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Abstract

We investigate the stabilization problem of a cascade of a fractional ordi-
nary differential equation (FODE) and a fractional diffusion (FD) equation,
where the interconnections are of Neumann type. We exploit the PDE back-
stepping method as a powerful tool for designing a controller to show the
Mittag—Leffler stability of the FD-FODE cascade. Finally, numerical simu-
lations are presented to verify the results.
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1 Introduction

One of the most useful approach to obtain a boundary controller is the par-
tial differential equation (PDE) backstepping method, which was initially
utilized in [5, 6] for spatial discretization case and has since been expanded
for continuous case in [17] for many applications, like fluid flows [1, 2]. The
PDE backstepping approach, which is an integral operator with a known
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and continuous kernel function, has been used to analyze some problems of
boundary stabilization of integer order unstable heat system with boundary
control law. For example, this method was used in [21] for boundary feed-
back stabilization of heat equation. Also, this approach was applied in [26]
to investigate the boundary stabilization of a class of linear parabolic partial
integro-differential equation.

Since real systems in our world are complex and display memory and
genetic characteristics, they can be well characterized by fractional order’s
notions; see [29, 22]. On the other hand, it is confirmed that fractional cal-
culus [29] is very effective in modeling and analysis of distributed parameter
systems [8]. In the last decades, researchers have interested in investigat-
ing the stability of the fractional-order systems. In [20], the stability of the
fractional-order linear system subject to input saturation has been discussed.
Since most of the systems in the real world are nonlinear, the stability prob-
lem of the nonlinear systems has become an attractive issue to study. For
example, in [7, 10, 18], the Mittag—Leffler stability of the fractional-order
nonlinear systems for 0 < « < 1 was addressed. Authors in [13] focused
on stability analysis of a class of fractional-order nonlinear systems with
O0<a<?2.

Applying the backstepping method in designing a controller for fractional
ordinary differential equations (FODEs), was first used in [11]. For instance,
one can refer to the work [9] in which the adaptive fractional-order backstep-
ping was used to design an adaptive feedback control law that Mittag—Leffler
stabilize the commensurate fractional-order nonlinear systems. On the other
hand, some researches have been dedicated to the fractional-order PDE sys-
tems, where the backstepping method is applied to design a controller to
solve the stabilization problem of the mentioned systems. However, com-
paring to the ordinary fractional-order systems, the stabilization problem
of fractional-order PDE systems has been less investigated. For example, in
[23], the stability problem of one-dimensional wave equation was discussed via
boundary fractional derivative control, and in [12], the backstepping method
was applied to investigate the stabilization problem of the fractional diffu-
sion (FD) system, governed by the FD equation consisting the diffusion term,
with Dirichlet or Neumann condition. In [8], the boundary feedback control
problem of the FD system with mixed or Robin boundary control was ad-
dressed via the backstepping method. In [30], the backstepping method was
used for the stability problem of a class of unstable time fractional diffusion
equation with the Dirichlet and Neumann boundary controls.

According to the previous paragraphs, systems described by ordinary dif-
ferential equations (ODEs) and also systems modeled by PDEs are common
in control engineering, and many works have been dedicated to the theory
of them. Recently, the coupled systems have become one of the interesting
areas of study. Examples of these systems are provided in control problems
of electromagnetic coupling, mechanical coupling, and chemical reaction cou-
pling [28]. In the last decades, the stabilization problem for coupled systems
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has become challenging areas. The cascade structure for the heat PDE with
an ODE and also the cascade structure for a wave PDE with an ODE, when
the interconnection is of Dirichlet type, were discussed in [15] and [16], re-
spectively. Next, these results for the stability analysis of the PDE-ODE
cascade when the interconnection is of Neumann type have been extended by
Susto and Krstic [27]. In [28], the stabilization problem for a new cascade of
PDE-ODE was studied.

To the best of our knowledge, the stabilization problem and also con-
troller design for a cascade of an FD equation and an FODE have been less
investigated. In this paper, we consider a cascade of an FODE and an FD
equation, and we use an invertible integral transformation to transfer the
original system to a Mittag—Leffler stable target system. Finally, we present
a numerical example for verifying the results.

Notation: L?(0, D) represents the usual Lebesgue integrable functions.
Let u(.,t) € L?(0, D); then we define

D }
||u<.,t>||=< / u2<x,t>d:c> .

Also, we denote a symmetric negative definite matrix A € R™"*™ by A < 0.

2 Preliminaries

Definition 1. [4] The Caputo fractional-order derivative is defined by

¢pox— L[ X0 .
tODtX(t)—F(n_a)/tO e (—l<a<n) ()

where « is the order of fractional derivative and the gamma function I' is
defined as (1) = [ " tetdt.
Definition 2. [14] The Mittag-Leffler function is defined as

Eo(2) = §m7

where 0 < a < 1. The Mittag—Leffler function with two parameters is given
by

oo Zk
ang(Z) = Z m

k=0

Definition 3. [19, 18](Mittag—LefHler stability) The solution of
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fo Diult) = f(t,u),
is said to be Mittag—Leffler stable if
lu(®)ll < (mlu(to)] Ba(=A(t — t0)*))"
where tg is the initial value of time, « € (0,1), A >0, b > 0, m(0) = 0, and

m(u) is nonnegative and meets locally Lipschitz condition on u € B C R”
with the Lipschitz constant mg.

Lemma 1. [3] Suppose that u : [0,00) — R is a continuous and differ-
entiable function. For any time ¢ >ty > 0, one can readily show that

1
ing‘uz(t) < u(t)thu(t), 0<ax<l.

Lemma 2. [13] Assume that X : [0,00) — R"™ is a vector of differentiable
function. If a continuous function V' : [tg, 00) x R™ — R satisfies

CDIV(t, X(t) < -V (L X (1))
then
V(t, X (1) < V(to, X (t0)) Ba (—(t — to)®),

where 0 < o < 1 and 7 is a positive constant.

3 Problem statement and analysis

Cousider the cascade of fractional diffusion (FD) and a fractional-order ordi-
nary differential equation (FODE) with Caputo derivative as follows:

SDXX(t) = AX(t) + Bu,(0,1), (2)
S DCu(x,t) = Ugps(z,1) (3)
u(0,t) =0, (4)
U(th) = U(t)a (5)

where X (t) € R™ and u(z,t) are the state of the FODE and FD, respectively,
and U (t) is the control input. Note that t > 0 and « € [0, D] in which D > 0
is the length of the PDE domain. The aim is to Mittag—Leffler stabilize the
system (2)—(5).

The PDE backstepping, introduced by Krstic, is the most effective ap-
proach for boundary controller designing for the PDE systems. In this
method, we use an invertible integral transformation (X, u) — (X,w) to
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convert the cascade of an FD and an FODE (2)—(5) into the following target
system:

SDXX(t) = (A+ BK)X(t) + Bw,(0,1), (6)
§Dew(x,t) = wye(x, 1), (7)
w(0,7) =0, (8)
w(D,t) =0. 9)

The control gain K is chosen such that the Mittag—Leffler stability of the tar-
get system is guaranteed. Since the transformation is invertible, the Mittag—
Leffler stabilization of the original closed-loop system will be derived.

4 Designing the state feedback controller

We consider the following transformation:

w(e,t) = u(z, ) - / " g yuly, Ody — (@)X (1), (10)

where the unknown functions ¢(z,y) and y(z) should be determined to con-
vert system (2)—(5) into the target system (6)—(9). First, we derive the ker-
nels;, and next, we prove that the target system (6)—(9) is Mittag—Leffler
stable.

To determine the unknown functions, we need the first two derivatives of
w(z,t) with respect to x that are given by

wy(2,t) = uz(z,t) — q(z, z)u(z, t) — /OT ¢ (2, y)u(y, t)dy —+'(x) X (), (11)

wm&(l‘7t) = UME('/L'? t) - (q(:L‘, ‘/I:))Iu(l‘?t) - (J('/L'? 'L)uw(‘l’a t) - Qa:(wv .L)LL(L, t)

- / o (s )y, )y — A" ()X (1),
(12)

and we take the Caputo fractional derivative of w(x,t) respect to ¢:
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§Dfw(e,t) = §DFulet) ~ [ ale.w)f Diuly, tdy — 2 () DEX (0
0
x
= Uge (T, 1) — / q(x, y)uyy (y, t)dy — y(z)(AX (1) + Bug(0,t))
0

= umm(xat) - q(x,x)ux(l’,t) + [q(CL‘,O) - 7($)B]um(07t)

4 gy 2yule, 1) — / (@ y)uly, )y — () AX(D). (13)

Now we evaluate the backstepping transformation (10), and (11) in z =0
and we also subtract the right-hand side of (12) from the right-hand side of
(13), then

g

o, ) —7(0)X (1),
=(0,1) =7/ (0)X (%),

§Dfw(@,t) — weg(, )=2( (z,2z))u(z,t) + [q(x,0) — v(x)Blu,(0,t)
+ / Qe (T, Y) — qyy (2, y)]uly, t)dy
0
+ [ (z) = ~(z)A]X (1),

in which we have used the Dirichlet boundary condition «(0,t) = 0. A
sufficient condition for equations (7)—(9) to be held is that the unknown
functions y(z) and ¢(z, y) satisfying an ODE of second order and a hyperbolic
PDE of second order that come, respectively,

v (z) = Ay(x), (14)
7(0) =0, (15)
7'(0) = K, (16)
and
Qee(T,Y) = Gyy(,Y), (17
Q(x7 :L‘) =0, (18
q(z,0) = y(z)B (19

According to [27], the solution of (14)—(16) is

(x) = KM(x) (20)
:K[OI]e[?é]zH, (21)

and the solution to (17)—(19) is
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q(z,y) = s(x — y)
= KM(z —y)B,

in which we have used the functions s(.) and M(.) for simplifying of notation
in the proof.

By [27], the backstepping transformation is invertible, and the inverse
change of variables is as follows:

u(z,t) = w(z,t) + ./01‘ r(z,y)w(y, t)dy + Xx) X (t), (22)

where the kernel functions r(x,y) € R and A(z) € R™ are determined as
follows:

N'(z) = (A+ BK)\(z), (23)
A(0) =0, (24)
N(0) =K, (25)
and
Tww(x7y) = Tyy(x7 y)’ (26)
r(x,z) =0, (27)
r(x,0) = A(z)B. (28)

Therefore, the solutions of (23)—(25) and (26)—(28) are, respectively,

Az) = KN(x),
and
r(z,y) = n(x,y),
where
[o A+ BK} )
N =[o1ell O [ﬂ,

n(§) = KN(§)B.

Also, based on relations (10) and (22), we can write:
Wi (2) = () — / Cale —yul)dy - KEM@X(),  (20)
(&) = wala) + /0 “nale — Yy + KN @X@0.  (30)

According to [27], from (29) and (30), we have
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lwe|* < o llue]|* + azfull® + as]| X%, (31)
lue]|* < Bullwa|* + Ballw|® + Bsl| X 1> (32)

Now we prove that the target system (2)—(5) is Mittag—Leffler stable. Then
with the help of the backstepping method and using an invertible transfor-
mation, we obtain the Mittag—Leffler stability of the original system (6)—
(9). Before stating the theorem, we need to consider the following lemma.
Lemma 3. There exist positive constants p; and po such that

e |2+ N1 XN < o (a1 + 11X 112), (33)
and
l[we (, 0)[I* + [ X (0)[* < pa([lue(z, 0)[1 + |X(0)]1). (34)

Proof. By using the Poincaré inequality for ||w||?, we can write (32) in the
following form:

luel* < max {1 +4D?Ba, B3 } ([|wa|* + [ X]%). (35)

Let
pP1 = max {61 + 4D2/627/63} s

then, it is clear that:
[z |? +1X[* < pa (s [I* + 1X1%),

in which p; = p1 + 1. With the help of (31) and in a similar manner, (34) is
obtained. O

Also, we consider the following assumption throughout of the paper:

(H1) We assume that system (2) is controllable.

Theorem 1. Consider the closed-loop system (2)—(5) with the control law:

n n

BHOA}D I b Bnoﬂ([’_”) I
U(t) = K [0 In] {e o [0"] X(t) +/0 el =m [On] Bu(y,t)dy}. (36)

Assume that there exist positive constants d and 5 and also a symmetric pos-
itive definite matrix P, such that the control gain K satisfies in the following
inequality:

P(A+BK)+(A+BK)"PPB 0 0
BTpP —d 0 0
Q= 0 0 -4 0 =< 0. (37)

0 0 0 -8
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Also, suppose that u,(z,0) is square integrable in x for any initial condition.
If wy(.,t) is continuously differentiable on ¢ € [0, 00], then the closed-loop
system under the control law (36) is Mittag—Leffler stable under the norm

(X2 + [ v (e, t)da)?.
Proof. We consider the following Lyapunov function:
T ¢ 2 d 2
V(t) = XTPX + Sl + 5w, (39)

in which ¢ > 0 and d > 0 will be chosen later. Also, ||w(.,t)|* and ||w,(., )|
represent the notation for Lo norms fOD w?(z,t)dr and fOD w2 (z,t)dz, respec-
tively. By taking the Caputo derivative of V with respect to ¢, we have

c d
§DpV =507 (XTPX + Ll + 5w, )
=0 DY (XTPX) + 5 §D7llw|*+ 5 §D7wel (39)
According to Lemma 4 in [8], w(z,t) is continuous and differentiable on

t € [0,00). On the other hand, by the assumption, w,(.,) is continuously
differentiable, so by Lemma 1, we have

D D D
OCDf/ w?(x, t)de = / S Dew? (x,t)da < 2/ w(z, t)§ Dew(x, t)d
0 0 0
D
:2/ w(x, t)Wwey (2, t)da
0
= —2f|w, |,
in which we have used integration by parts, so:
6 D lw]? < =2[|wg - (40)

To compute the Caputo derivative of ||w,||?, we multiply wy (z,t) by (7) and
integrating from 0 to D. Then

D D
/ Wee§ DOw(z, t)de :/ w?, (x,t)dr, (41)
0 0
and applying integration by parts to the left side of (41), we have
D D
/ Wey § DOw(z,t)dz =0 — / w, § Dw,(z,t)dz. (42)
0 0

Because of the Dirichlet boundary condition w(0,t) = 0 and w(D,t) =0 and
based on the Caputo time fractional derivative’s definition in [25], we have
§Dfw(0,t) = §Dfw(D,t) = § D0 = 0, (for all ¢ € [0,00)). By considering
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(41) and (42), we have

D D
/ wy(,t)S D&w(x, t)de = —/ w2, (z,t)dx.
0 0

Now we can evaluate the Caputo derivative of |Jw,||? respect to t as follows:
D D
§ DY |we||? = cDf‘/ w2 (x, t)dr :/ §Dg w2 (x,t)dx
0 0
D
< 2/ We (1, 1) § DEwy (2, t)dr = —2||was . (43)
0
On the other hand, applying Lemma 1 and using (6), it is easy to see that
CpaxTpx <xT(t) (P(A + Bk) + (A + BK)TP>X(t)
ot S
+ BT PXw,(0,t) + X" PBw,(0,t). (44)
Here, the goal is to establish § DXV (t) < —yV(t), for some positive constant
~ to prove the Mittag—LefHler stability of the target system (6)—(9). Therefore,
we replace relations (40)—(44) into (39), and we have

YDV <XT(P(A+ BK)+ (A+ BK)TP)X
+ BT PXw,(0,t) + XT PBw,(0,t) — c|jws|?* — d||waz .

It can be shown by Agmon’s inequality that for the system (6)—(9) the fol-
lowing inequality holds:

1+ D
= lwzal|* < == llws |* — w3 (0). (45)

Hence

§Dev < XT(P(A+ BK) + (A+ BK)TP)X
1+D

+ BT PXw,(0,t) + XT PBw,(0,t) — (¢ — dT)szHQ — dw?(0,1).
(46)
Now, we assume that
1+D
c—d 2 5. (47)

By using Poincaré inequality, we can rewrite (46) in the following form:
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YDev <XT(P(A+ BK) + (A+ BK)TP)X

1 14+ D
T T 2
+ B PXwg(0,t) + X~ PBw,(0,t) — 1+4D2(C_d o) ) w]|
1 14D .
_ —d wall,2 —dw?(0,1). 4
(e a2~ 0,1 (18)
We can rewrite inequality (48) as follows:
X 17 [P(A+BK)+(A+BK)TPPB 0 0 X
C na w, (0, 1) BTP —d 0 0 wy (0, 1)
DOV < ,
O T wll 0 0 -p 0 [[]]
[zl 0 0 0 —B] [ llwell
4

Assumption (37) and relation (49) imply that § D&V < 0. Since 2 < 0 and
by (47), we should have

1 1+D

and we can conclude that
YDV <.

Let Ao := Amin(—£2). Then )¢ > 0, and for any nonzero values of X (),
w(zx,t), and wy(x,t), we have

6 DRV < =Xo(I X1 + [lwz (0, 6)]1 + flw]? + [lwa 1)
< =Mo(IXNP + llwl® + [[ws]|?)- (51)

Since P is a positive definite matrix, then
T ¢ 2 d 2 2, ¢ 2 d 2
V =X"PX 4 Sllwll” + 5 llwell” < Amax (PYIX" + S w] + 5 llwe]
< o { (P 5. § | XI5 0l + o ).
so we can rewrite inequality (51) in the following form:

SDAV < —AV

Ao

W. It follows from Lemma 2 that

in which v =
V < V(0) B,y (=t%). (52)

Therefore, we can write
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2min (P)IX |7 + dllws||* < 2XTPX + cllwl]® + dllws||* < 2V (0) Ea(—7t*)

and

2
min {2Ain (P), d}

X1 + [lwa1* < V(0)Ea(=71t"). (53)

On the other hand, using the Poincaré inequality in the Lyapunov function
(38), we have

c d d
V= XTPX 4 Slul? + Gl < max {max(P). 2607 4 § L OXIP 4 ael?). 50

Therefore, by (54), we can write (53) in the following form:

2R
min {2Ain (P), d}

X7 + Jlwe|* < (X112 + lwe (,0)[1?) o (—12%),  (55)
in which J
R = max {)\max(P), 2¢D? + 2} .

By taking m(u) in Definition 3 as

m((IX O], lwe (2, 01) = smmaseyay IX O + [lwa(z, 0)[%),

it is clear that m((||X(0)|], ||wz(x,0)]])) is locally Lipschitz in || X(0)| and
||ws (z,0)]]2. On the other hand, m((|| X (0)|, [|[wx(z,0)]])) > 0 for || X (0)|| # 0
or ||wg(z,0)|| # 0 and it is zero if and only if || X (0)|| and ||w,(x,0)|| are zero.
Then by (55) and Definition 3, the target system (6)—(9) is Mittag—Leffler
stable under the norm || X (¢)||+||w.(z,t)|?.

Now, by Lemma 3 and relation (33), we can write (55) in the following form:

2R
min {2Ayin (P), d}

IX12 + [ual* < (X O + llws (@, 0)[*) Ea(=7t),

then from (34), we have

2Ry pro
min {2Apmin (P),d}

X2 + flua|* < (X O + llue (@, 0)1*) Ea (=72),
(56)

which guarantees that the original system (2)—(5) is Mittag—Leffler stable. [

5 Numerical simulation

In this section, we present a numerical example to verify our theoretical re-
sults. In this example, we discuss the stability Mittag—Leffler results related
to system (2)—(5).
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Example 1. We consider the following unstable system:

DX (t) = X( ) + 1, (0,1), (57)
6 Diu(a,t) = tar (1), (58)
u(0,t) = (59)
u(l,t) = U( )- (60)

Comparing with the coupled system (2)—(5), it is clear A =1, B = 1, and
D = 1. We assume that o = 0.75 and u(x,0) = 0 and X(0) = 1 as initial
conditions. Also, U(t) is determined by relation (36) in the following form:

1
Ult)=K [Sinh(l)X(t) —1-/0 sinh(1 — y)u(y)dy. (61)

In order to show the stability of the closed-loop system (57)—(60) under the
control law (61), we select ¢ =7 and d = 1 in the Lyapunov function (38) to
satisfy (47) and we also choose P = 30. Then, we obtain the feedback gain
K, with the help of CVX 1.2.1, to satisfy the stability condition:

P(A+BK)+(A+BK)"PPB 0 0

BTP —-d 0 0 <0
0 0 —p 0 ’
0 0 0 -8
We get
K = —16.0150. (62)

To figure out the state variable X (t), u(z,t) of the cascaded FODE-FD
system (2)—(5), we have used the finite-difference approximation method de-
scribed in [24] to descretize the spatial solution domain [0, D] into finite
numbers of @ + 1 subintervals and the time interval [0, 7] into T'M + 1 grid
points for some positive integers @ and M, that is, this finite difference al-
gorithm estimates the system (2)—(5) with the special stepsize h = % and

k= ﬁ for z and t, respectively.

Now, we set the discretization parameters T' = 20, Q = 50, and M = 64.

With these discretization parameters and considering (62), we can see
from Figure 1 that the state of the coupled FODE-FD system, that is, X (¢)
and u(z,t), converges to zero for all x € [0, D] and implies that the closed
system is Mittag—Leffler stable.

On the other hand, if one selects K = 2 and parameters ¢, d as before,
then with the help of CVX 1.2.1, we found out that there is no P that sat-
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isfies inequality (37) , so the stability condition (37) is not hold for K = 2.
With the same discretization parameters, we obtain the trajectory of state
X (¢) and u(z,t) of the coupled system (57)—(60). Figure 2 shows that the
cascade (57)—(60) with the boundary control law (61) is unstable.

Therefore, one can result that the Mittag—Leffler stablity of the state
of the closed-loop coupled system (57)—(60) is guaranteed by choosing K
satisfying the stability condition (37).

0.8
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6 Conclusions

In this article, we applied the backstepping method in which an invertible in-
tegral transformation is used and we designed a Dirichlet boundary feedback
control to guarantee the Mittag—Leffler stability of the cascaded FD-FODE
system. We presented a numerical example to confirm the obtained results.
Since the stability analysis of the FODE-FD coupled system is less addressed
in the literature, this paper is a beginning for the development of the sta-
bilization problem of the cascade of a fractional-order ordinary differential
equation and a fractional diffusion equation.
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