RBFs meshless method of lines based on adaptive nodes for Burgers' equations

Document Type : Research Article

Authors

1 The Center of Excellence on Modeling and Control Systems, Department of Applied Math- ematics, Ferdowsi University of Mashhad, Mashhad, Iran.

2 Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran.

Abstract

We introduce a RBFs mesheless method of lines that decomposes the interior and boundary centers to obtain the numerical solution of the time dependent PDEs. Then, the method is applied with an adaptive algorithm to obtain the numerical solution of one dimensional problem. We show that in the problems in which the solutions contain region with rapid variation, the adaptive RBFs methods are successful so that the PDE solution can be approximated well with a small number of basis functions. The method is described in detail, and computational experiments are performed for one-dimensional Burgers' equations

Keywords


1. Barfeie, M., soheili, A.R. and Arab Ameri, M. Application of variational mesh generation approach for selection of centers in radial basis functions collocation method, Eng. Anal. Bound. Elem., 37(2013) 1567-1575.
2. Boyd, J.P. and Gildersleeve, K.W. Numerical experiments on the condition number of the interpolation matrices for radial basis functions, Appl. Numer. Math., 61(2011) 443-459.
3. Brenan, K.E., Campbell, S.L. and Petzold, L. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, North Holland, New York (1989).
4. Buhmann, M.D. Radial Basis Functions: Theory and Implementations, Cambridge University Press. (2003).
5. Driscoll, T.A. and Heryudono, A.R.H. Adaptive residual subsampling methods for radial basis function interpolation and collocation problems, Comput. Math. Appl., 53(2007) 927-939.
6. Fasshauer, G.E. Meshfree Approximation Methods with MATLAB,World Scientific Publishers. (2007).
7. Fletcher, C.A.J. Burgers' Equation: a Model for all Reasons, Numerical Solutions of Partial Differential Equations (J. Noye, editor), New York, North-Holland Pub Co, 1982.
8. Franke, C. Scattered data interpolation: tests of some methods, Math. Comput., 38(1982) 181-200.
9. Hardy, R. Theory and applications of the multiquadric-biharmonic method. 20 years of discovery 1968-1988, Comput. Math. Appl,19(1988), 163-208.
10. Hairer, E. and Wanner, G. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer, Berlin Heidelberg New York Tokyo (1991).
11. Hon, Y.C. and Schaback, R. On unsymmetric collocation by radial basis functions, Appl. Math. Comput., 19 (2001) 177-186.
12. Marchi, S.D. On optimal center locations for radial basis function interpolation: computational aspects, Rend. Splines Radial Basis Functions and Applications, 61(3) (2003) 343-358.
13. Marchi, S.D., Schaback, R. and Wendland, H. Near-optimal dataindependent point locations for radial basis function interpolation, Adv. Comput. Math., 23(2005) 317-330.
14. Min, X., Wang, R.H., Zhang, J.H. and Fang, Q. A novel numericalscheme for solving Burgers' equation|, Appl. Math. Comput., 217(9) (2011), 4473-4482.
15. Rabier, P. and Rheinboldt, W. Theoretical and Numerical Analysis of Differential-Algebraic Equations, Handbook of Numerical Analysis, vol. VIII, edited by P.G. Ciarlet and J.L. Lions, Elsevier Science B.V. (2002).
16. Rippa, S. An algorithm for selecting a good value for the parameter c in radial basis function interpolation, Adv. Comput. Math., 11(1999) 193-210.
17. Sanz-Serna, J. and Christie, I. A simple adaptive technique for nonlinear wave problems, J. Comput. Phys., 67(1986) 348-360.
18. Sarra, S.A. Adaptive radial basis function methods for time dependent partial differential equations, Appl. Numer. Math., 54(2005) 79-94.
19. Schaback, R. Error estimates and condition numbers for radial basis function interpolation, Adv. Comput. Math., 3(1995) 251-264.
20. Soheili, A.R., Kerayechian, A. and Davoodi, N. Adaptive numerical method for Burgers-type nonlinear equations, Appl. Math. Comput., 219(2012) 3486-3495.
21. Tsai, C.H., Kolibal, J. and Li, M. The golden section search algorithm for finding a good shape parameter for meshless collocation methods, Eng. Anal. Bound. Elem., 34(2010) 738-740.
22. Wand, J.G. and Liu, G.R. On the optimal shape parameters of radial basis functions used for 2-d meshless methods, Comput. Meth. Appl. Mech. Eng., 191(2002) 2611-2630.
23. Yoon, J. Spectral approximation orders of radial basis function interpolation on the Sobolev space, SIAM J. Math. Anal., 33(2001) 946-958.
CAPTCHA Image