2
Problem 6 [19] 2 3/7 4/15 3/6
Problem 7 [19] 5 268/271 62/74 33/42
Problem 8 [19] 10 15/18 19/25 14/16
Problem 26 [19] 5 149/157 21/21 21/21
Problem 27 [19] 2 1/1 1/1 1/1
Problem 39 [19] 5 1383/2100 24/28 20/34
Problem 40 [19] 5 Failed Failed Failed
Problem 42 [19] 2 1/1 1/1 1/1
Problem 46 [19] 5 Failed Failed Failed
Problem 47 [19] 10 324/841 260/642 222/423
Problem 48 [19] 5 423/1108 112/504 53/71
Problem 53 [19] 5 1/1 1/1 1/1
Problem 56 [19] 10 22/24 3/5 3/3
Problem 61 [19] 10 394/5784 357/5650 357/5650
Problem 63 [19] 5 22/26 47/66 21/38
Problem 77 [19] 10 149/219 51/126 17/24
Problem 78 [19] 2 Failed Failed Failed
Problem 79 [19] 5 970/4130 952/4025 844/3441
Problem 81 [19] 5 Failed Failed Failed
Problem 81 [19] 10 Failed 843/4344 432/3456
problem 111 [19] 5 344/1815 310/1012 72/770
problem 111 [19] 10 Failed 572/4567 424/3245



G
al
le
y
P
ro
of

A new dwindling nonmonotone filter method without gradient . . . 37

References

1. Ahookhosh, M. and Amini, K. A nonmonotone trust region method with
adaptive radius for unconstrained optimization, Comput. Math. Appl. 60
(2010), no. 3, 411–422.

2. Ahookhosh, M., Amini, K., and Reza Peyghami, M. A nonmonotone trust-
region line search method for large-scale unconstrained optimization, Appl.
Math. Model. 36 (2012), no. 1, 478–487.

3. Andrei, N. An unconstrained optimization test functions collection, Adv.
Model. Optim. 10 (2008), no. 1, 147–161.

4. Arzani, F. and Reza Peyghami, M. An approach based on dwindling filter
method for positive definite generalized eigenvalue problem, Comp. Appl.
Math. (2016). doi:10.1007/s40314-016-0391-z

5. Arzani, F. and Reza Peyghami, M. A new nonmonotone filter Barzilai-
Borwein method for solving unconstrained optimization problems, Int. J.
Comput. Math. 93 (2016), no. 3, 596–608.

6. Ataee Tarzanagh, D., Saeidian, Z., Reza Peyghami, M., and Mesgarani,
H. A new trust region method for solving least-square transformation of
system of equalities and inequalities, Optim. Lett. 9 (2015), no. 2, 283–310.

7. Barzilai, J. and Borwein, J. M. Two-point step size gradient methods, IMA
J. Numer. Anal. 8 (1988), 141–148.

8. Chen, Y. and Sun, W. A dwindling filter line search method for uncon-
strained optimization, Math. Comp. 84 (2015), no. 291, 187–208.

9. Cheng, W. Y. A two-term PRP based-descent method, Numer. Funct.
Anal. Optim. 28 (2007), no. 11-12, 1217–1230.

10. Cheng, W. and Chen, Z. Nonmonotone spectral method for large-scale
symmetric nonlinear equations, Numer. Algorithms 62 (2013), 149–162.

11. Cheng, W. and Li, D. H. A derivative-free nonmonotone line search and
its application to the spectral residual method, IMA J. Numer. Anal. 29
(2009), no. 3, 814–825.
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