Numerical solution of multi-order fractional differential equations via the sinc collocation method

Document Type : Research Article

Authors

Department of Mathematics, Shiraz University of Technology, Shiraz , Iran.

Abstract

In this paper, the sinc collocation method is proposed for solving linear and nonlinear multi-order fractional differential equations based on the new definition of fractional derivative which is recently presented by Khalil, R., Al Horani, M., Yousef, A. and Sababeh, M. in A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65{70. The properties of sinc functions are used to reduce the fractional differential equation to a system of algebraic equations. Several numerical examples are provided to illustrate the accuracy and effectiveness of the presented method.

Keywords


1. Abdeljawad, T. On conformable fractional calculus, J. Comput. Appl. Math. (2014), http://dx.doi.org/10.1016/j.cam.2014.10.016.
2. Abu Hammad, M. and Khalil, R. Conformable fractional Heat di.erential equation, ijpam. 94(2014) 215–221.
3. Amairi, M., Aoun, M., Najar, S. and Abdelkrim, M.N. A constant en closure method for validating existence and uniqueness of the solution of an initial value problem for a fractional di.erential equation, Appl. Math. Comput. 217(2010) 2162–2168.
4. Atabakzadeh, M.H., Akrami, M.H. and Erjaee, G.H. Chebyshev opera tional matrix method for solving multi-order fractional ordinary di.eren tial equations, Appl. Math. Model. 37(2013) 8903–8911.
5. Bhrawy, A.H., Alo., A.S. and Ezz–Eldien, S. S. A quadrature tau method for fractional di.erentials equations with variable coe.cients, Appl. Math. Lett. 24(2011) 2146–2152.
6. Deng, J. and Ma, L. Existence and uniqueness of solutions of initial value problems for nonlinear fractional di.erential equations, Appl. Math. Lett. 23(2010) 676–680.
7. Diethelm, K. and Ford, N.J. Multi-order fractional di.erential equations and their numerical solutions, Appl. Math. Comput. 154(2004) 621–640.
8. Diethelm, K. and Ford, N.J. Numerical solution of the Bagley-Torvik equa tion, BIT. 42(2002) 490–507.
9. Doha, E.H., Bhrawy, A.H. and Ezz-Eldien, S.S. A Chebyshev spectral method based on operational matrix for initial and boundary value prob lems of fractional order, Comput. Math. Appl. 62(2011) 2364–2373.
10. Doha, E.H., Bhrawy, A.H. and Ezz-Eldien, S.S. E.cient Chebyshev spec tral methods for solving multi-term fractional orders di.erential equations, Appl.Math. Modell. 35(2011) 5662–5672.
11. El–Gamel, M., Cannon, J.R. and Zayed, A.I. Sinc–Galerkin method for solving linear Sixth order boundary-value problems, Math. Comp. 73(2004) 1325–1343.
12. Garrappa, R. and Popolizio, M. On the use of matrix functions for frac tional partial di.erential equations, Math. Comput. Simulation. 81(2011) 1045–1056.
13. Jafari, H., Das, S. and Tajadodi, H. Solving a multi-order fractional di.erential equation using homotopy analysis method, J. King Saud Univ. Sci. 23(2011) 151–155.
14. Khalil, R., Al Horani, M., Yousef, A. and Sababeh, M. A new de.nition of fractional derivative, J. Comput. Appl. Math. 264(2014) 65–70.
15. Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. Theory and Applications of Fractional Di.erential Equations, Elsevier, San Diego, 2006.
16. LI, Y. Solving a nonlinear fractional di.erential equation using Chebyshev wavelets, Commun. Nonlinear Sci. Numer. Simul. 15(9) (2010), 2284– 2292.
17. Lund, J. and Bowers, K.L. Sinc methods for quadrature and di.erential equations, PA, Philadelphia, SIAM, 1992.
18. Narasimhan, S., Majdalani, J. and Stenger, F. A .rst step in applying the Sinc collocation method to the nonlinear Navier Stokes Equations, Numer. Heat Transfer Part B. 41(2002) 447–462.
19. Nurmuhammad, A., Muhammad, M., Mori, M. and Sugihara, M. Double exponential transformation in the Sinc-collocation method for a boundary value problem with fourth-order ordinary di.erential equation, J. Comput. Appl. Math. 182(2005) 32–50.
20. Odibat, Z. and Momani, S. Modi.ed homotopy perturbation method: application to quadratic Riccati di.erential equation of fractional order, Chaos Solitons Fract. 36(2008) 167–74.
21. Oldham, K.B. and Spanier, J. The Fractional Calculus, Academic Press, New York, 1974.
22. Ortigueiraa, M.D. and Machado, J.A.T. What is a fractional derivative,J. Comput. Phys. (2014), http://dx.doi.org/10.1016/j.jcp.2014.07.019.
23. Pedas, A. and Tamme, E. Piecewise polynomial collocation for linear boundary value problems of fractional di.erential equations, J. Comput. Appl. Math. 236(2012) 3349–3359.
24. Podlubny, I. Fractional Di.erential Equations, in: Mathematics in Sci ence and Engineering, vol. 198, Academic Press Inc., San Diego, CA, 1999.
25. Rehman, M.U. and Khan, R.A. A numerical method for solving boundary value problems for fractional di.erential equations, Appl. Math. Model. 36(2012) 894–907.
26. Rehman, M.U. and Khan, R.A. The Legendre wavelet method for solving fractional di.erential equations, Commun. Nonlinear Sci. Numer. Simulat. 16(11) (2011) 4163–4173.
27. Saadatmandi, A. and Dehghan, M. The use of Sinc-Collocation Method for Solving multi-point boundary value problems, Commun. Nonlinear Sci. Numer. Simul. 17(2) (2012) 593–601.
28. Stenger, F. Numerical Methods Based on Sinc and Analytic Functions, New York: Springer, 1993.
29. Sugihara, M. Double exponential transformation in the Sinc-collocation method for two-point boundary value problems, J. Comput. Appl. Math. 149(2002) 239–250.
30. Wang, Y. and Fan, Q. The second kind Chebyshev wavelet method for solving fractional di.erential equations, Appl. Math. Comput. 218(2012) 8592–8601.
31. Yuanlu, L. Solving a nonlinear fractional di.erential equation using Chebyshev wavelets, Commun. Nonlinear Sci. Numer. Simul. 15(9) (2010) 2284–2292.
CAPTCHA Image