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A nonstandard finite difference scheme
for solving three-species food chain
with fractional-order Lotka-Volterra

model

S. Zibaei and M. Namjoo∗

Abstract

In this paper, we introduce fractional-order for a model of tritrophic food
chain Lotka-Volterra. Moreover, we discuss the stability analysis of fractional

system. The nonstandard finite difference (NSFD) scheme is implemented to
study the dynamic behaviors in the fractional-order Lotka-Volterra system.
Numerical results show that the NSFD approach is easy to implement and
accurate when applied to fractional-order Lotka-Volterra system.

Keywords: Fractional differential equations; Lotka-Volterra model; prey-
predator system; Nonstandard finite difference scheme; Stability.

1 Introduction

Biological systems have been studied for many years. In these systems, it
is common that state variables represent nonnegative quantities, such as
concentrations, physical properties, the size of populations and the amount
of chemical compounds [15]. These biological models are commonly based
on the systems of ordinary differential equations (ODEs). Exact solutions
of these systems are rarely in access and usually complicated; hence good
approximations are required. Numerical methods are often the method of
choice. They should describe the dynamic behavior of the systems, produce
the nonnegative solutions, and reproduce the real dynamics of the biological
systems. The interspecies interaction is among the most intensively explored
fields of biology. The existance of many mathematical models in that area
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help us understand the population dynamics of analyzed biological systems.
Mathematical models of predator-prey systems, characterized by decreasing
growth rate of one of the interacting populations and increasing growth rate
of the other, consist of systems of ODEs. In most of the modeled interac-
tions, all rates of change are assumed to be time independent, which makes
the corresponding systems autonomous. It is not always possible to find the
exact solutions of the nonlinear models that have at least two ODEs. It is
sometimes more useful to find numerical solutions of these types of systems in
order to programme easily and visualize the results. By applying a numerical
method on a continuous differential equation system, it becomes a difference
equation system, i.e., discrete time system. While applying these numerical
methods, it is necessary that the new difference equation system provide the
positivity conditions and exhibit the same quantitative behaviours of con-
tinuous systems such as stability, bifurcation and chaos. It is well known
that some traditional and explicit schemes such as forward Euler and Runge-
Kutta are unsuccessful at generating oscillation, bifurcations, chaos and false
steady states, despite using adaptative step size [13,17,18]. For forward Euler
method, if the step size h is chosen small enough and the positivity conditions
are satisfied, the local asymptotic stability for a fixed point is saved while
in some special cases Hopf bifurcation cannot be seen. Instead of classical
methods, NSFD schemes can alternatively be used to obtain more qualitative
results and remove numerical instabilities. These schemes are developed for
compensating the weaknesses, such as numerical instabilities that may be
caused by standard finite difference methods. Also, the dynamic consistency
can be represented by NSFD schemes [10]. The most important advantage
of this scheme is that by choosing a convenient denominator function instead
of the step size h, better results can be obtained. If the step size h is chosen
small enough, the obtained results do not change significantly, but if the step
size h gets larger this advantage comes into focus.

As it is well known, in the field of mathematical biology, the traditional
Lotka-Volterra systems are very important mathematical models which de-
scribe multispecies population dynamics in a nonautonomous environment.
Many important and interesting results of the dynamic behaviors for the
Lotka-Volterra systems have been found in [3, 19, 20], such as the existence
and uniqueness of solutions, the permanence, extinction, global asymptotic
behavior and bifurcation. Because of the good memory and hereditary prop-
erties of fractional derivatives, it is often necessary to study the corresponding
fractional systems. Therefore, the dynamical analysis of the fractional Lotka-
Volterra systems has attracted a great deal of attention due to its theoretical
and practical significance.

Many important results regarding stability of fractional systems have been
obtained. For instance, the stability, existence, uniqueness and numerical
solution of the fractional logistic equation are investigated in [7]. The stability
and solutions of fractional predator-prey and rabies models are discussed
in [1]. In addition, bifurcation properties of fractional systems have been
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studied in some papers. For example, conditions for the occurrence of Hopf
’s bifurcation are explored based on numerical simulations in [29]. The critical
values of the fractional order are identified for which Hopf ’s bifurcation may
occur based on the stability analysis in [29]. Thus, it is significant to study
the dynamical behaviors in the fractional population systems.

Analysis of fractional Lotka-Volterra equations which are obtained from
the classical Lotka-Volterra equations in mathematical modeling by the re-
placing first order derivatives by fractional derivative of order α (0 < α ≤ 1)
have been the focus of recent research in this field. Lots of universal phenom-
ena can be modeled to a greater degree of accuracy by using the property of
these evolution equations. The fractional differential equations have gained
much attention recently due to the fact that fractional order system response
ultimately converges to the integer order system response.

The current technological advance has made it possible for humans to dis-
turb the environmental balance in nature that may cause immense damages,
such as species extinction or starvation. Therefore, understanding the be-
haviour of the interaction between the species may help biologists and other
related parties to prevent those events from happening. The real interaction
of prey-predator in nature is complex and comprises both interspecies and
external environmental factors. Therefore, several simplifications are usually
assumed so that a basic model can be constructed and then developed or
modified to approach the real system.

The Lotka-Volterra equations are a system of ODEs in the following form:

x′ = ax− bxy,

y′ = −cy + dxy,

x(0) = x0, y(0) = y0,

where x and y are prey and predactor, respectively. Here a is the prey
growth rate in the absence of the predators, b is the capture rate of prey
per predator, d is the rate at which each predator converts captured prey
into predator births and c is the constant rate at which death occurs in the
absence of prey. They show that ditrophic food chains (i.e. prey-predator
systems) permanently oscillate for any initial conditions if the prey growth
rate is constant and the predator functional response is linear.

The classical food chain models with only two trophic levels are shown
to be insufficient to produce realistic dynamics [5]. Therefore, in this pa-
per, by modifying the classical Lotka-Volterra model, we analyse and sim-
ulate the dynamics of a three-species food chain interaction. With non-
dimensionalisation, the system of three-species food chain can be written
as
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x′ = ax− bxy,

y′ = dxy − cy − eyz,

z′ = gzy − fz,

x(0) = x0, y(0) = y0, z(0) = z0,

(1)

where x, y and z denote the non-dimensional population density of the prey,
predator and top predator, respectively. The predator y preys on x and the
predator z preys on y. Furthermore a, b, c, d, e, f and g are the intrinsic
growth rate of the prey, the death rate of the predator, the death rate of the
top predator, predation rate of the predator, the conversion rate, predation
rate of the top predator and the conversion rate, respectively.

This paper is organized as follows: In the next section, we give some ba-
sic definitions and properties of the Grünwald-Letnikov (GL) approximation
and provide a brief overview of the important feature of the procedures for
constructing NSFD schemes for ODEs. In Section 3, we introduce fractional
order into the model that describes Lotka-Volterra system and also stability
theorem and fractional Routh-Hurwitz stability conditions are given for the
local asymptotic stability of the fractional systems. In Section 4, we will dis-
cuss the stability analysis of fractional system. In Section 5, we present the
idea of NSFD scheme for solving the fractional order Lotka-Volterra model.
Finally in the last section, numerical results show that the NSFD approach
is easy to be implemented and accurated when applied to fractional-order
Lotka-Volterra system.

2 Preliminaries and notations

In this section, some basic definitions and properties of the fractional calculus
theory and nonstandard discretization are discussed.

2.1 Fundamentals of fractional-order

Fractional differential equations (FDEs) have gained considerable importance
due to their application in various sciences, such as physics, mechanics, chem-
istry and engineering [16]. In the recent years, the dynamic behaviors of
fractional-order differential systems have received increasing attention. Al-
though the concept of the fractional calculus was discussed in the same time
interval of integer-order calculus, the complexity and the lack of applications
postponed its progress till a few decades ago. Recently, most of the dynami-
cal systems based on the integer-order calculus have been modified into the
fractional order domain due to the extra degrees of freedom and the flexi-
bility which can be used to precisely fit the experimental data much better
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than the integer-order modeling. For example, new fundamentals have been
investigated in the fractional-order domain for the first time and do not exist
in the integer-order systems such as those presented in [9, 16].

2.2 GL approximation

The GL method of approximation for the one-dimensional fractional deriva-
tive is as follows [16]:

Dαx(t) = f(t, x(t)), x(0) = x0, t ∈ [0, tf ], (2)

Dαx(t) = lim
h→0

h−α

[
tf
h ]∑

j=0

(−1)j
(
α

j

)
x(t− jh),

where 0 < α < 1, Dα denotes the fractional derivative and h is the step size
and [

tf
h ] denotes the integer part of

tf
h . Therefore, Eq. (2) is discretized as

follows:
n∑

j=0

cαj xn−j = f(tn, xn), n = 1, 2, 3, ...

where tn = nh and cαj are the GL coefficients defined as:

cαj = (1− 1 + α

j
)cαj−1, cα0 = h−α, j = 1, 2, 3, ...

2.3 NSFD discretization

The initial foundation of NSFD schemes came from the exact finite differ-
ence schemes. These schemes are well developed by Mickens [13, 14] in the
past decades. These schemes are developed for compensating the weaknesses
such as numerical instabilities that may be caused by standard finite differ-
ence methods. Regarding the positivity, boundedness and monotonicity of
solutions, NSFD schemes have a better performance over the standard finite
difference schemes, due to flexibility to construct a NSFD scheme that can
preserve certain properties and structures, which are obeyed by the original
equations.

The advantages of NSFD schemes have been shown in many numerical
applications. Gonzalez-Parra et al. [4] developed NSFD schemes to solve
population and biological models. Jordan [8] constructed NSFD schemes for
heat transfer problems.
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We now give an outline of the critical points which will allow the con-
struction of NSFD discretizations for ODEs.

Consider the autonomous ODE given by

x′ = f(x), x(0) = x0, t ∈ [0, tf ],

where f(x) is, in general, a nonlinear function of x. For a discrete-time grid
with step size, △t = h, we replace the independent variable t by

t ≈ tn = nh, n = 0, 1, 2, . . . , N

where h =
tf
N . The dependent variable x(t) is replaced by

x(t) ≈ xn,

where xn is the approximation of x(tn).

The first NSFD requirement is that the dependent functions should be
modeled on the discrete-time computational grid. Particular examples of this
include the following functions [13,14].

xy ≈ 2xn+1yn − xn+1yn+1,

x2 ≈ xn+1xn,

x3 ≈ (
xn+1 + xn−1

2
)x2n.

A standard way for representing a discrete first-derivative is given by

x′ ∼=
xn+1 − xn

h
.

However, the NSFD scheme requires that x′ has a more general representation

x′ ∼=
xn+1 − xn

ϕ
,

where the denominator function, i.e. ϕ has the following properties:

(i) ϕ(h) = h+O(h2),

(ii) ϕ(h) is an increasing function of h,

(iii) ϕ(h) may depend on the parameters appearing in the differential

equations.

The paper by Mickens [14] gives a general procedure for determining ϕ(h)
for systems of ODEs. An example of the NSFD discretization process is its
application to the decay equation
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x′ = −λx,

where λ is a constant. The discretization scheme is as follows [14]

xn+1 − xn
ϕ

= −λxn, ϕ(h, λ) =
1− e−λh

λ
.

Another example is given by

x′ = λ1x− λ2x
2,

where the NSFD scheme is

xn+1 − xn
ϕ

= λ1xn − λ2xn+1xn, ϕ(h, λ1) =
eλ1h − 1

λ1
.

It should be noted that the NSFD schemes for these two ODEs are exact in
the sense that xn = x(tn) for all applicable values of h > 0. In general, for
an ODE with polynomial terms,

x′ = ax+ (NL) NL ≡ Nonlinear terms,

the NSFD discretization for the linear expressions is given by Mickens [14]

xn+1 − xn
ϕ

= axn + (NL)n,

where the denominator function is

ϕ(h, a) =
eah − 1

a
.

It follows that if x′ is a function of x which does not have a linear term, then
the denominator function is just h, i.e. ϕ(h) = h.

By applying this technique and using the GL discretization method, the
following relations are yielded:

xn+1 =

−
n+1∑
j=1

cαj xn+1−j + f(tn+1, xn+1)

cα0
, n = 0, 1, 2, ...

where cα0 = ϕ(h)−α.
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3 Fractional-order Lotka-Volterra model

Now we introduce fractional-order into the model (1) of Lotka-Volterra
chaotic system. The new system is described by the following set of frac-
tional ODEs of order α1, α2, α3 > 0, in the following form

Dα1x(t) = ax− bxy,

Dα2y(t) = dxy − cy − eyz,

Dα3z(t) = gzy − fz,

x(0) = x0, y(0) = y0, z(0) = z0,

0 < αi ≤ 1, i = 1, 2, 3.

(3)

Now, stability theorem on fractional-order systems, fractional Routh-
Hurwitz stability conditions and their related results are introduced. The
first stability theorem has been given for incommensurate fractional-order
systems.

Theorem 1. ( [12]) Consider the incommensurate fractional-order system

Dαx(t) = f(x(t)), x(0) = x0, (4)

where α = (α1, . . . , αn), αi ∈ (0, 1] for i = 1, 2, . . . , n and x ∈ Rn. The
equilibrium points of (4), are calculated by solving the equations:

f(x) = 0.

These points are locally asymptotically stable if all eigenvalues λ of the Jaco-
bian matrix J ≡ ∂f

∂x evaluated at the equilibrium points satisfy:

|arg(λ)| > α⋆π

2
, α⋆ = max(α1, . . . , αn).

Theorem 2. ( [11]) Consider the commensurate fractional-order system (4),
i.e., α1 = α2 = · · · = αn = α⋆. If all eigenvalues of the Jacobian matrix of
an equilibrium point satisfy:

|arg(λ)| > α⋆π

2
,

then, the fractional system is locally asymptotically stable at the equilibrium
point.

Consider the system of ODEs given by

X ′ = F (X,Y, Z),
Y ′ = G(X,Y, Z),
Z ′ = H(X,Y, Z),

(5)
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where F, G and H are nonlinear functions. Let X̄, Ȳ and Z̄ be the steady-
state solution, i.e.,

F (X̄, Ȳ , Z̄) = G(X̄, Ȳ , Z̄) = H(X̄, Ȳ , Z̄) = 0.

Now consider small perturbations to the steady-state solutions

X(t) = X̄ + x(t),
Y (t) = Ȳ + y(t),
Z(t) = Z̄ + z(t).

Frequently these are called perturbations of the steady-state. Substitut-
ing, we arrive at

(X̄ + x)′ = F (X̄ + x, Ȳ + y, Z̄ + z),
(Ȳ + y)′ = G(X̄ + x, Ȳ + y, Z̄ + z),
(Z̄ + z)′ = H(X̄ + x, Ȳ + y, Z̄ + z).

On the left-hand side we expand the derivatives and that by definition

X̄ ′ = Ȳ ′ = Z̄ ′ = 0.

On the right-hand side we now expand F, G and H in a Taylor series about
the point (X̄, Ȳ , Z̄). The result is

x′ = F (X̄, Ȳ , Z̄) + Fx(X̄, Ȳ , Z̄)x+ Fy(X̄, Ȳ , Z̄)y
+Fz(X̄, Ȳ , Z̄)z + terms of orderx2, y2, z2, xy,
yz, xz, and higher,

y′ = G(X̄, Ȳ , Z̄) +Gx(X̄, Ȳ , Z̄)x+Gy(X̄, Ȳ , Z̄)y
+Gz(X̄, Ȳ , Z̄)z + terms of orderx2, y2, z2, xy,
yz, xz, and higher,

z′ = H(X̄, Ȳ , Z̄) +Hx(X̄, Ȳ , Z̄)x+Hy(X̄, Ȳ , Z̄)y
+Hz(X̄, Ȳ , Z̄)z + terms of orderx2, y2, z2, xy,
yz, xz, and higher.

Again by definition,

F (X̄, Ȳ , Z̄) = G(X̄, Ȳ , Z̄) = H(X̄, Ȳ , Z̄) = 0,

so we are left with
x′ = a11x+ a12y + a13z,
y′ = a21x+ a22y + a23z,
z′ = a31x+ a32y + a33z,

where the matrix of coefficients
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A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


=

 Fx(X̄, Ȳ , Z̄) Fy(X̄, Ȳ , Z̄) Fz(X̄, Ȳ , Z̄)
Gx(X̄, Ȳ , Z̄) Gy(X̄, Ȳ , Z̄) Gz(X̄, Ȳ , Z̄)
Hx(X̄, Ȳ , Z̄) Hy(X̄, Ȳ , Z̄) Hz(X̄, Ȳ , Z̄)

 ,

is the Jacobian of the system (5). Hence, the problem has been reduced to
a linear system, i.e., w′ = Aw with w = (x, y, z)T , for states that are in
proximity to the steady-state (X̄, Ȳ , Z̄).

The Jacobian matrix J of the system (3) at the equilibrium point E =
(x∗, y∗, z∗) is computed as

J(E) =

a− by∗ −bx∗ 0
dy∗ −c+ dx∗ − ez∗ −ey∗
0 gz∗ −f + gy∗

 . (6)

The existence and local stability conditions of these equilibrium points are
as follows:

Let D(P ) denotes the discriminant of a polynomial P

P (λ) = λ3 + a1λ
2 + a2λ+ a3 = 0, (7)

and
D(P ) = 18a1a2a3 + (a1a2)

2 − 4a3(a1)
3 − 4(a2)

3 − 27(a3)
2,

using the results of [2], we have the following Routh-Hurwitz stability condi-
tions for FDEs:

(i) IfD(P ) > 0, then the necessary and sufficient condition for the equilibrium
point E to be locally asymptotically stable is a1 > 0, a3 > 0, a1a2 − a3 > 0.

(ii) If D(P ) < 0, a1 ≥ 0, a2 ≥ 0, a3 > 0, then the equilibrium point E
is locally asymptotically stable for α < 2/3. However, if D(P ) < 0, a1 <
0, a2 < 0, α > 2/3, then all roots of polynomial (7) satisfy the condition
|arg(λ)| < απ

2 .

(iii) If D(P ) < 0, a1 > 0, a2 > 0, a1a2 − a3 = 0, then the equilibrium
point E is locally asymptotically stable for all α ∈ [0, 1).

(iv) The necessary condition for the equilibrium point E to be locally asymp-
totically stable is a3 > 0.

In the next section, we discuss the asymptotic stability of the equilibrium
point E of the system (3).



..
A NSFD scheme for solving three-species food chain ... 63

4 Stability analysis of the model

To evaluate the equilibrium points of the system (3), let

ax− bxy = 0,

dxy − cy − eyz = 0,

gzy − fz = 0,

then the equilibrium points are E0 = (0, 0, 0), E1 = (0, fg ,−
c
e ) and E2 =

( cd ,
a
b , 0). All calculations were performed by MAPLE. The local stability

conditions of these equilibrium points are as follows:

(i) The Jacobian matrix (6) at the equilibrium point E0 = (0, 0, 0) is

J(0, 0, 0) =

a 0 0
0 −c 0
0 0 −f

 , (8)

with the characteristic equation

P (λ) = λ3 + a1λ
2 + a2λ+ a3 = 0,

where

a1 = f + c− a, a2 = cf − af − ac, a3 = −fac,

and D(P ) in the above equation is

D(P ) = (c− f)2(a+ f)2(a+ c)2.

Therefore, the eigenvalues of the Jacobian matrix (8) corresponding to the
equilibrium point E0 are λ1 = a, λ2 = −c and λ3 = −f .

Clearly, if c ̸= f then D(P ) > 0. Now, since a3 < 0; therefore, based on
part (i) in Routh-Hurwitz stability conditions, the equilibrium point E0 is
unstable.

(ii) The Jacobian (6) at the equilibrium point E1 = (0, fg ,−
c
e ) is

J(0,
f

g
,− c

e
) =



ag − bf

g
0 0

fd

g
0 −ef

g

0 −gc
e

0


,
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where the characteristic equation is

P (λ) = λ3 + a1λ
2 + a2λ+ a3 = 0,

with

a1 =
bf − ag

g
, a2 = −cf, a3 =

cf(ag − bf)

g
,

and again

D(P ) =
4cf(g2(a2 − cf) + bf(bf − 2ag))2

g4
.

Here, the corresponding eigenvalues are

λ1 =
ag − bf

g
, λ2 =

√
cf, λ3 = −

√
cf.

Obviously, if g2(a2 − cf) + bf(bf − 2ag) ̸= 0 then D(P ) > 0. Then as
a1a2 − a3 = 0; therefore, based on part (i) in Routh-Hurwitz stability condi-
tions, the equilibrium point E1 is an unstable point.

(iii) The Jacobian (6) at the equilibrium point E2 = ( cd ,
a
b , 0) is

J(
c

d
,
a

b
, 0) =



0 −bc
d

0

ad

b
0 −ea

b

0 0
ag − bf

b


, (9)

In this case, the characteristic equation is also

P (λ) = λ3 + a1λ
2 + a2λ+ a3 = 0,

where

a1 = −ag − bf

b
, a2 = ac, a3 = − (ag − bf)ac

b
,

and

D(P ) = −4ac(bf(bf − 2ag) + g2a2 + b2ca)2

b4
.

Therefore, the eigenvalues of the Jacobian matrix (9) corresponding to the
equilibrium point E2 are

λ1 =
ag − bf

b
, λ2 = i

√
ac, λ2 = −i

√
ac.
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Clearly, if bf(bf − 2ag) + g2a2 + b2ca ̸= 0 then D(P ) < 0. Now if bf > ag
then a1 > 0, a2 > 0, a1a2 − a3 = 0 and based on part (iii) in Routh-Hurwitz
stability conditions the equilibrium point E2 is locally asymptotically stable
for all α ∈ [0, 1).

5 NSFD for fractional-order Lotka-Volterra model

For system (3) and applying Mickens scheme by replacing the step size h
by a function ϕ(h) and using the GL discretization method, the following
equations are obtained:

n+1∑
j=0

cα1
j xn+1−j = axn − bxn+1yn,

n+1∑
j=0

cα2
j yn+1−j = −cyn+1 + dxn+1yn − eyn+1zn,

n+1∑
j=0

cα3
j zn+1−j = −fzn+1 + gznyn+1.

(10)

Comparing equations (10) with system (3), we note the following:
1. The linear and nonlinear terms on the right-hand side of the first equation
in system (3) are in the forms

x ≈ xn, −xy ≈ −xn+1yn.

2. The linear and nonlinear terms on the right-hand side of the second
equation in (3) are

−y ≈ −yn+1, xy ≈ xn+1yn, −yz ≈ −yn+1zn.

3. The linear and nonlinear terms on the right-hand side of the third equation
in (3) are

−z ≈ −zn+1, zy ≈ znyn+1.

Doing some algebraic manipulations to equations (10) yields the following
relations:
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xn+1 =

−
n+1∑
j=1

cα1
j xn+1−j + axn

cα1
0 + byn

,

yn+1 =

−
n+1∑
j=1

cα2
j yn+1−j + dxn+1yn

cα2
0 + c+ ezn

,

zn+1 =

−
n+1∑
j=1

cα3
j zn+1−j + gznyn+1

cα3
0 + f

,

(11)

where

cα1
0 = ϕ1(h)

−α1 , cα2
0 = ϕ2(h)

−α2 , cα3
0 = ϕ3(h)

−α3 ,

with [21]

ϕ1(h) =
eah − 1

a
, ϕ2(h) =

ech − 1

c
, ϕ3(h) =

efh − 1

f
.

Proposition 1. The numerical solutions obtained from system (11) for case
0 < αi ≤ 1, i = 1, 2, 3 satisfy

xn > 0 xn+1 > 0
yn > 0 ⇒ yn+1 > 0
zn > 0 zn+1 > 0

(12)

for all the relevant values of n.

Proof. Since cαi
0 > 0 and by recursive relation

cαi
j = (1− 1 + αi

j
)cαi

j−1, j = 1, 2, 3, ...

we have cαi
j < 0, j > 0. Now system (11) shows that relations (12) is

established. For case αi = 1, i = 1, 2, 3 we should consider the following
system:

xn+1 − xn
ϕ1

= axn − bxn+1yn,

yn+1 − yn
ϕ2

= −cyn+1 + dxn+1yn − eyn+1zn,

zn+1 − zn
ϕ3

= −fzn+1 + gznyn+1.

By solving this system for xn+1, yn+1 and zn+1 we conclude that relation
(12) holds.
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6 Numerical results

Analytical studies always remain incomplete without numerical verification
of the results. In this section, we present numerical simulation to illustrate
the results obtained in the previous sections. The numerical experiments
are designed to show the dynamical behaviour of the system in three main
different sets of parameters and initial conditions:

(i) The case where bf = ag,

(ii) The case where bf > ag,

(iii) The case where bf < ag.

To show the dynamics of the system (3), set the parameter a = b = c =
d = e = f = 1 given as fixed parameters and g as a varied parameter.

(i) The case where bf = ag
For the case bf = ag the equilibrium point E2 has three eigenvalues with zero
real part corresponding with stable centre point in xy plane . We consider
the case α1 = α2 = α3 = 1 which corresponds to the classical Lotka-Volterra
system. Figures 1 and 2 represents the phase portrait for solutions where
parameter g = 1 with the initial conditions (x(0), y(0), z(0)) = (0.5, 1, 2),
for simulation time 40s and step size h = 0.1 and h = 0.5. In this case,
prey x, predator y and top predator z persist and have populations that vary
periodically over time in a common period.

Once again an equilibrium is achieved within the system, such that each
predator population increases as the population of its respective prey in-
creases. Each predator population also peaks and then begins to decrease
shortly after its respective prey population peaks and begins to decrease.
The plots of populations x and y are essentially the same as they were in
the 2D system, and the new predator population z behaves similarly with
respect to y as y behaves with respect to x. All three populations share a
common period.
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Figure 1: Plot of populations x, y and z over time for the case bf = ag with α1 = α2 =
α3 = 1 and h = 0.1.
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Figure 2: Plot of populations x, y and z over time for the case bf = ag with α1 = α2 =

α3 = 1 and h = 0.5.

Figures 3 and 4 depict the phase trajectory of the fractional-order Lotka-
Volterra chaotic system (3) for commensurate order α1 = α2 = α3 = 0.90 and
parameters g = 1 with the initial conditions (x(0), y(0), z(0)) = (0.5, 1, 2), for
simulation time 40s and step size h = 0.1 and h = 0.5.
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Figure 3: Plot of populations x, y and z over time for the case bf = ag with α1 = α2 =
α3 = 0.90 and h = 0.1.
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Figure 4: Plot of populations x, y and z over time for the case bf = ag with α1 = α2 =

α3 = 0.90 and h = 0.5.

Figures 5 and 6 depict the phase trajectory of the fractional-order Lotka-
Volterra chaotic system for incommensurate order and parameters g = 1 with
the initial conditions (x(0), y(0), z(0)) = (0.5, 1, 2), for simulation time 40s
and step size h = 0.1 and h = 0.5.
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Figure 5: Plot of populations x, y and z over time for the case bf = ag with α1 =
0.99, α2 = 0.95, α3 = 0.90 and h = 0.1.
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Figure 6: Plot of populations x, y and z over time for the case bf = ag with α1 =
0.95, α2 = 0.90, α3 = 0.80 and h = 0.5.

In Figure 7, the phase trajectory of the fractional-order Lotka-Volterra
chaotic system is depicted for incommensurate order and parameters a =
1, b = 2, c = 5, d = 4, e = 3, f = 3, g = 6 with the initial conditions
(x(0), y(0), z(0)) = (0.5, 1, 2), for simulation time 40s and step size h = 0.1.



..
A NSFD scheme for solving three-species food chain ... 71

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

3

3.5

t

x
(t

),
 y

(t
),

 z
(t

)

 

 
x(t)
y(t)
z(t)

0
1

2
3

4 0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

y(t)x(t)

z
(t

)

Figure 7: Plot of populations x, y and z over time for the case bf = ag with α1 =
0.99, α2 = 0.95, α3 = 0.90 and h = 0.1.

(ii) The case where bf > ag
For the case where bf > ag, two eigenvalues for E2 are pure imaginary
initially-spiral stability corresponding with centre manifold in xy plane and
one negative real eigenvalue corresponding with stable one-dimensional in-
variant curve in z axis. Hence, the equilibrium point E2 is locally stable
spiral sink. On the other hand, prey x and predator y persist and has popu-
lations that vary periodically over time with a common period. The solutions
are plotted in Figures 8 and 9 for commensurate order α1 = α2 = α3 = 1 and
parameters g = 0.88 with the initial conditions (x(0), y(0), z(0)) = (0.5, 1, 2),
for simulation time 100s and step size h = 0.1 and h = 0.5.
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Figure 8: Plot of populations x, y and z over time for the case bf > ag with α1 = α2 =
α3 = 1 and h = 0.1.
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Figure 9: Plot of populations x, y and z over time for the case bf > ag with α1 = α2 =
α3 = 1 and h = 0.5.

Figures 10 and 11 depict the phase trajectory of the fractional-order
Lotka-Volterra chaotic system (3) for incommensurate order α1 = 0.90,
α2 = 0.80, α3 = 0.70 and parameters g = 0.88 with the initial conditions
(x(0), y(0), z(0)) = (0.5, 1, 2), for simulation time 100s and step size h = 0.1
and h = 0.5.
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Figure 10: Plot of populations x, y and z over time for the case bf > ag with α1 =
0.90, α2 = 0.80, α3 = 0.70 and h = 0.1.
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Figure 11: Plot of populations x, y and z over time for the case bf > ag with α1 =
0.90, α2 = 0.80, α3 = 0.70 and h = 0.5.

(iii) The case where bf < ag
For the case where bf < ag, two eigenvalues for E2 is pure imaginary
initially-spiral stability corresponding with centre manifold in xy plane and
one positive real eigenvalue corresponding to unstable one-dimensional in-
variant curve in z axes. Hence the equilibrium point E2 is a locally unstable
spiral source. In this case, the prey x and top predator z can survive, growing
periodically unstable. On the other hand, predator y persists and has popu-
lations that vary periodically stable. The solutions for this case are shown in
Figure 12 for commensurate order α1 = α2 = α3 = 1 and parameters g = 1.6
with the initial conditions (x(0), y(0), z(0)) = (0.5, 1, 2), for simulation time
50s and step size h = 0.1.
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Figure 12: Plot of populations x, y and z over time for the case bf < ag with α1 = α2 =
α3 = 1 and h = 0.1.

In Figure 13 the phase trajectory of the fractional-order Lotka-Volterra
chaotic system (3) is depicted for commensurate order α1 = α2 = α3 =
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0.50 and parameters g = 1.6 with the initial conditions (x(0), y(0), z(0)) =
(0.5, 1, 2), for simulation time 50s and step size h = 0.5.
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Figure 13: Plot of populations x, y and z over time for the case bf < ag with α1 = α2 =
α3 = 0.50 and h = 0.5.

The solutions for this case are shown in Figure 14 for incommensurate
order and parameters g = 1.6 with the initial conditions (x(0), y(0), z(0)) =
(0.5, 1, 2), for simulation time 50s and step size h = 0.1.
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Figure 14: Plot of populations x, y and z over time for the case bf < ag with α1 =

0.60, α2 = 0.50, α3 = 0.40 and h = 0.1.

In Figure 15 the phase trajectory of the fractional-order Lotka-Volterra
chaotic system is depicted for incommensurate order and parameters g = 1.6
with the initial conditions (x(0), y(0), z(0)) = (0.5, 1, 2), for simulation time
50s and step size h = 0.5.
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Figure 15: Plot of populations x, y and z over time for the case bf < ag with α1 =
0.8, α2 = 0.6, α3 = 0.5 and h = 0.5.

In Table 1 for different step size h, the qualitative results, obtained by
NSFD scheme, of the fixed point E2 are respectively compared to classical
methods such as forward Euler and 4th order Runge-Kutta. From Table 1,
it follows that the CPU time of the method NSFD is less than the CPU time
of the forward Euler and Runge-Kutta methods. Also if step size h is chosen
small enough, the results of the proposed NSFD scheme are similar with the
results of the other two numerical methods. But if the step size h is chosen
larger, the efficiency of NSFD scheme is clearly seen.

Table 1: Qualitative results of the equilibrium point E2 for different time step sizes, t=
0-200 for the case where bf = ag

h Euler CPU time Runge-Kutta CPU time NSFD CPU time
0.001 Convergence 0.016342 Convergence 0.032029 Convergence 0.000206
0.01 Convergence 0.014760 Convergence 0.028096 Convergence 0.000205
0.1 Convergence 0.013917 Convergence 0.027959 Convergence 0.000203
0.2 Divergence – Convergence 0.025959 Convergence 0.000202
2 Divergence - Divergence – Convergence 0.000201
10 Divergence - Divergence - Convergence 0.000201

In Figure 16 the numerical solution of forward Euler and fourth order
Runge-Kutta methods are compared with NSFD scheme graphically.
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Figure 16: Numerical solutions for forward Euler and fourth order Runge-Kutta and
NSFD methods with h = 0.1 for the case bf = ag and α1 = α2 = α3 = 1.

7 Conclusion

In this paper, we study the fractional-order Lotka-Volterra model. The sta-
bility of equilibrium points is studied. Numerical solutions of these models
are given. The reason for considering a fractional order system instead of its
integer order counterpart is that fractional order differential equations are
generalizations of integer order differential equations. Also using fractional
order differential equations can help us to reduce the errors arising from the
neglected parameters in modelling real life phenomena.

We argue that the fractional order models are at least as good as integer
order ones in modeling biological, economic and social systems (generally
complex adaptive systems) where memory effects are important.
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لوتکا-ولترا مدل با بعدی سه غذایی شبکه�ی حل برای استاندارد غیر متناهی تفاضلی طرح یک
کسری مرتبه�ی

نامجو مهران و زیبایی صادق

ریاضی گروه ریاضی، علوم دانشکده رفسنجان، عصر ولی دانشگاه

١٣٩۴ مرداد ١٠ مقاله پذیرش ،١٣٩۴ خرداد ١۶ شده اصلاح مقاله دریافت ،١٣٩٣ آذر ٢ مقاله دریافت

می�کنیم. معرفی را لوتکا-ولترا بعدی سه غذایی شبکه�ی از کسری مرتبه�ی مدل یک مقاله این در : چکیده
رفتار که می�شود بیان غیراستانداردی متناهی تفاضلی طرح می�دهیم. شرح را کسری سیستم پایداری تحلیل
که می�دهند نشان عددی نتایج می�دهد. قرار مطالعه مورد را کسری مرتبه�ی لوتکا-ولترا سیستم دینامیکی
استفاده کسری مرتبه�ی لوتکا-ولترا سیستم برای که زمانی استاندارد غیر متناهی تفاضلی طرح تقریبات

هستند. دقیق بسیار می�شوند،

تفاضلی طرح شکار-شکارچی؛ سیستم لوتکا-ولترا؛ مدل کسری؛ دیفرانسیل معادلات : کلیدی کلمات
پایداری. غیراستاندارد؛ متناهی
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