Fuzzy endpoint results for Ćirić-generalized quasicontractive fuzzy mappings

B. Mohammadi*

Abstract

We introduce Ćirić-generalized quasicontractive fuzzy mappings and provide the necessary and sufficient conditions of having a unique endpoint for such mappings. Then we introduce β-ψ-quasicontractive fuzzy mappings, establishing an endpoint result for them. Finally, we provide some results as an application.

Keywords: Fuzzy endpoint; Ćirić-generalized; Quasicontractive fuzzy mappings; Fuzzy approximate endpoint property.

1 Introduction and preliminaries

The concept of fuzzy set was introduced initially by Zadeh [12] in 1965. In 1981, Heilpern [6] established the fuzzy contraction and proved a fuzzy fixed point theorem, which was a generalization of Nadler’s fixed point theorem for multi-valued mappings (see [9]). In 2001, Estruch and Vidal [5] utilized the result of Heilpern to fuzzy fixed point with fixed degree α for some $\alpha \in [0, 1]$, which was later generalized by many authors (see, for instance, [1, 3, 11]). Recently, Abbas and Turkoglu [11] proved the existence of a fuzzy fixed point for a generalized contractive fuzzy mapping. On the other hand, In 2010, Amini-Harandi [2] proved that some multi-valued mappings $T : X \to CB(X)$ have a unique endpoint if and only if they have the approximate endpoint property. Afterwards, considering the same properties, Moradi and Khojasteh [8] generalized Amini-Harandi’s result. In this paper, in the sense of [8], we prove

*Corresponding author
Received 2 March 2017; revised 8 July 2019; accepted 17 July 2019
Babak Mohammadi
Department of Mathematics, Marand Branch, Islamic Azad University, Marand, Iran. e-mail: bmohammadi@marandiau.ac.ir
that some fuzzy mappings have a unique fuzzy endpoint if and only if they have the fuzzy approximate endpoint property.

Definition 1. (see [6]) Let X be a space of points with generic element x and $I = [0, 1]$. A fuzzy set in X is a function that associates any point of X with a number in interval $[0, 1]$. If A is a fuzzy set in X and $x \in X$, then $A(x)$ is called the grade of membership of x in A.

Definition 2. (see [6]) Let (X, d) be a metric space and let A be a fuzzy set in X. For $\alpha \in (0, 1]$, the α-level set of A denoted by $[A]_\alpha$, is defined as

$$[A]_\alpha = \{ x | A(x) \geq \alpha \} \text{ if } \alpha \in (0, 1]$$

and

$$[A]_0 = \{ x | A(x) > 0 \},$$

where \overline{B} denotes the closure of the nonfuzzy set B.

Definition 3. (see [6]) Let X be a nonempty set. For $x \in X$, we write $\{x\}$ the characteristic function of the ordinary subset $\{x\}$ of X. For $\alpha \in (0, 1]$, the fuzzy point x_α of X is the fuzzy set in X given by

$$x_\alpha(y) = \begin{cases} \alpha & y = x, \\ 0 & y \neq x. \end{cases}$$

Define

$$W_\alpha(X) = \{ C \in I^X : [C]_\alpha \text{ is nonempty and compact} \}.$$

Throughout this paper, I^X denotes the collection of all fuzzy sets in X. For $A, B \in I^X$, it is called that A is more accurate than B (denoted by $A \subset B$) whenever $A(x) \leq B(x)$ for all $x \in X$. For $x \in X$, $S \subseteq X$, $A, B \in W_\alpha(X)$, and $\alpha \in (0, 1]$, we define

$$d(x, S) = \inf \{ d(x, a) : a \in S \},$$

$$p_\alpha(x, A) = \inf \{ d(x, a) : a \in [A]_\alpha \},$$

$$p_\alpha(A, B) = \inf \{ d(a, b) : a \in [A]_\alpha, b \in [B]_\alpha \},$$

$$D_\alpha(A, B) = H([A]_\alpha, [B]_\alpha) = \max \{ \sup_{x \in A} p_\alpha(x, B), \sup_{y \in B} p_\alpha(y, A) \},$$

where H is the Hausdorff distance. It is easily seen that D_α is the Hausdorff metric on $W_\alpha(X)$ induced by the metric d. Hereafter, we denote by $D_\alpha(x, A)$ the amount $D_\alpha(\{x\}, A) = H(\{x\}, [A]_\alpha)$ for all $x \in X$ and $A \in W_\alpha(X)$.

Definition 4. (see [5]) Let X be a nonempty set, let $T : X \to I^X$, and let $\alpha \in (0, 1]$. A fuzzy point x_α is called a fuzzy fixed point of T if $x_\alpha \subset Tx$ (or equally $x \in [Tx]_\alpha$). This means that the fixed degree of x is at least α. If $\{x\} \subset Tx$, then it is called that x is a fixed point of T.
2 Main results

Now, we are ready to state and prove the main results of this study. Firstly, we give the following definition:

Definition 5. Let \(X \) be a nonempty set, let \(T : X \to I^X \), and let \(\alpha \in (0, 1] \). We say that a point \(x \in X \) is a fuzzy endpoint of \(T \) if \(\{x\} = [Tx]_{\alpha} \). This means that \(x \) is the only point in \(X \) that the fixed degree of \(x \) is at least \(\alpha \). If \(\{x\} = [Tx]_1 \), we say that \(x \) is an endpoint of \(T \).

Now, we give the following definition of fuzzy approximate endpoint property in the sense of Amini-Harandi [2].

Definition 6. Let \((X, d)\) be a metric space, let \(T : X \to I^X \), and let \(\alpha \in (0, 1] \). We say that \(T \) has the fuzzy approximate endpoint property whenever

\[
\inf_{x \in X} \sup_{y \in [Tx]_\alpha} d(x, y) = 0
\]

or equally

\[
\inf_{x \in X} D_\alpha(x, Tx) = 0.
\]

Definition 7. Let \((X, d)\) be a metric space, let \(\alpha \in (0, 1] \), and let \(T : X \to W_\alpha(X) \). We say that \(T \) is a Ćirić-generalized quasicontractive fuzzy mapping whenever there exists an upper semicontinuous (u.s.c) mapping \(\psi : [0, +\infty) \to [0, +\infty) \) such that \(\psi(t) < t \), for all \(t > 0 \) and \(\lim\inf_{t \to \infty}(t - \psi(t)) > 0 \) satisfying

\[
D_\alpha(Tx, Ty) \leq \psi(M(x, y)) \quad \text{for all } x, y \in X,
\]

where

\[
M(x, y) = \max\{d(x, y), D_\alpha(x, Tx), D_\alpha(y, Ty), D_\alpha(x, Ty), D_\alpha(y, Tx)\}.
\]

Theorem 1. Let \((X, d)\) be a complete metric space, let \(\alpha \in (0, 1] \), and let \(T : X \to W_\alpha(X) \) be a Ćirić-generalized quasicontractive fuzzy mapping. Then, \(T \) has a unique fuzzy endpoint if and only if \(T \) has the fuzzy approximate endpoint property.

Proof. If \(T \) has a fuzzy endpoint, obviously, it has the fuzzy approximate endpoint property. Conversely, let \(T \) has the fuzzy approximate endpoint property. Then, there exists a sequence \(\{x_n\} \) in \(X \) such that \(\lim_{n \to \infty} D_\alpha(x_n, Tx_n) = 0 \). Now for any \(n, m \in \mathbb{N} \), we have
\[M(x_n, x_m) = \max \{ d(x_n, x_m), D_\alpha(x_n, Tx_n), \\
D_\alpha(x_n, Tx_m), D_\alpha(x_n, TTx_n), D_\alpha(x_m, Tx_n) \} \]
\[\leq D_\alpha(x_n, Tx_n) + D_\alpha(x_m, Tx_n) + D_\alpha(Tx_n, Tx_m) \]
\[\leq D_\alpha(x_n, Tx_n) + D_\alpha(x_m, Tx_n) + \psi(M(x_n, x_m)). \]

Therefore, from the above inequality, we have
\[\liminf_{n,m \to \infty} (M(x_n, x_m) - \psi(M(x_n, x_m))) = 0. \]

From the property of \(\psi \), we can conclude that \(\limsup_{n,m \to \infty} M(x_n, x_m) < \infty \).
Thus from (2) and by upper semicontinuity of \(\psi \), we have
\[\limsup_{n,m \to \infty} M(x_n, x_m) \leq \limsup_{n,m \to \infty} \psi(M(x_n, x_m)) \]
\[\leq \psi(\limsup_{n,m \to \infty} M(x_n, x_m)). \]

So we have \(\limsup_{n,m \to \infty} M(x_n, x_m) = 0 \) and so \(\{x_n\} \) is a Cauchy sequence.
Since \(X \) is complete, there exists \(x^* \in X \) such that \(\lim_{n \to \infty} d(x_n, x^*) = 0 \).
We shall show that \(\{x^*\} = [Tx^*_\alpha] \). To see this, we have
\[D_\alpha(x^*, Tx^*) \leq d(x^*, x_n) + D_\alpha(x_n, Tx_n) + D_\alpha(Tx_n, Tx^*) \]
\[\leq d(x^*, x_n) + D_\alpha(x_n, Tx_n) + \psi(M(x_n, x^*)). \]

Limiting from both sides of (3), we get
\[D_\alpha(x^*, Tx^*) \leq \limsup_{n \to \infty} \psi(M(x_n, x^*)). \]

On the other hand,
\[M(x_n, x^*) = \max \{ d(x_n, x^*), D_\alpha(x_n, Tx_n), \\
D_\alpha(x_n, Tx^*), D_\alpha(x_n, TTx_n), D_\alpha(x^*, Tx_n) \} \]
\[\leq d(x_n, x^*) + D_\alpha(x_n, Tx_n) + D_\alpha(x^*, Tx^*), \]

which implies
\[\limsup_{n \to \infty} M(x_n, x^*) \leq D_\alpha(x^*, Tx^*). \]

Consequently, from right upper semicontinuity of \(\psi \), (4) and (5) yield
\[D_\alpha(x^*, Tx^*) \leq \psi(D_\alpha(x^*, Tx^*)) \]
and so \(H(\{x^*\}, [Tx^*_\alpha]) = D_\alpha(x^*, Tx^*) = 0 \). This means that \(\{x^*\} = [Tx^*_\alpha] \).
The uniqueness of endpoint is concluded from (1).

Definition 8. Let \((X, d) \) be a metric space, \(\alpha \in (0, 1] \), and \(T : X \to W_\alpha(X) \). We say that \(T \) is a Ćirić-generalized \(\beta-\psi \)-quasicontractive fuzzy mapping whenever there exists an upper semicontinuous (u.s.c) mapping \(\psi : \)
For any \(x \) there exists a sequence so that \(M(x, y) = \max\{d(x, y), D_\alpha(x, Tx), D_\alpha(y, Ty), D_\alpha(x, Ty), D_\alpha(y, Tx)\} \).

Theorem 2. Let \((X, d)\) be a complete metric space, let \(\alpha \in (0, 1] \), and let \(T : X \to W_\alpha(X) \) be a Ćirić-generalized \(\beta \)-\(\psi \)-quasicontractive fuzzy mapping. Moreover suppose that

(i) there exists a sequence \(\{x_n\} \) in \(X \) such that \(\beta(x_n, x_m) \geq 1 \) for all \(n, m \in \mathbb{N} \) with \(n < m \) and \(\lim_{n \to \infty} D_\alpha(x_n, Tx_n) = 0 \),

(ii) for any sequence \(\{x_n\} \) in \(X \) which \(\beta(x_n, x_m) \geq 1 \) for all \(n, m \in \mathbb{N} \) with \(n < m \) and \(x_n \to x \), we have \(\beta(x_n, x) \geq 1 \), for all \(n \in \mathbb{N} \).

Then, \(T \) has a fuzzy endpoint.

Proof. For any \(n, m \in \mathbb{N} \), we have

\[
M(x_n, x_m) = \max\{d(x_n, x_m), D_\alpha(x_n, Tx_n), D_\alpha(x_m, Tx_m), D_\alpha(x_n, Tx_m), D_\alpha(x_m, Tx_n)\} \\
\leq D_\alpha(x_n, Tx_n) + D_\alpha(x_m, Tx_m) + \beta(x_n, x_m)D_\alpha(Tx_n, Tx_m) \\
\leq D_\alpha(x_n, Tx_n) + D_\alpha(x_m, Tx_m) + \psi(M(x_n, x_m)).
\]

(7)

Similar to Theorem 1, we conclude that \(\limsup_{n,m \to \infty} M(x_n, x_m) = 0 \) and so \(\{x_n\} \) is a Cauchy sequence. Let \(\lim_{n \to \infty} d(x_n, x^*) = 0 \). We show that \(\{x^*\} = [Tx^*]_\alpha \). To see this, we have

\[
D_\alpha(x^*, Tx^*) \leq d(x^*, x_n) + D_\alpha(x_n, Tx_n) + \beta(x_n, x^*)D_\alpha(Tx_n, Tx^*) \\
\leq d(x^*, x_n) + D_\alpha(x_n, Tx_n) + \psi(M(x_n, x^*)).
\]

(8)

Consequently, as in Theorem 1, we obtain

\[
D_\alpha(x^*, Tx^*) \leq \psi(D_\alpha(x^*, Tx^*)),
\]

which implies \(H(\{x^*\}, [Tx^*]_\alpha) = D_\alpha(x^*, Tx^*) = 0 \). This means that \(\{x^*\} = [Tx^*]_\alpha \).

Let \(\preceq \) be the partial order on \(W_\alpha(X) \) defined by \(A \preceq B \) if and only if \(A(x) \leq B(x) \) for all \(x \in X \). In the following result, we restrict the contraction condition only for \(x, y \in X \) with \(Tx \subseteq Ty \).
Corollary 1. Let \((X, d)\) be a complete metric space, \(\alpha \in (0, 1]\), and \(T : X \to W_\alpha(X)\) be a fuzzy mapping such that there exists an upper semicontinuous (u.s.c) mapping \(\psi : [0, +\infty) \to [0, +\infty)\) with \(\psi(t) < t\), for all \(t > 0\) and \(\lim \inf_{t \to \infty}(t - \psi(t)) > 0\) satisfying
\[
D_\alpha(Tx, Ty) \leq \psi(M(x, y)) \quad \text{for all } x, y \in X \text{ with } Tx \subset Ty, \quad (9)
\]
where
\[
M(x, y) = \max\{d(x, y), D_\alpha(x, Tx), D_\alpha(y, Ty), D_\alpha(x, Ty), D_\alpha(y, Tx)\}.
\]
Moreover suppose that
\begin{enumerate}
 \item there exists a sequence \(\{x_n\}\) in \(X\) such that \(\{Tx_n\}\) is a nondecreasing sequence in \(W_\alpha(X)\) and \(\lim_{n \to \infty} D_\alpha(x_n, Tx_n) = 0\),
 \item for any sequence \(\{x_n\}\) in \(X\) which \(\{Tx_n\}\) is a nondecreasing sequence in \(W_\alpha(X)\) and \(x_n \to x\), we have \(Tx_n \subset Tx\), for all \(n \in \mathbb{N}\).
\end{enumerate}
Then, \(T\) has a fuzzy endpoint.

Proof. Define the mapping \(\beta : X \times X \to [0, \infty)\) by \(\beta(x, y) = 1\), whenever \(Tx \subset Ty\) and \(\beta(x, y) = 0\) otherwise. Then apply Theorem 2. \qed

Corollary 2. Let \((X, d)\) be a complete metric space, let \(x^* \in X\) be a fixed element, let \(\alpha \in (0, 1]\), and let \(T : X \to W_\alpha(X)\) be a fuzzy mapping such that there exists an upper semicontinuous (u.s.c) mapping \(\psi : [0, +\infty) \to [0, +\infty)\) with \(\psi(t) < t\), for all \(t > 0\) and \(\lim \inf_{t \to \infty}(t - \psi(t)) > 0\) satisfying
\[
D_\alpha(Tx, Ty) \leq \psi(M(x, y)) \quad \text{for all } x, y \in X \text{ with } Tx(x^*) = Ty(x^*), \quad (10)
\]
where
\[
M(x, y) = \max\{d(x, y), D_\alpha(x, Tx), D_\alpha(y, Ty), D_\alpha(x, Ty), D_\alpha(y, Tx)\}.
\]
Moreover suppose that
\begin{enumerate}
 \item there are a sequence \(\{x_n\}\) in \(X\) and \(\lambda \in [0, 1]\) such that \(Tx_n(x^*) = \lambda\) is fixed for all \(n \in \mathbb{N}\) and \(\lim_{n \to \infty} D_\alpha(x_n, Tx_n) = 0\),
 \item for any sequence \(\{x_n\}\) in \(X\) that \(Tx_n(x^*) = \lambda\) is fixed for all \(n \in \mathbb{N}\) and \(x_n \to x\), we have \(Tx(x^*) = \lambda\), for all \(n \in \mathbb{N}\).
\end{enumerate}
Then, \(T\) has a fuzzy endpoint.

Proof. Define the mapping \(\beta : X \times X \to [0, \infty)\) by \(\beta(x, y) = 1\), whenever \(Tx(x^*) = Ty(x^*)\) and \(\beta(x, y) = 0\) otherwise. Then applying Theorem 2 completes the proof. \qed
Acknowledgement

This study was supported by Marand Branch, Islamic Azad University, Marand, Iran.

References

