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A practical review of the Adomian
decomposition method: computer

implementation aspects

A. Molabahrami

Abstract

In this paper, a practical review of the Adomian decomposition method,
to extend the procedure to handle the strongly nonlinear problems under the

mixed conditions, is given and the convergence of the algorithm is proved.
For this respect, a new and simple way to generate the Adomian polynomials,
for a general nonlinear function, is proposed. The proposed procedure, pro-
vides an explicit formula to calculate the Adomian polynomials of a nonlinear

function. The efficiency of the approach will be shown by applying the pro-
cedure on several interesting integro-differential problems. The Mathematica
programs generating the Adomian polynomials and Adomian solutions based
on the procedures in this paper are designed.

Keywords: Adomian decomposition method; Adomian polynomials; Non-
linear integro-differential problems; Series solution; Strongly nonlinear prob-
lems; Explicit machine computation and programs.

1 Introduction

To construct series pattern solution for a problem with strong nonlinearity,
it is necessary to construct nonlinear terms of the governing equation in
the form of a series by using the components of the solution series. To the
end, one of the best and suitable way is to use the Adomian polynomials.
The so-called Adomian polynomials are used to deduce the recursive relation
during the implementation of the Adomian decomposition method (ADM)
while solving nonlinear problems. The main aim of the present paper is to
provide a simple and new method to handle a strongly nonlinear problem
by using ADM in the frame of a symbolic computer program so that by
giving linear operator, it generates: initial guess, integral inverse of the linear
operator, recursive relation and the terms of solution series automatically.
To achieve this purpose, we first propose an explicit formula to calculate the
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Adomian polynomials and the Adomian series of a general nonlinear function
and implement the proposed algorithms in Mathematica. In this respect, we
first outline the modifications of some definitions as already given in [8]. Let
u be a function of the parameter λ, whose Maclaurin series is given by

u(λ) =
+∞∑
n=0

unλ
n. (1)

This series is called the parametric series of u. Let ϕ be a function of the
parameter λ, the mth-order parametric derivative of ϕ is

Dm[ϕ] =
1

m!

∂mϕ

∂λm

∣∣∣∣
λ=0

, (2)

where m ≥ 0 is an integer. The mth-order Adomian polynomial of ϕ is

Am(ϕ(u)) = Dm [ϕ(u(λ))] , (3)

where m ≥ 0 is an integer and Am(ϕ(u)) = Am(ϕ(u);u0, u1, ..., um).

Remark 1. For the case 0 ≤ λ ≤ 1, the parametric series (1) and parametric
derivative (2) reduce to homotopy series and homotopy derivative respectively
[8].

Several algorithms [3,5,12,13] for symbolic programming have since been
devised to efficiently generate the Adomian polynomials quickly to high or-
ders, for example, a convenient formula for the Adomian polynomials is the
rule of Rach, which reads (see Page 16 in [1] and Page 51 in [2])

An(f(u)) =

n∑
k=1

f (k)(u0)C(k, n), n ≥ 1, (4)

where the C(k, n) are the sums of all possible products of k components
ui, i = 1, 2, ..., n− k + 1, whose subscripts sum to n, divided by the factorial
of the number of repeated subscripts. An equivalent expression of Equation
(4) is

An(f(u)) =
∑

p1+2p2+...+npn=n

f (p1+p2+...+pn)(u0)
n∏

s=1

ups
s

ps!
, n ≥ 1. (5)

In the present paper, we propose an explicit formula to calculate the
C(k, n) in (4) and we show that for rapid computer-generation of the Ado-
mian polynomials there is no need to use the (5).
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2 Adomian polynomials for a general function

In this section, we first outline two theorems as already given in [7,10]. Then
using them, we propose a new theorem which provides a new and simple
way to calculate the Adomian polynomials for a general smooth function.
Here, we mention them with a minor modification. For simplicity, we use the
following notation

ûm,n =
m∑
i=n

uiλ
i.

Theorem 1. For function f(u) = uk, the corresponding mth-order Adomian
polynomial is given by

Am(uk) =

m∑
r1=0

um−r1

r1∑
r2=0

ur1−r2

r2∑
r3=0

ur2−r3 . . .

rk−3∑
rk−2=0

urk−3−rk−2

rk−2∑
rk−1=0

urk−2−rk−1
urk−1

, (6)

where m ≥ 0 and k ≥ 0 are positive integers.

Proof. Considering the definition (2), refer to [10].

Theorem 2. For parametric series (1), it holds

Dm [f(u(λ))] = Dm [f(ûm,0)] ,

where f is a smooth function.

Proof. Refer to [7].

Corollary 1. From Theorem 1, we find

uk(λ) =

(
+∞∑
n=0

unλ
n

)k

= uk0 +
+∞∑
m=1

Am(uk)λm, (7)

where the Adomian polynomials Am(uk) are given by (6) .

Remark 2. It is clear that Am(uk) in Theorem 1 can easily be calculated
by a simple code by using a symbolic software such as Mathematica. For this
respect, the Code. 1, reported in Appendix, can be used in Mathematica.
For instance, by ADPforPowerLaw[4,6], the A4(u

6) is calculated as follows

A4(u
6) = 15u20u

4
1 + 60u30u

2
1u2 + 15u40u

2
2 + 30u40u1u3 + 6u50u4.

Corollary 2. From Theorem 2, for m ≥ n, we find
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Dm [(f(û∞,n)] = Dm [f(ûm,n)] ,

where f is a smooth function.

Corollary 3. From Corollary 2 and Theorem 1, for m ≥ k, we find

Dm

[
(ûm,1)

k
]
=

m−1∑
r1=0

r1∑
r2=0
r2 ̸=r1

· · ·
rk−3∑

rk−2=0
rk−2 ̸=rk−3

rk−2∑
rk−1=0
rk−1 ̸=rk−2

urk−1

k−2∏
j=0

urj−rj+1 , (8)

where r0 = m.

Corollary 4. It is easy to see that

Dm

[
(ûm,1)

k
]
=

{
0, m < k,
uk1 , m = k.

(9)

Corollary 5. Let kn ≥ m+ 1 and n ≥ 1, we find

Dm

[
(û∞,n)

k
]
= 0.

Remark 3. A sample Mathematica program for Dm

[
(ûm,1)

k
]
in (8) is

given by the Code. 2 reported in Appendix. An alternative way is to use
the Theorem 1 by taking u0 = 0. To achieve this purpose, In Code 1, in the
last command, the Expand[Dk,m] is replaced by Expand[Dk,m]/.u0 → 0.

The following theorem provides a suitable and simple way to construct a
recurrent relation for a general smooth function appeared within a structure
with nonlinear terms in the equations.

Theorem 3. Assume that f(u) has the Taylor expansion with respect to
u0, then

Am (f (u)) =
m∑

k=1

f (k)(u0)

k!
Dm

[
(ûm,1)

k
]
. (10)

Proof. Expanding f(u) in Taylor series with respect to u0, one has

f(u) = f(u0) +

+∞∑
k=1

f (k)(u0)

k!
(u− u0)

k
. (11)

From the (11), we have

Am [f (u)] = Dm

[ ∞∑
k=1

f (k)(u0)

k!
(u(λ)− u0)

k

]
,

recalling the Corollaries 5 and 2, we find
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Am (f (u)) =
m∑

k=1

f (k)(u0)

k!
Dm

[
(u(λ)− u0)

k
]
=

m∑
k=1

f (k)(u0)

k!
Dm

[
(ûm,1)

k
]
.

This ends the proof.

Remark 4. The expansion (11) is rigorously guaranteed by the Cauchy-
Kovaleski theorem. In fact, by using this theorem the Taylor expansion
about the function u0(x) can be seen as an expansion in Banach space [4].

Remark 5. The expression Dm

[
(ûm,1)

k
]
in (10) can easily be calculated by

(8) or Theorem 1 with taking u0 = 0.

Corollary 5. From Theorem 3, we find

f(u(λ)) = f(u0) +

+∞∑
m=1

wmλ
m, (12)

where wm = Am(f(u)) can be calculated by (10).

Remark 6. To calculate Am(f(u)), the Code. 3, which is given in the Ap-
pendix, can be used in Mathematica. Using theAdomianPolynomial[f [u],m],
form = 1, 2, 3, 4, the corresponding Adomian polynomials are given as follows

A1(f(u)) = u1f ′(u0),

A2(f(u)) = u2f ′(u0) +
1
2
u2
1f

′′(u0),

A3(f(u)) = u3f ′(u0) + u1u2f ′′(u0) +
1
6
u3
1f

′′′(u0),

A4(f(u)) = u4f ′(u0) +
1
48

(
24u2

2 + 48u1u3

)
f ′′(u0) +

1
2
u2
1u2f ′′′(u0) +

1
24

u4
1f

(4)(u0).

Also, the Code. 4, reported in Appendix, shows an alternative way to calcu-
late the Adomian polynomials by using the (3) and Corollary 2.

2.1 An improvement for the Rach,s rule

According to (4) and Theorem 3, we find

C(k, n) =
1

n!
Dn

[
(ûn,1)

k
]
,

thus, the Rach,s rule gets its explicit presentation.
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3 A practical review of the Adomian decomposition
method

In this section, we propose a practical review of the ADM and implementation
it as an automatic program in the frame of a symbolic software such as
Mathematica.

Adomian decomposition method [1], was first proposed by Adomian in
1988 and was further developed and improved by Adomian [2,3]. To illustrate
the ADM for solving a general nonlinear problem, consider the following
nonlinear problem {

N (u) = f,
B(u) = f0,

(13)

where N is a general nonlinear operator, B is a linear initial/boundary op-
erator, u is the unknown function that will be determined and f and g are
given functions. An especial case of (13), f = 0, was given in [9]. The ADM
consists in looking for the solution of Equation (13) in the series form

u = u0 +
+∞∑
n=1

un, (14)

where u0 is an initial guess and has the property

B(u0) = f0, (15)

and the other components of the solution series (14) have the property

B(un) = 0, n ≥ 1. (16)

Thus, from (15) and (16) the solution series given by (14), satisfies the condi-
tions of (13). For the nonlinear conditions, the ADM needs an improvement.

To construct series pattern solution, (14) by ADM, in the first step the
nonlinear operator N is decomposed as

N (u) = L(u) +N(u), (17)

where L is a linear operator and N = N − L. To continue in ADM, the
nonlinear operator N is decomposed as

N(u) =
+∞∑
n=0

An, (18)

where An is the nth-order Adomian polynomial of N . Using (17), the Equa-
tion (13) becomes {

L(u) +N(u) = f,
B(u) = f0,

(19)
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by ignoring the condition B(u) = f0, the solution of Equation (19) satisfies

u = ug + L−1[f ]− L−1[N(u)], (20)

where ug is the general solution of the linear equation L(u) = 0 and L−1 is
the integral inverse of L. Now, by substituting (14) in (20) and considering
(18), we get {

u0 = ug,
un = (1− χn)L

−1[f ]− L−1[An−1], n ≥ 1.
(21)

where

χn =

{
0, n ≤ 1,

1, n ≥ 2.

Recalling the condition B(u) = f0, we have{
u0 = B(ug) = u∗g,
B(un) = 0, n ≥ 1.

(22)

Thus, the recurrent relation to find a series pattern solution of Equation (13)
by means of ADM is{

u0 = u∗
g
,

un = (1− χn)L
−1[f ]− L−1[An−1], B(un) = 0,

(23)

let uParticular = L−1[−An−1] + (1− χn)L
−1[f ], then, for n ≥ 1, we find

u0 = u∗
g
,

un = uParticular + uParticularStar,
(24)

where uParticularStar = B
(
L−1[An−1]

)
−(1− χn) (B(L−1[f ])). It is impor-

tant to notice that the definition of the integral inverse L−1 in (23), depends
on the condition (16). L−1 in (24) can be defined such that the L−1[∗] gives
a particular solution of the equation L(u) = ∗.
Remark 7. It should be emphasized that the main step of the ADM is
to choose a proper linear operator. According to (24), the linear operator
should be defined so that

1. The following problem has a solution{
L(u0) = 0,
B(u0) = f0.

(25)

According to the Equations (20) and (21), the problem (25) gives the
initial guess.
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2. The following equation has a solution

B
(
L−1[An−1]

)
− (1− χ(n))B

(
L−1[f ]

)
= B(ug), (26)

where n ≥ 1. This equation helps to define the integral inverse of L.

3. The solution series, given by (14), is convergent. For this respect, some
conditions have been given in [11].

3.1 Decomposition series and convergence analysis

An important hypothesis in ADM is the composition of the nonlinear operator
N as shown in (18). There are some serious questions about (18) such as,
from where does the series

∑+∞
n=0An derive? Does it always converge? Is

its sum really N? What are the other series that we could use instead of∑+∞
n=0An? In order to answer these questions, and also, in order to explain

some other issues, Gabet proposed a theory which explains and justifies the
practical method [6]. In this subsection, we answer to the above mentioned
questions by using the results of the section 2.

To derive (18), from (12), under the assumptions of the Theorem 3, we
have

N(u(λ)) = N(u0) +
+∞∑
n=1

Anλ
n, (27)

where An is the nth-order Adomian polynomial of N . Let the parametric
series (1) is convergent at λ = 1 and s =

∑+∞
n=0 un, then

N(s) = A0 +
+∞∑
n=1

An. (28)

According to the (23), it is clear that if the solution series (14) is convergent
to s, then the decomposition series

∑+∞
n=0An converges to f − L(s). On

the other hand, according to the (23), the decomposition series
∑+∞

n=0An

converges to N(s). Therefore, if the solution series given by ADM, of the
form (14) generated by (24), is convergent, then it must be an exact solution
of the considered nonlinear problem, denoted by (13). Bearing in mind the
above discussion, we can express the following theorem on the convergency
of the ADM.

Theorem 4. Assume that the ADM solution series given by (14) and
(24) is convergent, then, under the assumptions of the Theorem 3, it must be
an exact solution of the (13).
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4 Test examples

To show the efficiency of Theorem 4, described in the previous section,
some examples are presented. We consider the mth-order nonlinear integro-
differential equation with variable coefficients

m∑
r=0

fr(x)u
(r)(x) + λ

∫ β

a

K(x, t)F (u(t))dt = g(x), x ∈ [a, b], (29)

where F (u(x)) is a function of u(x), K(x, t) is the kernel of the integro-
differential equation, λ is a parameter, g(x) is the data function, fr(x) is
a function with respect to x, u(x) is the unknown function that will be
determined. For the Fredholm and Volterra kinds we take β = b and β = x
respectively. We consider Equation (29) under the mixed conditions

m−1∑
r=0

(
arju

(r)(a) + brju
(r)(b) + crju

(r)(c)
)
= µj , j = 0, 1, 2, ...,m− 1, (30)

where arj , brj , crj and µj are constants, and c, a < c < b, is a constant. For
the linear case, it is assumed that F (u(x)) = u(x). The computations will
be performed using the program ADMforIDEs reported in the appendix.
The program ADMforIDEs has designed in a general manner so that, for
a given problem and its related linear operator, it calculates the integral
inverse of the linear operator, initial guess, recursive relation and the terms
of solution series automatically.

For Examples 1-4, we choose the linear operator as follows

L(u(x)) =
d2

dx2
u(x), (31)

therefore, from the (22) and (31), we find

u0(x) = x. (32)

We emphasize that no attempt has been made here to obtain all solutions of
a given problem.

Example 1. Consider the following nonlinear problemu′′(x) + xu′(x)− u(x) + x
∫ π

2

0
t sin (u(t)) dt = x

u( 12 ) + u′(0) = 3
2 , 2u(

1
2 ) + u′(1) = 2.

(33)

An exact solution is u(x) = x. Starting by (32), the recurrent relation (24)
gives



38 A. Molabahrami

un(x) = 0, n ≥ 1,

therefore, using the ADM, the exact solution of Equation (33) is obtained as
follows

u(x) = u0(x) +
+∞∑
n=1

un(x) = x. (34)

Computations have been carried out by program ADMforIDEs. The list
of commands is as follows
conditions[u ] := {(u[x]/.x → 1

2
) + (D[u[x], x]/.x → 0)− 3

2
,

2 ∗ (u[x]/.x → 1
2
) + (D[u[x], x]/.x → 1)− 2};

Lcoefficients = {0, 0, 1};
Problemcoefficients = {−1, x, 1};
ADMforIDEs[Sin[u], x, x ∗ t, 0, π

2
, 1, 2, 5]

Example 2. Consider the following nonlinear problemu′′(x) + xu′(x)− u(x) + 2x
∫ x

0
te−u2(t)dt = x− xe−x2

,

u( 12 ) + u′(0) = 3
2 , 2u(

1
2 ) + u′(1) = 2.

(35)

The exact solution is u(x) = x. Using the recurrent relation (24) with initial
guess (32), we find

un(x) = 0, n ≥ 1,

therefore, the ADM gives the exact solution of Equation (35) as follows

u(x) = u0(x) +
+∞∑
n=1

un(x) = x. (36)

Computations have been carried out with the help of the program ADM-
forIDEs. The list of commands is as follows
conditions[u ] := {(u[x]/.x → 1

2
) + (D[u[x], x]/.x → 0)− 3

2
,

2 ∗ (u[x]/.x → 1
2
) + (D[u[x], x]/.x → 1)− 2};

Lcoefficients = {0, 0, 1};
Problemcoefficients = {−1, x, 1};
ADMforIDEs[Exp[−u2], x− x ∗ Exp[−x2], 2 ∗ x ∗ t, 0, x, 1, 2, 5]

Example 3. Consider the following nonlinear problemu′′(x) + xu′(x)− u(x) + (2m+ 2)x
∫ 1

0
tu2m(t)dt = x,

u( 12 ) + u′(0) = 3
2 , 2u(

1
2 ) + u′(1) = 2,

(37)

where m is a positive integer. An exact solution is u(x) = x. Recalling the
recurrent relation (24) and initial guess (32), we obtain
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un(x) = 0, n ≥ 1,

therefore, the ADM obtains the exact solution of Equation (37) as follows

u(x) = u0(x) +

+∞∑
n=1

un(x) = x. (38)

To achieve the computations by program ADMforIDEs, the list of com-
mands is as follows
conditions[u ] := {(u[x]/.x → 1

2
) + (D[u[x], x]/.x → 0)− 3

2
,

2 ∗ (u[x]/.x → 1
2
) + (D[u[x], x]/.x → 1)− 2};

Lcoefficients = {0, 0, 1};
Problemcoefficients = {−1, x, 1};
$Assumptions = m > 0&&Element[m, Integers];

Refine[ADMforIDEs[u2m, x, (2m+ 2) ∗ x ∗ t, 0, 1, 1, 2, 5]]

Example 4. Consider the following nonlinear problemu′′(x) + xu′(x)− u(x) + 4m+1
2m x

∫ 1

0
t 2m
√
u(t)dt = x,

u( 12 ) + u′(0) = 3
2 , 2u(

1
2 ) + u′(1) = 2,

(39)

where m is a positive integer. An exact solution is u(x) = x. Putting to use
the recurrent relation (24) and initial guess (32), we get

un(x) = 0, n ≥ 1,

therefore, the ADM leads to the exact solution of Equation (39) as follows

u(x) = u0(x) +

+∞∑
n=1

un(x) = x. (40)

For performing the computations with the help of the program ADM-
forIDEs, the list of commands is as follows
conditions[u ] := {(u[x]/.x → 1

2
) + (D[u[x], x]/.x → 0)− 3

2
,

2 ∗ (u[x]/.x → 1
2
) + (D[u[x], x]/.x → 1)− 2};

Lcoefficients = {0, 0, 1};
Problemcoefficients = {−1, x, 1};
$Assumptions = m > 0&&Element[m, Integers];

Refine[ADMforIDEs
[

2m
√
u, x, 4m+1

2m
∗ x ∗ t, 0, 1, 1, 2, 5

]
]

Remark 8. In Examples 1-4, the first-order iteration gives the exact so-
lution.

Example 5. Consider the following problem
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∫ 1

0
u(t)dt = 1

2

(
1
e2 − 1

)
,

u(0) = 1,

(41)

we choose the linear operator as follows

L(u(x)) =
d

dx
u(x) + u(x), (42)

therefore, from the (22) and (42), we find u0(x) = e−x. Putting to use the
recurrent relation (24) and obtained initial guess, we have

un(x) =
1

2
(e− 1)2(ex − 1)e−x−n−1, n ≥ 1,

therefore, the ADM leads to the exact solution of Equation (39) as follows

u(x) = u0(x) +

+∞∑
n=1

un(x) =
1

2
e−x−1

(
−ex + ex+1 + 1 + e

)
. (43)

For performing the computations with the help of the program ADM-
forIDEs, the list of commands is as follows
conditions[u ] := {(u[x]/.x → 0)− 1};
Lcoefficients = {1, 1};
Problemcoefficients = {1, 1};
ADMforIDEs

[
u, 1

2

(
1
e2

− 1
)
, 1, 0, 1,−1, 1, 5

]
Remark 9. The program ADMforIDEs, reported in the Appendix, mon-
itors some terms of the solution series, the number of the terms is given by
SolutionOrder. To generate the general term of the solution series (if pos-
sible) and the closed form of the solution series (if possible), the user must
be added the following commands to the end of the list of commands . It is
important to emphasis that the following commands must be used in Math-
ematica 7 or later.
m1 =Input["By evaluating the obtained terms solution series, please input the index of

the term in which it is possible to generate the general term of the solution series?"];

SolutionTerms = Join[Table[u[m], {m,m1,SolutionOrder}]];
SolutionCoefficents = FindSequenceFunction[SolutionTerms, n];

Print ["un(x)=",TraditionalForm[SolutionCoefficents]] ;

FinalSolution = Sum[SolutionCoefficents, {n,m1, Infinity},GenerateConditions → True];

Sol1 = Simplify
[∑m1−1

n=0 u[n] + FinalSolution
]
;

Print
[
"u(x)=

∑+∞
n=0 un(x)=",TraditionalForm[Sol1]

]
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5 Concluding remarks

By calculating the parametric derivative for a function of a more general type,
described in Theorem 3, the Adomian decomposition method becomes a pow-
erful analytic approach for obtaining convergent series solutions of strongly
nonlinear problems governing physical models in applied science and engi-
neering. Using the parametric derivative, some lemmas and theorems pro-
vided in ADM papers in the literature have been unified and modified here
via some new theorems and corollaries. Also, by means of the (24) the Ado-
mian decomposition method was extended to handel the nonlinear problems
with the mixed conditions.
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Appendix (Mathematica programs)

Code. 1(A sample Mathematica program for Am(uk) given by (6))
ADPforPowerLaw[m−, k−] := Module[{}, D1,j− := uj ;Di−,0 := ui

0;

D2,j− :=
j∑

r=0

uj−rur; Di−,order− :=
order∑
r=0

uorder−rDi−1,r;

Print[′′A′′
m,′′ (′′, uk,′′ ) =′′,Expand[TraditionalForm[Dk,m]]]];

Code. 2(A sample Mathematica program for Dm

[
(ûm,1)

k
]
given by (8))

DnonU0[m−, k−] := Module[{}, D1,j− := If[j > 0, uj , 0];Di−,0 := 0;D2,j− :=
j−1∑
r=1

uj−rur;

Di−,order− :=
order−1∑

r=2

uorder−rDi−1,r; Print[
′′D′′

m,′′ (′′, ûk
m,′′,1′′ ,

′′ ) =′′,

Expand[TraditionalForm[Dk,m]]]];

Code. 3(A sample Mathematica program for Am(f(u)) given by (10))
AdomianPolynomial[function−,m−] := Module[{}, D1,j−,x− := If[j > 0, xj , 0];

Di−,0,x− := 0;D2,j−,x− :=
j−1∑
r=1

xj−rxr; Di−,order−,x− :=
order−1∑

r=2

xorder−rDi−1,r,x;

HDorder− := If[m == 0, function/.u → u0,
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order∑
n=1

(
(D[function, {u, n}]/.u → u0) /n! ∗Dn,order,u

]
);

Print[′′A′′
m,′′ (′′, function,′′ ) =′′,Expand[TraditionalForm[HDm]]]];

Code. 4(A sample Mathematica program for Am(f(u)) by using the (3) &

Corollary 2)

AdomianPolynomial1[function−,m−] := Module[{}, g[u−] := function;

A[m1−] := 1
Factorial[m1]

(D[g[u]/.u → Sum[un ∗ pn, {n, 0,m1}], {p,m1}]/.p → 0);

Print[′′A′′
m,′′ (′′, function,′′ ) =′′,Expand[TraditionalForm[A[m]]]]];

ADMforIDEs(A sample Mathematica program of ADM for solving IDEs

given by (29))

ADMforIDEs[functionF , functiong , kernel , a , β , λ , ProblemOrder , SolutionOrder ]

:= Module[{}, F [u ] := functionF ; g[x ] := functiong; k[x , t ] := kernel;

(∗ − − −−Definition of the linear operator−−−−−−−−−−−−−−−−∗)
L[f ] := Module[{},Expand[

∑ProblemOrder
i=0 (Lcoefficients[[i+ 1]] ∗D[f, {x, i}])]];

(∗ − − −−Definition of the integral inverse of linear operator−−−−−−− ∗)
Linverse[f ] := Module[{Linv, u, solution}, Linv = DSolve[L[u[x]] == f, u[x], x];

solution = Linv[[1, 1, 2]]/.C[ ] → 0; Expand[solution]];

Linverse[p P lus] := Map[Linverse, p];Linverse[c ∗ f ] := c ∗ Linverse[f ]/; FreeQ[c, x];

(∗ − − −−Definition of the Adomian polynomials−−−−−−−−−−−−− ∗)
HDN [horder ] := Module[{}, D1,j := If[j > 0, u[j], 0];Di ,0 := 0;

D2,j := If[j > 0,
∑j−1

r=1 u[j − r] ∗ u[r]];Di ,m :=
∑m−1

r=2 u[m− r] ∗Di−1,r;

DHm ,function := If[horder == 0, function/.u → u[0],

Expand[
∑m

n=1 ((D[function, {u, n}]/.u → u[0]) /(n!) ∗Dn,m)]]];

(∗ − − −−Definition of the initial guess−−−−−−−−−−−−−−−−−−∗)
ugStar = DSolve[L[u[x]] == 0, conditions[u] == 0, u[x], x];

u[0] = First[u[x]/.ugStar];

(∗ − − −−Definition of the ug −−−−−−−−−−−−−−−−−−−−−−− ∗)
ug = DSolve[L[u[x]] == 0, u[x], x];

ug1 = First[u[x]/.ug];

(∗ − − −−Some needed commands−−−−−−−−−−−−−−−−−−−−∗)
X[m ] := If[m ≤ 1, 0, 1];C1 = Arrary[C,ProblemOrder];w[x ] := ug1;

Which[ProblemOrder == 1, constants[u ] := First[conditions[u]]/. [ ]− > 0,

P roblemOrder > 1, constants[u ] := conditions[u]/. [ ]− > 0];

f11 = constants[u1]− conditions[w];

(∗ − − −−Main block−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗)
For[m = 1,m < SolutionOrder,m++, HDN [m− 1];

{A[m− 1] =
∑ProblemOrder

i=0 (Problemcoefficients[[i+ 1]]− Lcoefficients[[i+ 1]])

∗D[u[m− 1], {x, i}] + λ ∗ Integrate[k[x, t] ∗ ((DHm−1,F [u])/.x → t), {t, a, β}],
uParticular = Linverse[−A[m− 1] + (1−X[m]) ∗ g[x]], w1[x ] := uParticular,

f12 = conditions[w1]− constants[u1], ug2 = Solve[{f11 == f12}, C1],

uParticularStar = First[ug1//.ug2],
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u[m] = uParticular + uParticularStar,

Print[′′u′′,m ,′′ =′′,TraditionalForm[Collect[u[m], x]]]}]];
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کامپیوتری سازی پیاده های جنبه آدومیان: تجزیه روش از عملی مروری

ملابهرامی احمد

ریاضی گروه ایلام، دانشگاه

غیرخطی مسایل بررسی برای آن توسعه جهت آدومیان، تجزیه روش از عملی مروی مقاله، این در : چکیده
این به یابی دست برای شود. می اثبات دقیق صورت به الگوریتم همگرایی و ارایه آمیخته، شرایط تحت قوی
ارایه غیرخطی، تابع یک کلی فرم برای آدومیان، های ای چندجمله تولید برای ساده و جدید روش یک هدف،
غیرخطی تابع یک آدومیان های ای چندجمله محاسبه برای صریح فرمول یک شده، ارایه روش گردد. می
نشان دیفرانسیل انتگرال- جالب ی مسئله چندین روی آن کارگیری به با رهیافت کارایی کند. می فراهم
این های رویه اساس بر آدومیان های جواب و ها ای چندجمله تولید متمتیکای های برنامه شد. خواهد داده

است. شده یزی طرح مقاله

دیفرانسیل؛ انتگرال- غیرخطی مسایل آدومیان؛ های ای چندجمله آدومیان؛ تجزیه روش : کلیدی کلمات
ماشینی. صریح های برنامه و محاسبات قوی؛ غیرخطی مسایل سری؛ جواب
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