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A linearization technique for optimal
design of the damping set with

internal dissipation

A. Fakharzadeh J.∗, H. Alimorad D. and A. Beiranvand

Abstract

Considering a damped wave system defined on a two-dimensional domain,
with a dissipative term localized in an unknown subset with an unknown
damping parameter, we address the ill-posed shape design problem which

consists of optimizing the shape of the unknown subset in order to minimize
the energy of the system at a given time. By using a new approach based
on the embedding process, first the system is formulated in variational form.

Then, by transferring the problem into polar coordinates and defining two
positive Radon measures, we represent the problem in a space of measures.
Hence, the shape design problem is changed into an infinite linear one whose
solution is guaranteed. In this stage, by applying two subsequent approxi-

mation steps, the optimal solution (optimal control, optimal region, optimal
damping parameter and optimal energy) is identified by a three-phase opti-
mization search technique. Numerical simulations are also given in order to
compare this new method with level set algorithm.

Keywords: Damped wave equation; Dissipation control; Radon measure;
Search technique; Shape optimization.

1 Introduction and Problem statement

In many technological situations, a given structure whose optimal position
is at rest (for instance), starts to vibrate due to uncontrolled disturbances
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which we would like to stop. One possibility, although under ideal conditions,
is described in [16] through damping mechanisms. In the literature, the prob-
lem of optimal stabilization for the 2-D wave equation has been extensively
studied from different perspectives (see for instance, [4], [9] and [13]). The
analysis performed by Hebrard et al. highlights the effect of the over-damping
phenomenon characteristic of this damped wave equation [2]. Freitas [9] and
Lopez [13] solved the mentioned problem in which the dissipation vanishes for
large values of the constant damping coefficient. In 2006, Munch et al. used
Young measures to solve a similar problem and presented a solution method.
In that study, the damping coefficient was fixed and the best unknown inter-
nal region was determined by the use of the gradient descend method [15].
In sequence, the best damping coefficient and damping set were determined
at different times using the level set method [16].

In this paper, we solve the problem of finding an optimal observation
domain ω ⊂ Ω ⊂ R2 for general damping wave equations in a new way. We
optimize not only the placement but also the shape of ω, over all possible
measurable subsets of Ω having a certain prescribed measure. Such questions
are frequently encountered in engineering applications but have rarely been
treated from the mathematical point of view. In this regard, for the first
time, we consider a shape optimization problem to find the optimal shape
and place of a sensor, modeled by a two-dimensional wave equation. The
objective is to find the shape of the damping set that minimizes the energy
at some given end time (see [18] and [19]).

2 Optimal wave damping problem

Let Ω ⊂ R2 be a domain with piecewise smooth boundary and consider the
two-dimensional damping wave equation with Dirichlet boundary conditions.
Consider additionally that ω is a subset of Ω with positive Lebesgue measure
which is independent of time t ∈ (0, T ). The resulting equation for the
displacement of the sensor is then ( [2] and [16])

ÿω,a −∆yω,a + a(x)ẏω,a = 0, (x, t) ∈ Ω× (0, T ),
yω,a = 0, (x, t) ∈ ∂Ω× (0, T ),
yω,a(x, 0) = y0(x), ẏω,a(x, 0) = y1(x), x ∈ Ω;

(1)

here, a(x) = aχω(x) ∈ L∞(Ω,R+) is a damping function where a ∈ R+ is
unknown, ∅ ̸= ω is an unknown region in Ω, ∂ω is a smooth and simple closed
curve boundary which must be identified, χω is a characteristic function of
ω and y0 and y1 also indicate the initial position and velocity, respectively.
In addition, regarding the initial conditions, we assume that:

(y0(x), y1(x)) ∈ (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω),
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where H1
0 (Ω) (the Sobolev space of order 1 on Ω whose functions are zero on

the boundary of Ω [22]). System (1) is well-posed [12], whose unique solution
satisfies:

yω,a ∈ C((0, T );H2(Ω) ∩H1
0 (Ω) ∩ C1((0, T );H1

0 (Ω) ∩ C2((0, T );L2(Ω)).

For every t > 0, the energy of system (1) is obtained through ( [16])

E(ω, a, t) =
1

2

∫
Ω

(|ẏω,a(x, t)|2 + |∇yω,a(x, t)|2dx, (2)

which satisfies the following dissipation law (see [23]):

Ė(ω, a, t) = −
∫
Ω

a(x)|ẏω,a(x, t)|2dx ≤ 0.

Here, yω,a denotes the transversal displacement at point x in time t.
We attempt to find the unknown region ω and damping function a(x), si-

multaneously, through a three-phase optimization procedure which is based
on an embedding technique. To apply this method, first, we present the
problem in variational form; next, it is transferred into a new theoretical
measure problem in which two unknown positive Radon measures in a prod-
uct space of measures are sought. Then, the solution procedure is explained
and finally, by a three-phase optimization technique, a nearly optimal shape
together with the optimal damping function as well as the minimized value
of system energy are constructed.

The paper is organized as follows: the next section is devoted to the basic
deformation in variational form. The aim of Section 4 is to state the problem
in a polar system. Section 5 deals with the embedding process and approxi-
mation schemes. In Section 6, based on the previous discussions, we present
the solution algorithm. Then, two numerical simulations are presented in
Section 7. Finally, concluding remarks are offered in Section 8.

3 Basic Deformation

In general, it is difficult to identify a calssical solution for problem (1); thus
attempts have usually been made to find a weak (or generalized) solution
of the problem, which is more applicable in our work. The main idea in
this replacement is to convert the problem into the variational form. To
this end, by multiplying the first equation of system (1) with a function
φ ∈ H1

0 (Ω× (0, T )) and using Green’s theorem, to the initial conditions, for
each t, one obtains:∫

Ω

y∆φdx−
∫
Ω

φ∆ydx =

∫
∂Ω

(y
∂φ

∂n
− φ

∂y

∂n
ds) = 0,
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therefore ∫
Ω

y∆φdx =

∫
Ω

φ∆ydx;

then, we have: ∫
Ω

ÿφdx−
∫
Ω

y∆φdx+

∫
Ω

a(x)ẏφdx = 0. (3)

Integrating both sides of (3) with respect to t over [0, T ] gives:∫ T

0

∫
Ω

ÿφdxdt−
∫ T

0

∫
Ω

y∆φdxdt+

∫ T

0

∫
Ω

a(x)ẏφdxdt = 0, (4)

Double integrating by parts with respect to t from the first left expression
and integrating the third expression on the left-hand side of (4), we conclude:∫ T

0

∫
Ω
ÿφdxdt =

∫
Ω
[ẏ(T )φ(T )− ẏ(0)φ(0)− y(T )φ̇(T ) + y(0)φ̇(0)]dx

+
∫ T

0

∫
Ω
yφ̈dxdt;∫ T

0

∫
Ω
a(x)ẏφdxdt =

∫
Ω
a(x)[y(T )φ(T )− y(0)φ(0)−

∫ T

0
yφ̇]dx

=
∫
Ω
a(x)[y(T )φ(T )− y(0)φ(0)]dx−

∫ T

0

∫
Ω
a(x)yφ̇dxdt.

(5)

Now, by substituting the initial conditions of system (1) in (5), we have:∫ T

0

∫
Ω
ÿφdxdt =

∫
Ω
[ẏ(T )φ(T )− y1(x)φ(0)− y(T )φ̇(T ) + y0(x)φ̇(0)]dx

+
∫ T

0

∫
Ω
yφ̈dxdt;∫ T

0

∫
Ω
a(x)ẏφdxdt =

∫
Ω
a(x)[y(T )φ(T )− y0(x)φ(0)]dx−

∫ T

0

∫
Ω
a(x)yφ̇dxdt.

(6)

By applying (6), equation (4) is changed to:∫
Ω
ẏ(T )φ(T )dx−

∫
Ω
y(T )φ̇(T )dx−

∫ T

0

∫
Ω
y∆φdxdt+

∫
Ω
a(x)y(T )φ(T )dx

−
∫
Ω
a(x)y0(x)φ(0)dx−

∫ T

0

∫
Ω
a(x)yφ̇dxdt+

∫ T

0

∫
Ω
yφ̈dxdt

=
∫
Ω
[y1(x)φ(0)− y0(x)φ̇(0)]dx.

(7)

Moreover, for all (x, t) ∈ ∂Ω× [0, T ] by the initial condition, we have y(x, t) =
0; to apply this condition and using Green’s theorem, we have:∫

∂Ω

y(x, t)φ(x, t).ndσ =

∫
Ω

div(y(x, t)φ(x, t))dx = 0. (8)

Since the unknown region ω must lie in Ω and the measure of this unknown
region must be non-zero, the set of admissible shapes for problem (1) can be
shown as:
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VL = {ω ⊂ Ω : |ω| = L|Ω| }, 0 < L < 1 (9)

in which |ω| indicates the measure of ω and L is a fixed number. This
constraint can be shown by the following integral relation:∫

ω

dx = L

∫
Ω

dx. (10)

4 Expressing the problem in polar system

The mentioned optimal shape design (OSD) problem is defined based on the
unknown geometrical pair (ω, ∂ω). This pair consists of a measurable set that
can be regarded as a nonempty region, and a simple closed curve which is its
boundary. Based on the simplicity property of the curve, our OSD problem
depends on the geometry which is used. We prefer to solve the appropriate
problems in polar coordinates since where 0 ≤ θ ≤ 2π and r ⩾ 0, the curve
r = r(θ) is simple. This simple fact is an essential part in our calculations
and also in numerical simulations. Hence, let x1 = rcos(θ) and x2 = rsin(θ);
then, we have:

|∇y|T = [(
∂y

∂r
)2 +

1

r2
(
∂y

∂θ
)2], ∆y|T =

∂2y

∂r2
+

1

r

∂y

∂r
+

1

r2
∂2y

∂θ2
,

and therefore:

E(ω, a, T ) =
1

2

∫
Ω

[|ẏ(r, θ, T )|2 + (
∂y

∂r
)2 +

1

r2
(
∂y

∂θ
)2]rdrdθ.

Since the nature of Ω has not changed, but rather its representation has
changed, we use the same symbol and, in the end, the optimal shape is
shown in polar coordinates.

Additionally, for every φ ∈ H1
0 (Ω × (0, T )), the mentioned constraint in

(7) can be represented as:∫
Ω
ẏ(T )φ(T )rdrdθ −

∫
Ω
y(T )φ̇(T )rdrdθ −

∫ T

0

∫
Ω
y∆φrdrdθdt

+
∫
Ω
a(r, θ)y(T )φ(T )rdrdθ −

∫
Ω
a(r, θ)y0(r, θ)φ(0)rdrdθ

−
∫ T

0

∫
Ω
a(r, θ)yφ̇rdrdθdt+

∫ T

0

∫
Ω
yφ̈rdrdθdt = Φ,

(11)
in which

Φ =

∫
Ω

[y1(r, θ)φ(0)− y0(r, θ)φ̇(0)]rdrdθ.

Moreover, equations (8) and (9) can be represented in polar coordinates as:
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Ω
div(y(r, θ, t)φ(r, θ, t))rdrdθ = 0,∫

ω
rdrdθ = L

∫
Ω
rdrdθ.

(12)

Therefore, the problem of obtaining the optimal shape and damping coeffi-
cient for minimizing energy in polar coordinates has the following presenta-
tion:

Min : E(ω, a, T ) = 1
2

∫
Ω
[|ẏ(r, θ, T )|2 + (∂y∂r )

2 + 1
r2 (

∂y
∂θ )

2]rdrdθ,

S. to :
∫
Ω
ẏ(T )φ(T )rdrdθ −

∫
Ω
y(T )φ̇(T )rdrdθ −

∫ T

0

∫
Ω
y∆φrdrdθdt

+
∫
Ω
a(r, θ)y(T )φ(T )rdrdθ −

∫
Ω
a(r, θ)y0(r, θ)φ(0)rdrdθ

−
∫ T

0

∫
Ω
a(r, θ)yφ̇rdrdθdt+

∫ T

0

∫
Ω
yφ̈rdrdθdt = Φ;∫

Ω
div(y(r, θ, t)φ(r, θ, t))rdrdθ = 0, ∀φ ∈ H1

0 (Ω× (0, T ));∫
ω
rdrdθ = L

∫
Ω
rdrdθ.

(13)

To solve (12), we change the problem and consider a new one with a different
formulation. By applying this method, we show how one can obtain the op-
timal region ω, optimal damping function a(x) and the amount of minimized
energy simultaneously.

5 Embedding the solution space: metamorphosis

The solution method which is based on an embedding process involves several
stages to set up a linear programming problem whose solution converges to
the solution of the original problem (see [20]). This is one of the outstanding
advantages of this method even for strongly nonlinear problems. Hence, we
present a new version of shape measure method to solve the optimal shape
design (12). First, by defining a new variational formulation, an optimal
control problem equivalent to the original problem is obtained. Then, a
measure theoretical approach and a two-stage approximation are used to
convert the optimal control problem to a finite dimensional LP. The solution
of this LP is used to construct an approximate solution to the original control
problem. The proposed approach is practical and accurate enough and its
accuracy can be improved as far as desired (see [8]).

5.1 Step 1: Displaying the problem in variational form

In order to transform the optimal shape design into variational form, we need
to define some fundamental concepts. The conditions imposed on the func-
tions and sets will serve two important purposes. First, they are reasonable
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conditions which are usually met when considering classical problems. Sec-
ond, they will allow the modification of these classical problems into ones
which appear to have some advantages over the classical formulation.

Suppose that J = [0, 2π] and A1 = [0, rΩ] are the domains of variables θ
and r1, respectively. For Ω = J × A1, let V ⊆ R be a given bounded and
closed set, and A2 = [0, rω].

Definition 1. Consider the variable r : J0 → A2 as an absolutely continuous
trajectory function, where J0 = (0, 2π); then, we denote the boundary curve
of the unknown region ω by ∂ω which is introduced by:

∂ω : r = r(θ), θ ∈ Jo. (14)

Definition 2. By supposing that r is a simple and closed curve and U is a
bounded closed subset in R, we introduce an artificial control function u as
follows:

u : Jo → U,
u(θ) = ṙ(θ) ≡ g(θ, r, u),

where r(θ) ∈ [0, rω] and the boundary ∂ω is determined by this variable.
Definition 3. Let S

′
be a bounded closed subset of R and function Y :

Ω× [0, T ] → S′ be defined in the following way:

Y =
∂y

∂θ
. (15)

Since y = y(r1, θ) and r1 = r1(θ) ∈ Ω, we can write y = y(θ) and θ = θ(r1). In
this case, we have ∂y/∂r1 = (∂y/∂θ)(dθ/dr1) and by introducing v : Jo → V
where v = dr1/dθ, we can write:

∂y

∂r1
=
∂y

∂θ

1

v
,

where r1(θ) ∈ [0, rΩ] and ∂Ω is determined by this variable. From now on,
for simiplicity we denote r1 also with r by regarding that r1 = r ∈ Ω; hence
the derivative of r in ω and Ω were shown above by u and v respectively.

To identify the relationship between r and υ as variables, suppose E′ =
J ×A1 × V and consider h in C1(E′), then:

∂h

∂θ
(θ, r, v) =

∂h

∂r
(θ, r, v)v. (16)

In the same way, to display the relationship between functions y and Y as
two variables, we define E = J × S × S′(where S is the range of y) and
consider f ∈ C1(E); on the basis of y = y(r, θ), it is possible to express
θ according to y implicitly. Therefore, function f(θ, y, Y ) can basically be
displayed as f(θ, Y ). That is , y is not an independent variable of f ; hence,
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∂f/∂y(θ, Y ) = (∂f/∂θ(θ, Y )).(∂θ/∂y). Now, by regarding (14), we have
∂f/∂y(θ, Y ) = (∂f/∂θ(θ, Y )).(1/Y ) [3]. Since this relationship is satisfied
for every f ∈ C1(E), it can be concluded that:∫

Ω

∂f

∂y
(θ, Y )rdrdθ =

∫
Ω

∂f

∂θ
(θ, Y )

1

Y
rdrdθ, ∀f ∈ C1(E). (17)

We add this set of constraints to (12) in order to specify the relationship
between y and Y when they are considered as variables in the problem.

Since our aim is to identify ω and its unknown boundary, we prefer to
display the constraints of (12) as integrals on the boundary of ω as much as
we can. Thus, the term on the right-hand side of (6), we have:∫
Ω

a(x)y(T )φ(T )dx−
∫
Ω

a(x)y0(x)φ(0)dx =

∫
ω

a(y(T )φ(T )− y0(x)φ(0))dx;

Regarding the Green’s theorem :∮
∂ω

Mdx1 +Ndx2 =

∫
ω

(
∂N

∂x1
− ∂M

∂x2
)dA,

suppose M = 0 and N =
∫ x1

0
a(y(T )φ(T ) − y0(x)φ(0))dx1. Considering the

fact that a(x) = aχω(x), we have:∫
∂ω

a

∫ rcosθ

0

[y(T )φ(T )− y0(r, τ)φ(0)](ṙcosτ − rsinτ)(ṙsinτ + rcosτ)dτdτ.

(18)
Also, the area constraint (9) can be presented as:

1

2

∫
∂ω

r2drdθ = L

∫
Ω

rdrdθ = L
1

T

∫ T

0

∫
Ω

rdrdθ.

The independency of the objective function from t results in:

E(ω, a, T ) =
1

2T

∫ T

0

∫
Ω

[|ẏ(r, θ, T )|2 + (
1

v2
+

1

r2
)Y 2]rdrdθdt. (19)

Now, by substituting (17) into (10) for every φ ∈ H1
0 (Ω× (0, T )), we have:

1
T

∫ T

0

∫
Ω
ẏ(T )φ(T )rdrdθdt− 1

T

∫ T

0

∫
Ω
y(T )φ̇(T )rdrdθdt−

∫ T

0

∫
Ω
y∆φrdrdθdt

+
∫
∂ω
a
∫ rcosθ

0
[y(T )φ(T )− y0(r, τ)φ(0)](ṙcosτ − rsinτ)(ṙsinτ + rcosτ)dτdτ

−
∫ T

0

∫
Ω
a(r, θ)yφ̇rdrdθdt+

∫ T

0

∫
Ω
yφ̈rdrdθdt = Φ.

Integrating (11), (15) and (16) over [0, T ] implies that:
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0

∫
Ω
div(y(r, θ, t)φ(r, θ, t))rdrdθdt = 0, ∀φ ∈ H1

0 (Ω× (0, T ));

1
T

∫ T

0

∫
Ω

∂f
∂y rdrdθdt =

1
T

∫ T

0

∫
Ω

∂f
∂θ

1
Y rdrdθdt, ∀f ∈ C1(E);

1
T

∫ T

0

∫
Ω

∂h
∂θ (θ, r, v)rdrdθdt =

1
T

∫ T

0

∫
Ω

∂h
∂r (θ, r, v)vrdrdθdt, ∀h ∈ C1(E′).

Therefore, problem (12) can be displayed in a new variational form as follows:

Min : E(ω, a, T ) = 1
2T

∫ T

0

∫
Ω
[|ẏ(r, θ, T )|2 + ( 1

v2 + 1
r2 )Y

2]rdrdθdt

S. to : 1
2

∫
∂ω
r2drdθ = L 1

T

∫ T

0

∫
Ω
rdrdθdt,∫ T

0

∫
Ω
div(y(r, θ, t)φ(r, θ, t))rdrdθdt = 0, ∀φ ∈ H1

0 (Ω× (0, T ));

1
T

∫ T

0

∫
Ω

∂f
∂y (θ, Y )rdrdθdt = 1

T

∫ T

0

∫
Ω

∂f
∂θ

1
Y (θ, Y )rdrdθdt, ∀f ∈ C1(E);

1
T

∫ T

0

∫
Ω

∂h
∂θ (θ, r, v)rdrdθdt =

1
T

∫ T

0

∫
Ω

∂h
∂r (θ, r, v)vrdrdθdt, ∀h ∈ C1(E′);

1
T

∫ T

0

∫
Ω
ẏ(T )φ(T )rdrdθdt− 1

T

∫ T

0

∫
Ω
y(T )φ̇(T )rdrdθdt

−
∫ T

0

∫
Ω
y∆φrdrdθdt−

∫ T

0

∫
Ω
a(r, θ)yφ̇rdrdθdt;

+
∫
∂ω
a
∫ rcosθ

0
[y(T )φ(T )− y0φ(0)](ṙcosτ − rsinτ)(ṙsinτ + rcosτ)dτdτ

+
∫ T

0

∫
Ω
yφ̈rdrdθdt = Φ, ∀φ ∈ H1

0 (Ω× (0, T )).
(20)

Now, by determining a suitable control function, we rewrite the problem in
the form of an optimal control problem.

5.2 Step 2: Embedding into measure space

By considering the pair of functions (r, y) as the trajectory and the triple
(u, υ, Y ) as the control vector, problem (25) can be considered as an optimal
control problem. In this manner, we need to present the following definition:

Definition 4. Quintuplet p = (r, u, υ, y, Y ) is called admissible when it
satisfies the following conditions:

1. The control functions u, ν and Y are bounded and continuous and take
their values on compact sets U , V and S

′
;

2. r is a differentiable function and r(0) = r(2π);

3. y is the bounded solution of the linear damped wave system (1);

4. The relations (15) and (16) are satisfied.

The set of all admissible quintuplets is denoted by P . We also suppose that
P is nonempty; in other words, we suppose that the system is controllable
(This can be seen in [20], for instance).
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LetD = [0, T ]×J×A1×S×S′×V andD′ = J×A2×U ; for any admissible
quintuplets in P , we define the linear, positive and bounded functionals ΛP

and ΓP on C(D) and C(D′) in the following way:

Γ(F ) =
∫ T

0

∫
Ω
F (t, θ, r, v, y, Y )drdθdt, ∀F ∈ C(D);

Λ(G) =
∫
∂ω
G(θ, r, u)dθ, ∀G ∈ C(D

′
);

(21)

Since R6 is a locally compact space, by the Heine-Borel theorem ( [21]),
D ⊆ R6 is a compact Hausdorff space. Also, for the same reason, D′ is a
Hausdorff compact space. Therefore, for every given p, Riesz representation
theorem ( [22]) indicates uniquely two positive Radon measures , µP and λP ,
so that:

ΓP (F ) =
∫
D
FdµP ≡ µP (F ), ∀F ∈ C(D);

ΛP (G) =
∫
D′ GdλP ≡ λP (G), ∀G ∈ C(D

′
);

(22)

Consequently, any admissible quintuplets can be displayed as (27) by a unique
pair of measures, say (µP , λP ), in a subset F of M+(D) ×M+(D′), where
M+(X) is the set of all positive Radon measures on X. Therefore, one can
transfer problem (25) into a measure space by:

(r, u, v, y, Y ) ∈ P 7−→ (µP , λP ) ∈ M(D)×M(D′).

It was proved by Rubio (1986) that such a transformation is an injection.
To achieve something new, we enlarge the underlying space and consider the
problem of finding a minimizer pair of measures, say (µ∗, λ∗), on the space of
all positive related Radon measures which are just satisfied to the conditions
of (25) (Not just those that are induced from Riesz Representation theorem).
Therefore, our method is somehow global.

We now characterize some properties of admissible pairs. Suppose B is
an open disc in R2 that includes J × A2; consider C ′(B) as the space of
real-valued continuously differentiable functions on B. Then, for every ϕ in
C ′(B), we define:

ϕg(θ, r, u) = ϕr(θ, r)u+ ϕθ(θ, r), ∀(θ, r, u) ∈ D′.

Then, since the boundary ∂ω is a closed and simple curve, we have:∫
J

ϕg(θ, r, u)dθ =

∫
J

ϕ̇(θ, r)dθ = dϕ, ∀ϕ ∈ C ′(B), (23)

where dϕ = ϕ(2π, rd)−ϕ(0, rd), is still unknown since rd in (0, rd) = (2π, rd),
which is the initial and final point of the closed curve ω, is unknown. We will
explain later that it would be characteristic (see Section (6)).

Let D(J0) be the space of infinitely differentiable real-valued functions
with compact support in J0. Define
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ψg(θ, r, u) = r(θ)ψ̇(θ) + u(θ)ψ(θ), ∀(θ, r, u) ∈ D′;

then, ∫
J

ψg(θ, r, u)dθ = r(2π)ψ(2π)− r(0)ψ(0) = 0, ∀ψ ∈ D(Jo). (24)

The same situation arises for another special choice of functions in C ′(B)
which are only dependent on variable θ, denoted by C1(D

′
). Thus, for

ϕ(θ, r, u) ≡ ν(θ), we can have:∫
J

ν(θ)dθ = aν , ∀ν ∈ C1(D
′), (25)

where aν is the Lebesgue integral of ν over J .

Regarding the famous properties of admissible quintuplets in P which are
looked at in (28), (29) and (25), and the definitions of the pair of measures
(µ, λ) in (21), problem (25) can now be displayed as follows in which the
measures λ and µ are its unknown variables:

Min : E(µ, λ) = µ( r
2T [|ẏ(r, θ, T )|

2 + ( 1
v2 + 1

r2 )Y
2]

S. to : λ(ϕg(θ, r, u)) = dϕ, ∀ϕ ∈ C ′(B);

λ(ψg(θ, r, u)) = 0, ∀ψ ∈ D(Jo);

λ(ν(θ)) = aν , ∀ν ∈ C1(D
′);

λ( 12r
2) = Lµ( 1

T r),

µ( 1
T

∂f
∂y r) = µ( 1

T
∂f
∂θ

1
Y r), ∀f ∈ C1(E);

µ( 1
T

∂h
∂θ (θ, r, v)r) = µ( 1

T
∂h
∂r (θ, r, v)vr), ∀h ∈ C1(E′);

µ(div(y(r, θ, t)φ(r, θ, t))r) = 0, ∀φ ∈ H1
0 (Ω× (0, T ));

µ( 1
T ẏ(T )φ(T )r)− µ( 1

T y(T )φ̇(T )r)− µ(y∆φr)− µ(a(r, θ)yφ̇r) + µ(yφ̈r)

+λ(a
∫ rcosθ

0
[y(T )φ(T )− y0φ(0)](ṙcosτ − rsinτ)(ṙsinτ + rcosτ)dτ) = Φ;

(26)
We remind that the theoretical measure problem (26) is linear even though
the initial problem is highly nonlinear.

The spaceM+(D)×M+(D′) is a linear space which will become a locally
convex topological vector space when it gives the weak∗topology. This can be
defined by the family of semi-norms (µ, λ) 7→ |µ(F )|+ |λ(G)| for F ∈ C(D),
G ∈ C(D′) and ϵ > 0 , which can be on the basis of a family of neighborhoods
of zero for M+(D)×M+(D′). This family is defined by:

Uϵ = {(µ, λ) ∈M+(D)×M+(D′) : |µ(Fj)|+ |λ(Gj)| < ϵ; j = 1, 2, ..., r}
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and makes a basis for a weak∗topology on the spaceM+(D)×M+(D′) (Many
properties of this topology can be found in the literature such as [24]). In
this way, M+(D)×M+(D′) under this topology is a Hausdorff space ( [21]).

The proof of the following theorems can be found in [6], [7] and [20].

Theorem 1.
a) Q ⊆M+(D)×M+(D′) is compact under the weak∗ topology on M+(D)×
M+(D′)
b) The objective function E(µ, λ) in problem (26) is continuous.
c) There exists a pair of measures (µ∗, λ∗) which are optimal for (26) in the
set Q ⊂M+(D)×M+(D′); that is, for every (µ, λ) ∈ Q, we have:

E(µ∗, λ∗) ≤ E(µ, λ).

Even though (26) has an optimal solution in Q, it is still very difficult to ob-
tain the exact solution since the underlying spaces are not finite-dimensional,
the number of equations is not finite and the unknowns are measures. There-
fore, it is completely acceptable to seek for a suboptimal solution. Thus,
first, by choosing suitable dense subsets in the appropriate spaces and then,
by choosing a finite number of them, the problem is approximated by a semi-
finite linear programming.

5.3 Identifying a nearly optimal solution

It is possible to approximate the solution of problem (26) by the solution of
a finite-dimensional linear one of sufficiently large dimensions. Besides, by
increasing the dimension of the problem, the accuracy of the approximation
can be increased. First, we consider the minimization of (26) not only over
set Q, but also over its subset called Q(M1,M2, ...,M7) and defined by only a
finite number of constraints to be satisfied. This will be achieved by choosing
countable sets of functions whose linear combinations are dense in appropriate
spaces and then by selecting a finite number of constraints. Let {ϕi : i ∈ N},
{ψi : i ∈ N},{νi : i ∈ N},{φi : i ∈ N}, {fi : i ∈ N} and {hi : i ∈
N} be countable dense (in the topological convergence sense) sets in spaces
C ′(B), D(Jo), C1(D

′), H1
0 (Ω× (0, T )), C1(E) and C1(E′), respectively. By

choosing a finite number of functions in each set, the solution of (29) can be
approximated by the solution of the following one:
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Min : E(µ, λ) = µ( r
2T [|ẏ(r, θ, T )|

2 + ( 1
v2 + 1

r2 )Y
2])

S. to : λ(ϕgk(θ, r, u)) = dϕk
, k = 1, 2, ...,M1;

λ(ψg
l (θ, r, u)) = 0, l = 1, 2, ...,M2;

λ(νs(θ)) = as, s = 1, 2, ...,M3;

λ( 12r
2)− Lµ( 1

T r) = 0,

µ(Fi) = 0, i = 1, 2, ...,M4;

µ(Gj)− µ(Hj) = 0, j = 1, 2, ...,M5;

µ(Ij)− µ(Kj) = 0, j = 1, 2, ...,M6;

µ(Li)− µ(Pi)− µ(Qi)− µ(Ri) + λ(Ti) + µ(Ni) = Φi,

i = 1, 2, ...,M7,

(27)

where

Fi = div(y(r, θ, t)φi(r, θ, t))r, Gj =
1
T

∂fj
∂y r,

Hj =
1
T

∂fj
∂θ

1
Y r, Ij =

1
T

∂hj

∂θ (θ, r, v)r,

Kj =
1
T

∂hj

∂r (θ, r, v)vr, Li =
1
T ẏ(T )φi(T )r,

Pi =
1
T y(T )φ̇i(T )r, Qi = y∆φir,

Ri = a(r, θ)yφ̇ir, Ni = yφ̈r,

Ti = a
∫ rcosθ

0
[y(T )φi(T )− y0(r, τ)φi(0)](ṙcosτ − rsinτ)(ṙsinτ + rcosτ)dτ.

The density property of the selected sets in (27) causes its solution to tend to
the solution of (26) when M1,M2, ...,M7 → ∞; thus, if numbers M1, ...,M7

are selected large enough, (27) is a good approximation of our main problem.
Now, the number of constraints of the problem is finite, but the problem is
still infinite since the underlying space is a subspace of measures. It would
be more convenient if we could approximate the solution just by a solution
of a simple finite LP. This is precisely our main attention.

Fakharzadeh et al. (1999) presented that the pair of the optimal measures

of (25) are in the form of λ∗ =
∑M

m=1 β
∗
mδ(z

∗
m) and µ∗ =

∑N
n=1 α

∗
nδ(Z

∗
n)

in which Z∗
n and z∗m belong to dense subsets of D and D′, respectively;

moreover, δ(t) is a unitary atomic measure with support at the singleton set
t. Substituting these forms in (27), it might seem that the problem has been
made even more difficult, since, it is transformed into a non-linear one. But,
if function E(µ, λ) can be minimized only with respect to the coefficients α∗

n

and β∗
m, it will be turned to a linear programming problem. In other words,

the solution can be obtained approximately by solving just the simple finite
linear programming like below. If one chooses the points Z∗

n and z∗m from
the dense subsets of D and D′, this fact could be achieved in the second step
of our approximation. (see [6] for more details):
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Min : E(α, β, a, rda
) =

∑n=N
n=1 αnΘ(Zn)

S. to :
∑m=M

m=1 βmϕ
g
k(zm) = dϕk

, k = 1, 2, ...,M1;∑m=M
m=1 βmψ

g
l (zm) = 0, l = 1, 2, ...,M2;∑m=M

m=1 βmνs(zm) = as, s = 1, 2, ...,M3;∑m=M
m=1 βm

1
2r

2
m − ( 1

T )L
∑n=N

n=1 αnrn = 0,∑n=N
n=1 αnFi(Zn) = 0, i = 1, 2, ...,M4;∑n=N
n=1 αnGj(Zn)−

∑n=N
n=1 αnHj(Zn) = 0, j = 1, 2, ...,M5;∑n=N

n=1 αnIj(Zn)−
∑n=N

n=1 αnKj(Zn) = 0, j = 1, 2, ...,M6;∑n=N
n=1 αn[Li(Zn)− Pi(Zn)−Qi(Zn)−Ri(Zn) +Ni(Zn)]

+
∑m=M

m=1 βmTi(zm) = Φi, i = 1, 2, ...,M7;

αn ≥ 0, n = 1, 2, ..., N ;

βm ≥ 0, m = 1, 2, ...,M.
(28)

Here, we defined Θ(Z) = (r/2T )[|ẏ(r, θ, T )|2 + (1/v2 + 1/r2)Y 2]. Problem
(28) is still non-linear because Ri and Ti are functions of the damping coeffi-
cient and dφk

is unknown since the constant point (0, rda) of ω is unknown.
Now, by using simultaneous three-phase search techniques for (28), the op-
timal damping coefficient, r(0) = r(2π) = rda , and the optimal coefficients
α∗
1, ..., α

∗
N , β

∗
1 , ..., β

∗
M would be found as explained in next section. Thus, one

is able to construct the pair of optimal shape and control function in the
manner which has been explained in ( [8], [7]).

6 Algorithm

To apply the mentioned method for solving problem (1) practically, here we
present an algorithmic path for the solution procedure. Regarding the pre-
vious statements, we are able to identify the optimal control and optimal
region by using the following 4 steps algorithm:

Step 1: The given sets [0, T ], J, A1, S, S
′
and V which form Ω are divided

into n1, n2, n3, n4, n5 and n6 equal parts, and the sets J,A2 and U which
form ω are divided into m1,m2 and m3 equal parts, respectively; so that,
the N = n1.n2.n3.n4.n5.n6, the number of 6-dimensional cells, and the
M = m1.m2.m3, the number of 3-dimensional cells in the related spaces
are obtained. Then, in each of these 6-dimensional and 3-dimensional cells
arbitrary points Zi = (ti, θi, ri, yi, Yi, νi) and zj = (θj , rj , uj) are selected
respectively.
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Step 2: For fixed numbers M1,M2,M3, we select M1 number of ϕgk(z),
M2 of ψg

l (z), M3 of νs(z), and for fixed numbers M4,M5,M6,M7, we define
M4 number of Fi(Z), M5 of Gj(Z) and Hj(Z), M6 of Ij and Kj and M7 of
Li, Pi, Qi, Ri, Ni and Ti functions, respectively. Now, one is able to set up the
finite linear programming (28) with N +M variables and M1+M2+ ...+M7

constraints, which is dependent on the variables a and rd.

Step 3: To solve problem (1), we use an iterative method with two in-
ner loops and apply a three-phase optimization approach. In the first loop
by giving a fixing the amount of a, the function J1a : [0, 1] −→ R defined
by J1a(rd) = E∗(α, β, rd) is set up. Then, in the second loop, this function
is minimized by the use of a standard minimization technique (like a line
search method) as one of the optimization approaches. We remind that in
each function, in calculating the standard minimization technique, its related
LP (28) should be solved (one of the optimization phases).

If the minimizer of J1a is called r∗da
with the optimal value J∗

1a(rda) ≡
E∗(α, β, a, r∗da

), one is able to set up the function J2 : [0, 1] → R by
J2(a) = J∗

1a(r
∗
da
) in the first loop, use a search technique as the last phase of

the optimization approach, determine the optimal damping coefficient, say
a∗, with the optimal value of energy J∗

2 (a
∗) ≡ E∗(α, β, a∗, r∗da

). In this man-
ner, the damping coefficient, the value of the energy of the system and the
coefficients α,s and β,s are simultaneously and optimally determined.

Remark 1. In each stage where alternative optimal cases happen, it suffices
to select one arbitrarily.

Step 4: Regarding [20], [8] and [7], for the optimal values α∗
1, α

∗
2, ..., α

∗
N ,

β∗
1 , β

∗
2 , ..., β

∗
n obtained from Step 3, the optimal control and the optimal re-

gion are determined through the following instructions:

i) Let θ0 = 0 and θi = θi−1 + β∗
i for i = 1, 2, ...,M .

ii) For θ ∈ [θi−1, θi), set u
∗(θ) = ui, where, ui is the related component as-

sociated with point zi. In this manner, according to [20], the nearly optimal
control can be constructed as a piecewise constant function.
iii) Let r0 = r2π = rd, using the differential equation u(θ) = ṙ(θ), we take
the following difference equation:

ri = ri−1 + (θi − θi−1).ui, i = 1, 2, ..,M.

Therefore, M number points (θi, ri), i = 1, 2, ...,M of the nearly optimal
region are determined. Using curve fitting or connecting them by line seg-
ments, we demonstrate the approximated optimal region.

Theorem 2. If the used minimization techniques used in Step 3 of the
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above algorithm are convergent, then the algorithm converges to the optimal
solution of (1) when M,N,M1,M2, ...,M7 tend to infinity.

Proof. The proof of this theorem is given in Appendix A.

7 Examples

Now, to show the efficiency of our method and to explain how it works, we
solve two numerical examples. It is worth mentioning that these examples
are taken from [17] and [15] as well as from other studies cited by them in
order for the readers to be able to compare the two methods.

Example 1: By defining Ω = (0, 1) × (0, 1) and selecting a = 10 (con-
stant), problem (1) was solved by Munch (2009) by the level set method. To
apply this method, the author used the gradient descend method and also
supplied some necessity relations by applying the finite difference method. In
this manner, he used an initial shape to determine the optimal solution. We
must mention that this approach is very time-consuming and the resulting
optimal shape is also dependent on the number of iterations as shown on
Page 25 of [17]. As it is also mentioned in Sub-section 5.1.2 Page 24, the
results of the problem for variable a, depend on the initial shape. Moreover,
in this case, the local minima have been obtained which are also completely
dependent on the initial shape (Page 34 of [17]).

For the chosen initial conditions:{
y0(θ, r) = 100sin(πrcosθ)sin(πrsinθ),
y1(θ, r) = 0, (θ, r) ∈ Ω = J ×A1,

The optimal value obtained by Munch (2009) for a = 10 and T = 2 was
mentioned as E(ω, a, T ) = 88.17, and for a = 10 and T = 1, as E(ω, a, T ) =
249.10.

We considered the same condition as above, and additional conditions
that are needed for our method as follows:

y(T = 1) = ẏ(T = 1) = 1.

We supposed L = 0.11164, the area of the unknown region ω was equal to 0.7
and (0, rda) was a boundary point of ω which was determined optimally in
domain Ω as mentioned in Step 3. Then, by selecting the following functions
and setting them in (28) for M1 = 2,M2 = 10,M3 = 10,M4 = M5 = M6 =
M7 = 2, we set up the corresponding LP with:

ϕg1(θ, r, u) = 2rθu+ r2; ϕg2(θ, r, u) = 2ru;
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ψl(θ) = sin(lθ), l = 1, 2, ..., 5; ψl′(θ) = (1− cos(l′θ)), l′ = 1, 2, ..., 5;

Js = [
2π(s− 1)

10
,
2πs

10
]; as =

∫
Js

dθ =
2π

10
, s = 1, 2, ..., 10.

The functions introduced in (27), which expressed the relationship between
y and Y and also between r and ν, were determined as below:

F1(θ, y, Y ) = θy, F2(θ, y, Y ) = θ2yY, G1(θ, y, Y ) = rθ,

G2(θ, y, Y ) = θ2rY, H1(θ, y, Y ) = ry
Y , H2(θ, y, Y ) = 2rθy,

h1(θ, r, v) = θr, h2(θ, r, v) = θrv, I1(θ, r, v) = r2,

I2(θ, r, v) = r2v, K1(θ, r, v) = θrv, K2(θ, r, v) = rθv2.

Also, for i = 1, 2 we selected φi = risin(iθ)t; therefore:
φi(T ) = risin(iθ), φ̇i = risin(iθ),
φ̈i = 0,

∆φi =
∂2φi

∂r2 + 1
r
∂φi

∂r + 1
r2

∂2φi

∂θ2

= (i(i− 1) + i− i2)ri−2sin(iθ)t = 0.

Thus the functions in (27) were illustrated as:

Li = ri+1sin(iθ),

Pi = ri+1sin(iθ),

Qi = 0,

Ri = ayri+1sin(iθ)

Ti = a[ (−1)(ri+1u)
2 ( 2i

i2−4 − ( cos((i+2)rcosθ)
i+2 + cos((i−2)rcosθ)

i−2 ))+
(ri+2+u2ri)

4 ( sin(i−2)rcosθ
i−2 − sin(i+2)rcosθ

i+2 )]

Ni = 0;

since:

Ti = a
∫ rcosθ

0
[y(T )φi(T )− y0(r, τ)φi(0)](ṙsinτ + rcosτ)(ṙcosτ − rsinτ)dτ

= a
∫ rcosθ

0
[risin(iτ)](u sin τ + r cos τ)(u cos τ − r sin τ)dτ

= a
∫ rcosθ

0
[risin(iτ)](ru(cos 2τ) + (u2 − r2)(cos τ)(sin τ))dτ

= a
∫ rcosθ

0
[(ri+1u)sin(iτ) cos 2τ + (u2ri − ri+2)(sin(iτ) cos τ sin τ)]dτ

= a([(−1
2 )ri+1u( cos((i+2)τ)

i+2 + cos((i−2)τ)
i−2 )] + ((ur)i−ri+2)

4 [ sin(i−2)τ
i−2 − sin(i+2)τ

i+2 ])|r cos θ
0 .

By dividing each of intervals [0, 1] and [0, 2π] into ten, A1 = [0,
√
2] and

S = [−2, 2] into five, S′ = [−2, 2] into four, V = [−1, 1] and A2 = [0, 1] into
ten and U = [−0.6, 0.6] into eleven equal parts, we selected N = 105 points
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of Zi and M = 1100 points of zi; thus, LP (28) was set up with M + N
variables and 30 constraints:

Min : E(α, β, a, rda) =
∑n=N

n=1 αn
rn
2 [1 + ( 1

vn
+ 1

rn
)Y 2

n ]

S. to :
∑m=M

m=1 βm(2rmθmum + r2m) = 2π(r2da
);∑m=M

m=1 βm2rmum = r2da
;∑m=M

m=1 βm(lrmcos(lθm) + umsin(lθm)) = 0, l = 1, 2, ..., 5;∑m=M
m=1 βm(l′rmsin(l

′θm) + um(1− cos(l′θm))) = 0, l′ = 1, 2, ..., 5;∑m=M
m=1

1
2r

2
mβm = 0.7;∑n=N

n=1 αn(r
2
n − θnrnvn) = 0;∑n=N

n=1 αn(r
2
nvn − θnrnv

2
n) = 0;∑n=N

n=1 αn(rnθn − rnyn

Yn
) = 0;∑n=N

n=1 αn(rnθ
2
nYn − 2nrnyn) = 0;∑n=N

n=1 αn(−aynr4nsin(3θn)) +
∑m=M

m=1 βm(−1
2 ar

4
mum)[65 − ( cos(5rmcosθm)

5

+cos(rmcosθm))]
a(r5m+u2

mr3m)
4 [(sin(rmcosθm)− (sin(6rmcosθm)

6 ]

=
∫ 2π

0

∫√
2

0
(−r2 sin(2θ) sin(πrcosθ) sin(πrsinθ)drdθ;∑n=N

n=1 αn(−aynr5nsin(4θn)) +
∑m=M

m=1 βm(−1
2 ar

5
mum)[23 − (cos(6rmcosθm)

6

+ cos(2rmcosθm)
2 )] +

a(r6m+u2
mr4m)

4 ( 12 [sin(2rmcosθm)− (sin(5rmcosθm)
5 ]

=
∫ 2π

0

∫√
2

0
(r3 sin(3θ) sin(πrcosθ) sin(πrsinθ)drdθ;

β1 + β2 + ...+ β110 = 2π
10 ;

...
β991 + β992 + ...+ β1100 = 2π

10 ;

αn ≥ 0, n = 1, 2, ..., N ; βm ≥ 0, m = 1, 2, ...,M.
(29)

For a fixed a = 10, using HBM (Honey-Bee-Method) (see [1]) and the mod-
ified Simplex method from MATLAB 7.6, we obtained the nearly optimal
artificial control (see Figure 1), shape (Figure 2), point (0, r∗da

= 0.35) and
the also energy value as 175.9.

Comparing with [17], we found that the optimal value of energy obtained
by using shape measure method was less, while the obtained optimal regions
were mostly approximately the same. Additionally, our method took less
time and the obtained optimal region was independent from the number of
iterations.



..
A linearization technique for optimal design of the damping set ... 19

Example 2: In this example, we obtained the optimal value of a and ω
simultaneously. As mentioned by Munch et al. (2006), in spite of the ini-
tial conditions being symmetrical, for large values of a, the obtained optimal
domain might be non-symmetrical but the value of energy would be less.

Consider the two-dimensional damped wave equation (1) which is ex-
pressed on a cyclic domain with center at origin and radius as

√
2 in time

interval [0, 1]. The aim was to obtain the optimal region ω, with a known
area in the circle such that energy of the system was minimized in the final
time. The conditions were given same as Example 1, while a was variable
and supposed to be optimally determined.

With the same action as Example 1 to set up the related linear program-
ming (29), the random search method was applied to obtain the optimal value
of J1a. Also, the optimal value of function J2 was determined by using the
HBM. In this manner, the obtained results were as follows:

The optimal damping coefficient a∗ = 24.3624, r∗da
= 0.5469 and the value

of the optimal objective function was 0.101. The optimal (artificial) control
and the optimal region ω are shown in Figures 3 and 4.

In Section 5.1.4 of [17] for T = 1, a = 29.09 and by 2000 iterations, the
optimal value of energy was given as 12.56. As emphasized there, for variable
a, the optimal domain is completely dependent on the initial shape. In our
method, despite a,s being variable, the obtained optimal region was indepen-
dent of the initial shape and the amount of optimal energy was considerably
less, while the time consumed also decreased.

8 Conclusion

By doing an embedding process and using the property of positive Radon
measures, we presented a new and very useful technique for solving the prob-
lem of minimizing the energy of a damped wave system in an unknown region.
In this method, the problem was solved by a three-phase optimization search
technique where the unknown damping coefficient, the region and a point
of its boundary were found optimally. This method has some advantages
in comparison to the method used by Munch (2009), since we did not face
the difficulties mentioned there; such as level set functions being flat, di-
vergence of the systems with respect to dispersion, and the tendency of time
toward infinity when damping of numerical waves approaches zero. The most
important characteristic of our shape measure method is its simplicity and
its independence from the solution of the initial shape. To obtain the opti-
mal domain, we just need to use three search techniques while solving linear
programming problems. Additionally, it is necessary to emphasize that this
method is much easier, linear and less time-consuming.
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Figure 1: Optimal control function in Example 1

Figure 2: Optimal domain with constant damping coefficient a = 10 in Example 1
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Figure 3: Optimal control function in Example 2
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Figure 4: Optimal region in the given domain Ω in Example 2

Appendix A. Proof of Theorem 2
To prove this theorem, first, we present the two following lemmas.

Lemma 1. Consider the linear program (27) consisting of minimizing the
function µ → µ(Θ) ≡ E(µ, λ) over the set Q(M1, ...,M7) of measures in
M+(D)×M+(D

′
) satisfying conditions (27). When M1,M2, ...,M7 tend to

infinity,
η(M1, ...,M7) ≡ inf

Q(M1,...,M7)
E(µ, λ)

tends to η = infQ E(µ, λ). (This lemma is an extension of Proposition III.1
by Rubio (1986)).

Proof. (i) We prove, first, that the sequence {η(M1,M2, ...,M7)} is con-
vergent when M1, ...,M7 tend to infinity; consider, first, the subsequence
of η(M1,M2, ...,M7) in form {η(M1,M1, ...,M1) : M1 = 1, 2, ...}. Since
Q(M1, ...,M1) is a subset of positive Radon measures that satisfies in con-
straint (26). Therefore, since

Q(1, 1, ..., 1) ⊃ Q(2, 2, ..., 2) ⊃ Q(3, 3, ..., 3) ⊃ ... ⊃ Q(M1, ...,M1) ⊃ ... ⊃ Q,

then, η(1, 1, ..., 1) ≤ η(2, 2, ..., 2) ≤ ... ≤ η(M1, ...,M1) ≤ ... ≤ η.

This sequence is non decreasing and bounded above and hence it converges
to a number ζ ≤ η; thus, if ϵ > 0, for M1 > N(ϵ), we have:

|η(M1,M1, ...,M1)− ζ| < ϵ (30)

consider now η(M1,M2,M1, ...,M1) for both M1 and M2 larger than N(ϵ).
Without loss of generality, assume that M1 > M2. Then:

η(M2,M2, ...,M2) ≤ η(M1,M2,M1, ...,M1) ≤ η(M1,M1, ...,M1);
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therefore,

η(M2,M2, ...,M2)− ζ ≤ η(M1,M2,M1, ...,M1)− ζ ≤ η(M1,M1, ...,M1)− ζ,

and according to (30), we have:

|η(M1,M2, ...,M1)− ζ| ≤ ϵ. (31)

Now consider η(M1,M2,M3,M1, ...,M1) for M1 ⩾ M2 ⩾ M3 ⩾ N(ϵ). Then,
by the same procedure, one could show that:

|η(M1,M2,M3,M1, ...,M1)− ζ| ≤ ϵ. (32)

In a similar manner, for M1 > M2 > M3 > M4 ≥ N(ϵ), we have:

η(M4,M4, ...,M4) ≤ η(M1,M4,M4,M4,M1, ...,M1)

≤ η(M1,M2,M4,M4,M1, ...,M1) ≤ η(M1,M2,M3,M4,M1, ...,M1)

≤ η(M1,M2,M3,M1,M1, ...,M1),

and by using (30) and (32), we have:

|η(M1,M2,M3,M4,M1, ...,M1)− ζ| ≤ ϵ.

Finally, in a similar way, for M1 ≥ M2 ≥ ... ≥ M7 ≥ N(ϵ), one can show
that:

η(M7,M7, ...,M7) ≤ η(M1,M2, ...,M7) ≤ η(M1,M2, ...,M6,M1),

and hence:
|η(M1,M2, ...,M7)− ζ| ≤ ϵ.

Thus, the sequence {η(M1,M2, ...,M7),M1 = 1, 2, ...,M7 = 1, 2, ...} con-
verges to the number ζ as M1, ...,M7 tend to infinity.
(ii) We must prove now that the limit ζ equals η = infQ E(µ, λ).
We, first, show that this limit ζ can be computed sequentially. It is known
that

ζ = lim
M1→∞

[ lim
M2→∞

[...[ lim
M7→∞

η(M1, ...,M7)]]...],

provided that limM7→∞ η(M1, ...,M7) exist since ζ is a finite number. To
show the existence of this, we fix M1,M2, ...,M6 and vary M7; since

Q(M1, ...,M6, 1) ⊃ Q(M1, ...,M6, 2) ⊃ ... ⊃ Q(M1, ...,M7) ⊃ ... ⊃ Q;

thus,

η(M1, ...,M6, 1) ≤ η(M1, ...,M6, 2) ≤ ... ≤ η(M1, ...,M7) ≤ ... ≤ η.
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ForM6 = 1, 2, ... the non decreasing and bounded above sequence {η(M1, ...,M7),M7 =
1, 2, ...} converges to number ζ(M1, ...,M6). Hence, the double limit limM6→∞ limM7→∞
can be computed sequentially.

Now we define

Q(M1, ...,M6) ≡ ∩∞
m7=1Q(M1, ...,M6,M7) ≡ Q(M1, ...,M6,∞).

For the fixed numbersM1,M2, ...,M5, since ζ(M1, ...,M6) = limM7→∞ η(M1, ...,M7) =
infQ(M1,...,M6) E(µ, λ), and

Q(M1, ...,M5, 1) ⊃ ... ⊃ Q(M1, ...,M5,M6) ⊃ Q,

we have:

ζ(M1, ...,M5, 1) ≤ ζ(M1, ...,M5, 2) ≤ ... ≤ ζ(M1, ...,M5,M6) ≤ η,

thus ζ(M1, ...,M5,M6) is convergent where M6 → ∞ and we have:

ζ(M1, ...,M5) = lim
M6→∞

ζ(M1, ...,M5,M6)

= lim
M6→∞

[ lim
M7→∞

η(M1, ...,M6,M7)].

In a similar manner, by defining

Q(M1, ...,M5) ≡ ∩∞
M6=1Q(M1, ...,M6),

we would have:

ζ(M1, ...,M4) = limM5→∞ ζ(M1, ...,M4,M5)

= limM5→∞[limM6→∞[limM7→∞ η(M1, ...,M6,M7)]].

therefore, in the last stage, we obtain limM1→∞ ζ(M1) = ζ.

(iv) Regarding (i) and (ii), now we can prove ζ = η. Let

P ≡ ∩∞
M1=1 ∩∞

M2=1 ... ∩∞
M6=1 ∩∞

M7=1Q(M1, ...,M7),

then P ⊇ Q, since Q(M1, ...,M7) ⊃ Q for all M1,M2, ...,M7. We can show
that under the conditions of the problem, Q ⊃ P ; thus Q = P , that will
finally imply

ζ = lim
M1→∞

...[ lim
M6→∞

ζ(M1, ...,M6)] = inf
Q

E(µ, λ),

which is the contention in the theorem.

For this purpose, we prove that if (µ, λ) ∈ P , then they are also in Q.
For a set of total functions such as ϕk, k = 1, 2, ..., we have λ(ϕgk) = dϕk

,
according to the definition of P . Based on the definition of total functions,
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since ϕg = ϕru + ϕθ on D
′
, supD′ |ϕr − ϕrk |, supD′ |ϕθ − ϕθk | tend to zero

as k tends to infinity, where ϕgk is defined in relationship (27). Therefore:

|λ(ϕg)− dϕ| = |λ(ϕg)− dϕ − λ(ϕgk) + dϕk
|

= |
∫
∂ω

(ϕru+ ϕθ)dθ −
∫
∂ω

(ϕrku+ ϕθk)dθ − (dϕ − dϕk
)|

≤
∫
∂ω

|ϕr − ϕrk ||u|dθ +
∫
∂ω

|ϕθ − ϕθk |dθ + |dϕ − dϕk
|

≤ K1supD′ |ϕr − ϕrk |+K2supD′ |ϕθ − ϕθk |+K3supD′ |ϕ(r, θ)− ϕk(r, θ)|,

tend to zero and hence λ(ϕg) = dϕ, i.e. λ ∈ Q, where K1,K2 and K3 are
constant numbers. Using the similar method, for functions ψg and υs, we
prove the above relationship. Let µ ∈ P , thus µ(Fi) = 0 (Fi was defined in
(27)), based on the definition of total functions, for every given φ ∈ H1

0 (D)
and ϵ > 0, there are integer N > 0 and scalars γi, so that

sup[0,T ]supΩ∥div(yφr)−
N∑
i=1

γidiv(yφir)∥ < ϵ;

therefore, for every F ∈ C(Ω× [0, T ]), we have

|µ(F )| = |µ(F )−
∑N

i=1 γiµ(Fi)|

= |
∫ T

0

∫
Ω
div(yϕr)drdθdt−

∑N
i=1

∫ T

0

∫
Ω
γidiv(yφir)drdθdt|

≤ E1sup[0,T ]supΩ∥div(yφr)−
∑N

i=1 γidiv(yφir)∥ ≤ E1ϵ; (E1constant).

Because ϵ is arbitrary, |µ(F )| → 0. Sequentially, by considering the density
of the functions fi ∈ C(E), hi ∈ C(E

′
) and φi ∈ H1

0 (D), we use the same
method in the case of functions Gj , Hj , Ij , Kj , Li, Pi, Qi, Ri, Ni and Ti to
prove that µ ∈ Q. Therefore, P ⊂ Q and the proof is finished.□

Lemma 2. For every ϵ > 0, the problem of minimizing the function∑N
n=1 αnΘ(Zn) on the set P (M1,M2, ...,M7)

ϵ described by the inequalities
(34) has a solution for sufficiently large N = N(ϵ). The solution satisfies:

η(M1, ...,M7) + ρ(ϵ) ≤
N∑

n=1

αnΘ(Zn) ≤ η(M1, ...,M7) + ϵ, (33)

where ρ(ϵ) tends to zero as ϵ tends to zero.
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−ϵ ≤
∑m=M

m=1 βmϕ
g
k(zm)− dϕk

≤ ϵ, k = 1, 2, ...,M1;

−ϵ ≤
∑m=M

m=1 βmψ
g
l (zm)− 0 ≤ ϵ, l = 1, 2, ...,M2;

−ϵ ≤
∑m=M

m=1 βmνs(zm)− as ≤ ϵ, s = 1, 2, ...,M3;

−ϵ ≤
∑m=M

m=1 βm
1
2r

2
m − ( 1

T )L
∑n=N

n=1 αnrn ≤ ϵ,

−ϵ ≤
∑n=N

n=1 αnFi(Zn)− 0 ≤ ϵ, i = 1, 2, ...,M4;

−ϵ ≤
∑n=N

n=1 αnGj(Zn)−
∑n=N

n=1 αnHj(Zn)− 0 ≤ ϵ, j = 1, 2, ...,M5;

−ϵ ≤
∑n=N

n=1 αnIj(Zn)−
∑n=N

n=1 αnKj(Zn)− 0 ≤ ϵ, j = 1, 2, ...,M6;

−ϵ ≤
∑n=N

n=1 αn[Li(Zn)− Pi(Zn)−Qi(Zn)−Ri(Zn) +Ni(Zn)]

+
∑m=M

m=1 βmTi(zm)− Φi ≤ ϵ, i = 1, 2, ...,M7;

αn ≥ 0, n = 1, 2, ..., N ; βm ≥ 0, m = 1, 2, ...,M.
(34)

This lemma is the developed Theorem III.1 from Rubio (1986).

Proof. (i) Given ϵ > 0, a set

{zk, k = 1, 2, ...,M1 +M2 +M3, Z
h, h = 1, 2, ...,M4 +M5 +M6 +M7} (35)

can be introduced, as in the proof of Proposition III.3 of [20], so that inequal-
ities (34) are satisfied. For sufficiently large N and M , the set

wN,M = {zi : i = 1, 2, ..., N, Zj : j = 1, 2, ...,M} ⊂ w

will contain (37); thus, the set P (M1,M2, ...,M7)
ϵ is nonempty for such values

of N and M , since the N-tuple {β∗
k , k = 1, 2, ...,M1 +M2 +M3, 0, 0, ..., 0}

and M-tuple {α∗
l , l = 1, 2, ...,M4 + ... +M7, 0, 0, ..., 0} are in this set. From

the first set of inequalities of (34), by zm = 1 for all m = 1, 2, ...,M , we have

−ϵ ≤
∑M

m=1 βm−∆t ≤ ϵ and from the fifth set of inequalities for Fi(Zn) = 1,

we have −ϵ ≤
∑N

n=1 αn ≤ ϵ; this set of N and M-tuples with nonnegative
entries is bounded and also closed; thus, it is compact and the linear function∑N

n=1 αnΘ(Zn) attains its minimum over this set. Hence, we have:

min

N∑
n=1

αnΘ(Zn) ≤
M1+...+M7∑

k=1

αkΘ(Zk) ≤ η(M1, ...,M7) + ϵ; (36)

therefore, one of the inequalities of (33) has been proved. For the other, let
us define Q(M1, ...,M7)

ϵ, by using equations (26) as follow:

Q(M1, ...,M7)
ϵ = {µ ∈M+(D), λ ∈M+(D

′
)||λ(ϕgk(θ, r, u))− dϕk

| ≤ ϵ,

k = 1, 2, ...,M1; |λ(ψg
l (θ, r, u))− 0| ≤ ϵ, l = 1, 2, ...,M2; ...,

|µ(Li)− µ(Pi)− µ(Qi)− µ(Ri) + λ(Ti) + µ(Ni)− Φi| ≤ ϵ, i = 1, 2, ...,M7}.
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Then, the set of measures of the type µ =
∑N

n=1 αnδ(Zn) and λ =∑M
m=1 βmδ(zm) with the coefficients αn and βm in the set P (M1, ...,M7)

ϵ, is
a subset of Q(M1, ...,M7)

ϵ. Thus,

min
N∑

n=1

αnΘ(Zn) ≥ minµ(Θ), (37)

where the minimum in the left-hand side of this inequality is over the set
P (M1, ...,M7)

ϵ and the one in right- hand side is over Q(M1, ...,M7)
ϵ. Also,

Q(M1, ...,M7) = ∩ϵ>0Q(M1, ...,M7)
ϵ, and

Q(M1, ...,M7)
ϵ1 ⊃ Q(M1, ...,M7)

ϵ2 if ϵ1 > ϵ2. (38)

Let η(M1, ...,M7, ϵ) be the infimum of µ(Θ) over the set of measures
Q(M1, ...,M7)

ϵ. Then, by (40), we have η(M1, ...,M7, ϵ1) ≤ η(M1, ...,M7, ϵ2),
if ϵ1 > ϵ2.
It is sufficient for our purposes to consider a sequence of values of ϵ = 1/p
where p = 1, 2, .... Then,

η(M1, ...,M7, 1) ≤ η(M1, ...,M7,
1

2
) ≤ ... ≤ η(M1, ...,M7,

1

p
) ≤ ... ≤ η,

the sequence {η(M1, ...,M7,
1
p )} is non decreasing and bounded above. There-

fore, it converges to a number γ(M1, ...,M7) satisfying

γ(M1, ...,M7) = lim
p→∞

η(M1, ...,M7,
1

p
) = inf

Q(M1,...,M7)
µ(Θ) = η(M1, ...,M7).

Thus
ρ(ϵ) ≡ η(M1, ...,M7, ϵ)− η(M1, ...,M7) (39)

tends to zero as ϵ tends to zero; it follows from (39) and (41) that

min

N∑
n=1

αnΘ(Zn) ≥ minµ(Θ) = η(M1, ...,M7) + ρ(ϵ),

where the left-hand minimum is over the set P (M1, ...,M7)
ϵ and the right-

hand one is over Q(M1, ...,M7)
ϵ. Now we prove Theorem 2 as follow:

Theorem 2. If the used minimization techniques in Step 3 of the above
algorithm are convergent, then, the algorithm converges to the optimal solu-
tion of (1) when M,N,M1,M2, ...,M7 tend to infinity.

Proof. To demonstrate the proof, we have used the proof by contradiction.
Let (α∗, β∗, a∗, r∗d) be the minimizer of E(α, β, a, rd) but (ω∗, a∗) is not the
minimizer of E(ω, a, t), this means that the algorithm does not converge to
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the solution of (1). Thus, there is (ω
′
, a

′
) such that

E(ω
′
, a

′
, T ) < E(ω∗, a∗, T ). (40)

According to the Riesz representation theorem and considering one to one
transformation of problem (1), with objective function defined in relationship
(2), to problem (26), there are unique measures µ

′
(Θ) and µ∗(Θ) correspond-

ing to E(ω
′
, a

′
, T ) and E(ω∗, a∗, T ), where:

µ
′
(Θ) ≡ E(µ

′
, λ

′
) < µ∗(Θ) ≡ E(µ∗, λ∗).

According to Lemma 1, we have:

η(M1, ...,M7) = inf
Q(M1,...,M7)

µ(Θ) → η = inf
Q

µ(Θ) = inf E(µ, λ),

and according to Lemma 2,

η(M1, ...,M7) + ρ(ϵ) ≤
N∑

n=1

αnΘ(Zn) ≤ η(M1, ...,M7) + ϵ,

therefore,

µ
′
(Θ) = inf

Q
µ(Θ) ≡ inf E(µ, λ) = E(µ

′
, λ

′
) < E(µ∗, λ∗)

and

η
′
+ ρ(ϵ) ≤

N∑
n=1

α
′

nΘ(Zn) ≡ E(α
′
, β

′
, a

′
, r

′

da
) ≤ η

′
+ ϵ,

according to the above relationships:

N∑
n=1

α
′

nΘ(Zn) <
N∑

n=1

α∗
nΘ(Zn)

thus according to (42), we have:

E(α
′
, β

′
, a

′
, r

′

d) < E(α∗, β∗, a∗, r∗d).

This is in contradiction with what we supposed at the beginning, thus,
(ω∗, a∗) is minimizer of problem (1).
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داخلی اتلاف دارای میرایی چشمه بهینه طراحی برای خطی روش یک

بیرانوند۱ علی و خضر۲,۱ دست علیمراد هاجر جهرمی۱، فخارزاده علیرضا

ریاضی دانشکده شیراز، صنعتی ۱دانشگاه

ریاضی گروه جهرم، ۲دانشگاه

١٣٩۴ خرداد ٢٧ مقاله پذیرش ،١٣٩۴ فروردین ٢٣ شده اصلاح مقاله دریافت ،١٣٩٣ بهمن ٢٢ مقاله دریافت

درزیرمجموعه�ای انرژی اتلاف دارای که بگیرید، نظر در را بعدی دو میرای موج سیستم یک : چکیده
شامل شکل، طراحی وضع بد مساله حل هدف می�باشد. مجهول میرایی پارامتر با موج دامنه از مجهول
استفاده با می�باشد. معین زمان یک در سیستم انرژی کردن کمینه جهت زیرمجموعه این شکل بهینه�سازی
نوشته؛ تغییراتی قالب در را سیستم معادلات بار، اولین برای نشاندن، روش براساس جدید الگوریتم یک از
فضای در را مساله مثبت، رادون اندازه دو تعریف و قطبی مختصات به مساله انتقال با آن، از پس
نامتناهی خطی ریزی برنامه� مساله یک به بهینه شکل طراحی مساله روش، این در می�دهیم. نمایش اندازه�ها
جواب تقریب، گام دو از استفاده با مرحله، دراین است. شده تضمین آن جواب وجود که می�شود تبدیل
مرحله�ای سه جستجوی روش یک با بهینه) انرژی و بهینه میرایی پارامتر بهینه، ناحیه بهینه، (کنترل بهینه
. است. شده نیزآورده عددی سازی شبیه ها روش دیگر با جدید روش این مقایسه منظور به مشخصمی�گردد.

شکل. بهینه�سازی جستجو؛ روش رادون؛ اندازه اتلاف؛ کنترل میرا؛ موج معادله : کلیدی کلمات
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