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Chebyshev Galerkin method for
integro-differential equations of the
second kind

J. Biazar* and F. Salehi

Abstract

In this paper, we propose an efficient implementation of the Chebyshev
Galerkin method for first order Volterra and Fredholm integro-differential
equations of the second kind. Some numerical examples are presented to
show the accuracy of the method.

Keywords: Volterra integro-differential equations; Galerkin method; Cheby-
shev polynomials.

1 Introduction

Integro-differential equations occur in various areas. These equations arise
in mathematical modeling of many scientific phenomena, such as fluid dy-
namics, solid state physics, plasma physics, mathematical biology viscoelas-
ticity [33], heat transfer [6], economics [26], chemostat [41], HIV models [4],
biotissues [15], static analysis of wind towers or chimneys [35], and chemical
kinetics [34]. Integro-differential equations contain both integral and differ-
ential operators. The derivatives of the unknown functions may appear to
any order [2,40].

The concepts of integral equations have motivated a large amount of re-
search work in recent years. Many numerical methods have been applied
to solve these equations such as: El-gendi and Galerkin [11,12,27], Euler-
Chebyshev [37], Variational iteration [39], Homotopy perturbation [10, 32],
Chebyshev and Taylor collocation [1,3,8,13,20,28], Chebyshev Wavelets [5],
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Spline collocation [7], finite element [9], sinc collocation [43], Bessel polynomi-
als [42], Legendre polynomials [23], Bernstein polynomials [21] and Lagrange
polynomials [31] and etc. [27,36].

Galerkin method is a powerful tool for solving many kinds of equations
in various fields of science and engineering. It is one of the most impor-
tant weighted residual methods invented by the Russian mathematician Boris
Grigoryevich Galerkin. Recently, various Galerkin algorithms have been ap-
plied in numerical solution of integral equations and integro differential equa-
tions. We can mention the following methods that are based on the Galerkin
idea: Galerkin finite element [22], iterated Galerkin [38], Galerkin with hy-
brid functions [27], Crank-Nicolson least-squares Galerkin [18], Wavelet—
Galerkin [16], Discrete Galerkin [30], Petrov—Galerkin [25], pseudo-spectral
Legendre-Galerkin [14] and etc. There are many different families of orthog-
onal functions, which can be used. Chebyshev polynomials are considerably
useful to solve integro-differential equations.

In this paper, the solution is approximated by a linear combination of the
first N+1 Chebyshev polynomials, with {ai}f\io, as coefficients. Approximate
solution will be simplified as a polynomial in z. This approximation will be
substituted in the equation. To determine a;, one can consider inner product
of both sides of the equation, by 7} (x). This procedure reduces the problem
to a system of equations. The generated system, which considering the type
of the equation will be either linear or nonlinear, can be solved through
various methods and the unknown coefficients can be found. Practically, all
orthogonal polynomials, on a closed finite interval, can also be applied for
approximating functions. But convergence of the partial sums of the first-
kind Chebyshev expansion, of a continuous function on [—1, 1], is faster than
the partial sums of an expansion in any other orthogonal polynomials [3].

The outline of this paper is as follows: Section 2 presents the method for
solving Volterra integro-differential equations. Numerical examples are given
in Section 3. Finally, conclusion will be presented in Section 4.

2 Chebyshev Galerkin method
Consider the following Volterra integro-differential equation
u'(x):f(x)—i—/\/ K(z,t)u(t)dt, a<z<b, (1)

u(a) = a. (2)

where u () is the unknown function, K (x,t) is a known continuous and
square integrable function, f (x) is a known function, and \ is a real known
parameter.

The method under study uses Chebyshev polynomials, well addressed in [29],
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as a basis polynomial to approximate the solution on a closed finite interval.
Assume that

u(zr) 2 uy(z) = iaiTi (W) ) (3)

where T; (W) is shifted Chebyshev polynomial at [a,b]. So we have

N

W) m ) =3 7 21 (255—(”—‘1)) , (4)

—a b—a
i=0

Substituting (3) and (4) into (1), results in

2 2z — (b—a)
7
b—a" 7‘( b—a >

@+ e / K (. 0T, (Qt_b(b;“)) dt, a<wz<b. (5)
1=0 a

N
i—0

K2

To determine unknown coefficients a;, we use the Galerkin idea by multiplying
both sides of (5) by T} (W) and then integrating with respect to x from
—1 to 1. So we have

[ ron (250) ws
/1 </\Zn:ai /T K(z,t)T; (%_b(b;a)) dt) T; (W) d, (6)
-1 i=0 a
for j =0,1,..., N, or equivalently
[ r@m (250 s

/\iai /_11( :K(x,t) T (W) dt) T (W) dz. (7)
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If needed the integrals can be calculated by numerical methods. This proce-
. . N

dure generates a system of linear equations for the unknown {a;},_,. Many

researchers substitute initial condition

u(a) = a = ZaiTi <2a—b(ba—a)> = Z%‘Ti(—l) = qa. (8)
=0 i=0

for the same number of equations in the foregoing linear system.

The unknown parameters are determined by solving the system of equations
(7) and (8). Substituting these values in (3) gives the approximate solution
of the integro-differential equation (1). Similarly one can apply this approach
for a Fredholm integro-differential equation in the following general form:

b
u' (z) :f(:v)+)\/ K(z,t)u(t)dt, a<xz<b,
u(a) = «

3 Numerical Examples

In this section, we intend to show the efficiency of the Galerkin method for
solving Volterra integro-differential equations of the second kind by Cheby-
shev polynomials by presenting three illustrative examples. The absolute
error for this formulation is defined by

Example 1. Consider the following Fredholm integro-differential equations
of the second kind [17]

1
u’(x):u(x)—%x%-ﬁ—ln(xﬂ—l)—kﬁ/o Hilu(t)dt, 9)

with the exact solution u(z) = In(z + 1).

To solve Equation (9) we approximate u (z) and u’ (x) as follows:

. 2z — (b—a)
ug(z) =y a;T; | ——————= ) =ap+a1(2z—1)
i) = 3 et (L) <ag

+ ap(8x? — 82 4+ 1) + a3(322> — 4822 4 18z — 1)
+ ay(1282* — 25623 + 1602% — 322 + 1), (10)
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and

4
Z 2 ;T <2x_(b_a)> = 2a; + ay (162 — 8)
pre b—a b—a

+ a3(96x? — 962 + 18) + aq(5122° — 76822 + 320z — 32).  (11)

uy ()

Substituting (10) and (11) into (9), results in

2a1 + az(162 — 8) + a3 (962% — 96 + 18) + a4(5122° — 768x2 + 3202 — 32)
=ap+a1(2x — 1) + ax(82% — 8z + 1) + a3(322® — 482% 4+ 182 — 1)

1 1
+ a4(1282* — 2562 + 160x% — 322 + 1) — ST+ T In(x+1)
T | 9
— | — 2t — 1 8t2 — 8t + 1
+(1112)2/0 rp (a0t an(2 = 1)+ ax +1)
+ a3(32t> — 48t% + 18t — 1) + ax (128" — 256t + 160t> — 32t + 1)) dt,

(12)

b—
with respect to x from —1 to 1, we obtain a system of linear equations which
one of them is replaced by the equation

By multiplying both sides of (12) by T; (%l:a)) and then integrating it

u(0)=0=ay—az+as=0 (13)

Now the unknown coefficients {ai}?zo are determined by solving this sys-
tem. Substituting these values in (3) gives the approximate solution of the
integro-differential equation (1). The results have been shown in Table 1, for
N =4,8,12, and Error is plotted in Figure 1, for N = 12.

Example 2. Consider the following Volterra integro-differential equations
of the second kind [40]

u' (x) =1—2zsin(x) + /Oru (t)dt, wu(0)=0.

The exact solution is y = x cos(z).
Table 2 shows the results for N = 4, 8,12. Also Figure 2 shows absolute error
for N = 12.

Example 3. Consider the following Volterra integro-differential equations
[40]:

1 x
u (x) =—-1+ 5302 —xe® — / tu (t)dt, wu(0)=0.
0
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The exact solution is y = 1 — e*. Results have been shown in Table 3, for

J. Biazar and F. Salehi

N =4,8,12, and Error plotted in Figure 3, for N = 12.

Table 1: Absolute Error for Example 1

Approzx. Abs. Approz. Abs. Approzx. Abs.

T solution Error solution FError solution FError
0.0 0 0 0 0 0 0
0.1 0.0949 4.233e-4 0.0953 4.556e-7 0.0953 4.998e-10
0.2 0.1817 6.317e-4 0.1823 7.690e-7 0.1823 7.938¢e-10
0.3 0.2615 8.544e-4 0.2624 1.082¢-6 0.2624 1.146e-09
0.4 0.3353 1.161e-3 0.3365 1.416e-6 0.3365 1.508e-09
0.5 0.4039 1.543e-3 0.4055 1.860e-6 0.4055 1.964e-09
0.6 0.4680 1.971e-3 0.4700 2.361e-6 0.4700 2.481e-09
0.7 0.5282 2.430e-3 0.5306 2.909e-6 0.5306 3.088¢-09
0.8 0.5848 2.951e-3 0.5878 3.614e-6 0.5878 3.821e-09
0.9 0.6382 3.626e-3 0.6418 4.438e-6 0.6419 4.687e-09
1.0 0.6885 4.629¢-3 0.6931 5.611e-6 0.6931 5.930e-09

5.x 10771

4.x 1071

3.x 1074

2.x107%1

1.x 107"

0 - - - - ,
0 0.2 0.4 0.6 0.8 1

Figure 1: Absolute Error for Example 1
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Table 2: Absolute Error for Example 2
N=/4 N=8 N=12
Approzx. Abs. Approz. Abs. Approzx. Abs.
x solution Error solution FError solution Error
0 0 0 0 0 0 0
0.1 0.0991 4.308e-4 0.0995 2.308e-9 0.0995 1.383e-15
0.2 0.1954 5.890e-4 0.1960 3.450e-9 0.1960 1.987e-15
0.3 0.2859 6.954e-4 0.2866 4.423e-9 0.2866 2.570e-15
0.4 0.3676 8.387e-4 0.3684 5.136e-9 0.3684 3.046e-15
0.5 0.4378 1.023e-3 0.4388 6.131e-9 0.4388 3.586e-15
0.6 0.4940 1.214e-3 0.4952 7.178e-9 0.4952 4.160e-15
0.7 0.5340 1.381e-3 0.5354 8.072e-9 0.5354 4.747e-15
0.8 0.5558 1.537e-3 0.5574 9.368e-9 0.5574 5.509e-15
0.9 0.5577 1.776e-3 0.5594 1.094e-8 0.5594 6.371e-15
1.0 0.5380 2.300e-3 0.5403 1.382¢-8 0.5403 8.087e-15
Table 3: Absolute Error for Example 3
=4 N=8 N=12
Approx. Abs. Approx. Abs. Approzx. Abs.
z solution Error solution Error solution Error
0 0 0 0 0 0 0
0.1 -0.1050 1.750e-4 | -0.1052 5.037e-10 | -0.1052 2.053e-16
0.2 | -0.2212 2.406e-4 | -0.2214 7.428e-10 | -0.2214 2.930e-16
0.3 | -0.3496 2.785e-4 | -0.3499 9.426e-10 | -0.3499 3.730e-16
0.4 | -0.4915 3.251e-4 | -0.4918 1.069e-9 -0.4918 | 4.332¢-16
0.5 | -0.6483 3.850e-4 | -0.6487 1.240e-9 -0.6487 | 4.955e-16
0.6 | -0.8217 | 4.448e-4 | -0.8221 1.407e-9 -0.8221 5.561e-16
0.7 | -1.0130 | 4.891e-4 | -1.0140 1.516e-9 -1.0140 6.081e-16
0.8 | -1.2250 5.177e-4 | -1.2260 1.679e-9 -1.2260 6.757e-16
0.9 | -1.4590 5.648e-4 | -1.4600 1.874e-9 -1.4600 7.438e-16
1.0 | -1.7180 7.204e-4 | -1.7180 2.311e-9 -1.7180 9.235e-16
8. % 10 154
7.x107"%1
6.x107"%1
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Figure 2: Absolute Error for Example 2
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Figure 3: Absolute Error for Example 3

4 Conclusion

This article deals with the numerical solution of the first order Volterra
integro-differential equations of the second kind, using Galerkin method by
Chebyshev Polynomials. This technique is tested on three examples and the
results are satisfactory. In addition this method is portable to high order
Volterra integro-differential equations of the second kind and easy to pro-
gram.
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