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Modal spectral Tchebyshev
Petrov–Galerkin stratagem for the
time-fractional nonlinear Burgers’

equation

Y.H. Youssri*, and A.G. Atta

Abstract

Herein, we construct an explicit modal numerical solver based on the spec-
tral Petrov–Galerkin method via a specific combination of shifted Cheby-
shev polynomial basis for handling the nonlinear time-fractional Burger-
type partial differential equation in the Caputo sense. The process reduces
the problem to a nonlinear system of algebraic equations. Solving this alge-
braic equation system will yield the approximate solution’s unknown coef-
ficients. Many relevant properties of Chebyshev polynomials are reported,
some connection and linearization formulas are reported and proved, and
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173 Tchebyshev Petrov-Galerkin stratagem for Burgers’ equation

all elements of the obtained matrices are evaluated neatly. Also, conver-
gence and error analyses are established. Various illustrative examples
demonstrate the applicability and accuracy of the proposed method and
depict the absolute and estimated error figures. Besides, the current ap-
proach’s high efficiency is proved by comparing it with other techniques in
the literature.

AMS subject classifications (2020): 65M60, 11B39, 40A05, 34A08.

Keywords: Time-fractional Burgers’ equation; Chebyshev polynomials; Petrov–
Galerkin method; Convergence analysis.

1 Introduction

The orthogonal polynomials of the shifted first-kind Chebyshev polynomials
(S1KCPs) are defined on the interval [−1, 1]. Due to their advantageous
characteristics and value in spectral approaches, they play a vital part in the
numerical solution of partial differential equations (PDEs).

Using an orthogonal polynomial-based series expansion, spectral methods
[11, 25, 19, 20, 10] are numerical approaches that try to approximate the
solution of a PDE. These techniques are particularly well adapted to the
orthogonality, clustering, and exponential convergence of the S1KCPs.

The S1KCPs were denoted as Tn(x) = cos(n θ), where n is the degree of
the polynomial and θ = cos−1(x) is the angle between the x-axis and the
point (x, 0) on the unit circle.

The clustering property of the S1KCPs is one of their main benefits. The
Chebyshev polynomials are unique among orthogonal polynomial families
in grouping at the ends of the interval [−1, 1]. This clustering property
is beneficial when approximating functions with boundary layers or steep
gradients at the endpoints.

Another feature of spectral methods based on Chebyshev polynomials is
their exponential convergence. By truncating the series expansion involving
the Chebyshev polynomials, spectral methods approximate the solution of
a PDE. As the degree of the truncated series increases, the approximation
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Youssri and Atta 174

approaches the real solution exponentially. Chebyshev spectral methods are
particularly efficient and precise due to their rapid convergence feature.

Chebyshev spectral methods for numerically solving PDEs require mod-
eling the solution as a series expansion with S1KCPs as basis functions. By
projecting the PDE onto the basis functions and solving a sequence of alge-
braic equations, the series expansion coefficients are determined.

The number of basis functions (polynomial degree) chosen depends on
the required accuracy and the issue features. Higher degrees provide more
precise results but also require more computational resources. In practice, it
is critical to balance precision and efficiency.

Chebyshev spectral methods, such as [7, 9, 10], have been effectively used
for various fractional PDEs, such as elliptic, parabolic, and hyperbolic equa-
tions. They have proven especially useful in problems with smooth solutions,
periodic boundary conditions, and unbounded domains.

Finally, the S1KCPs [27] are valuable tools for numerically solving PDEs.
They are well-suited for spectral approaches due to their orthogonality, clus-
tering, and exponential convergence qualities. These polynomials can ob-
tain accurate and efficient approximations of PDE solutions, making them
a powerful tool in computational mathematics and engineering. Chebyshev
polynomials have recently been widely employed to solve several forms of
differential problems; for example, see [41, 8, 1, 38, 42, 17, 2, 6, 16, 26].

We can guarantee that knowledge of the properties and applications of
S1KCPs in the numerical solution of PDEs is generally established and found
in various references and textbooks on numerical methods for PDEs. Among
the significant works in this field are [14, 35, 13].

The nonlinear time-fractional equation Burger’s equation is a PDE with
a fractional derivative in time that incorporates nonlinear convection and
diffusion factors. It is a variation of the traditional Burger’s equation, a
simple model for various physical phenomena, such as fluid flow and traffic
movement. Incorporating fractional derivatives in time allows the system to
include nonlocal and memory effects.

The general form of the nonlinear time-fractional Burger’s equation is
given as [18]:
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175 Tchebyshev Petrov-Galerkin stratagem for Burgers’ equation

∂αu

∂ tα
+ σ u

∂ u

∂ x
− κ

∂2 u

∂ x2
= s(x, t), 0 < α < 1, (1)

u(x, 0) = g1(x), 0 < x ≤ 1,

u(0, t) = g2(t), u(1, t) = g3(t), 0 < t ≤ 1, (2)

where u(x, t) is the unknown function representing the dependent variable,
t is time, x is the spatial variable, σ is a constant coefficient that controls
the strength of the convection term, κ is a constant coefficient controlling the
diffusion term, and s(x, t) is the source term.

Due to the presence of both nonlinear and fractional variables, solving the
nonlinear time-fractional Burger’s equation analytically is difficult. Numeri-
cal approaches, on the other hand, can be used to approximate its solutions.
Many techniques, such as finite difference methods, finite element methods,
and spectral methods, can be used to deal with fractional derivatives and
nonlinearity.

Numerical approaches for solving the nonlinear time-fractional Burger’s
equation frequently involve griding the spatial domain and using time-
stepping methods to approximate the temporal derivatives. Fractional dif-
ference operators and fractional integral transformations can approximate
fractional derivatives. For further methods that studied other types of frac-
tional differential equations, see [5, 22, 29, 23].

Furthermore, the behavior of the nonlinear time-fractional Burger’s equa-
tion can exhibit fascinating phenomena, such as the generation of shock
waves, solitons, and other nonlinear waves. Memory effects are introduced
by the fractional derivative in time, which might alter the transmission and
evolution of these nonlinear structures.

Scientists are constantly researching the properties, analytical solutions,
and numerical approaches of the nonlinear time-fractional Burger’s equation.
It is used in a variety of domains, such as fluid dynamics, heat transfer,
and nonlinear wave phenomena, where the inclusion of fractional derivatives
in time allows a more precise representation of the system dynamics. The
interested reader can see the recent diverse numerical methods used to solve
Burgers’ problem in [15, 31, 44, 36, 24].
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Youssri and Atta 176

The Petrov–Galerkin method [34, 27] is a numerical technique for solving
PDEs. It is a variation of the more general Galerkin approach, which aims to
approximate a PDE solution by projecting it onto a finite-dimensional trial
function subspace. To improve the accuracy and stability of the approxi-
mation, the Petrov–Galerkin approach incorporates an additional weighting
function known as the test function or the Petrov function.

The Petrov–Galerkin approach [43] is especially effective for PDEs with
specific properties, such as those with convection-dominated terms or singu-
larities. It solves the usual Galerkin method’s difficulties in capturing precise
solutions in these challenging settings.

The Petrov–Galerkin approach [28] has been effectively used for var-
ious PDEs, including convection-diffusion, Navier-Stokes, and advection-
dominated situations. It provides a versatile framework for dealing with
difficult PDEs and is more accurate and stable than the Galerkin technique.

Overall, the Petrov–Galerkin approach is a strong numerical methodology
that extends the Galerkin method to meet the difficulties given by specific
types of PDEs. It improves the accuracy and stability of the approximation
by introducing Petrov functions as extra weighting functions, making it an
important tool in the field of numerical PDE solving.

The structure of this article is as follows: The theory of fractional calculus
and the relevant properties of Chebyshev polynomials are briefly introduced
in section 2. A numerical spectral Petrov–Galerkin technique for solving the
time-fractional Burgers’ type equation is constructed in section 3. Section 4
discusses the convergence and error analysis of the method. Some numeri-
cal examples are given in section 5 to illustrate the theoretical conclusions.
Section 6 contains conclusions.

2 Preliminaries and essential relations

2.1 The fractional derivative in the Caputo sense

Definition 1. [32] The Caputo fractional derivative of order s is defined as
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177 Tchebyshev Petrov-Galerkin stratagem for Burgers’ equation

Ds
xu(x) =

1

Γ(m− s)

∫ x

0

(x− y)m−s−1u(m)(y)dy, s > 0, x > 0, (3)

where m− 1 ⩽ s < m, m ∈ N.

The following properties are satisfied by the operator Ds
x for m− 1 ⩽

s < m, m ∈ N,

Ds
xc = 0, (c is a constant) (4)

Ds
x x

m =

 0, if m ∈ N0 and m < ⌈s⌉,
Γ(m+1)

Γ(m−s+1) x
m−s, if m ∈ N0 and m ≥ ⌈s⌉,

(5)

where N = {1, 2, 3, . . .} , N0 = {0} ∪ N and the notation ⌈α⌉ denotes the
ceiling function.

2.2 An account on the S1KCPs

Let T ∗
j (x) be the S1KCPs defined in the interval [0, 1] by T ∗

j (x) = Tj(2x−1).
These polynomials can be defined as [8, 38]

T ∗
m(x) = m

m∑
k=0

(−1)m−k 22 k (m+ k − 1)!

(m− k)! (2 k)!
xk, m > 0, (6)

satisfying the following orthogonality relation with respect to the weight func-
tion ŵ(x) = 1√

x (1−x)
[8, 38]:

∫ 1

0

ŵ(x)T ∗
m(x)T ∗

n(x) dx = hm δm,n, (7)

where

hm =

 π, if m = 0,

π
2 , if m > 0,

(8)

and

δm,n =

 1, if m = n,

0, if m ̸= n.
(9)

The recurrence relation of T ∗
m(x) is
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Youssri and Atta 178

T ∗
m+1(x) = 2 (2x− 1) T ∗

m(x)− T ∗
m−1(x), (10)

where T ∗
0 (x) = 1 and T ∗

1 (x) = 2x− 1.

Moreover, the inversion formula is [8, 38]

xj = 21−2 j (2 j)!

j∑
p=0

ϵp
(j − p)!(j + p)!

T ∗
p (x), j ≥ 0, (11)

where

ϵm =


1
2 , if m = 0,

1, otherwise.
(12)

The following relation between T ∗
i (x) and U∗

i (x) is correct

DT ∗
i (x) = 2i U∗

i−1(x), for all i ≥ 1. (13)

The following linearization formula is valid

T ∗
r (x)U

∗
s (x) =

1

2

(
U∗
s+r(x) + U∗

s−r(x)
)
, for all r, s ≥ 0. (14)

Corollary 1. [1] For every positive integer q, the qth derivative of T ∗
j (x) can

be expressed in terms of their original polynomials as

Dq T ∗
j (x) =

j−q∑
p=0

(j+p+q) even

dj,p,q T
∗
p (x), (15)

where

dj,p,q =
j 22 q ϵp (q) 1

2 (j−p−q)(
1
2 (j − p− q)

)
!
(
1
2 (j + p+ q)

)
1−q

, (16)

and ϵp is defined in (12).

Lemma 1. [4] For all nonnegative integers m and n, the following lineariza-
tion formula holds for the S1KCPs:

T ∗
m(x)T ∗

n(x) =
1

2

(
T ∗
m+n(x) + T ∗

|m−n|(x)
)
. (17)

Lemma 2. Let j and i be any two nonnegative integers. The moments’
formula for the S1KCPs are given by
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179 Tchebyshev Petrov-Galerkin stratagem for Burgers’ equation

xj T ∗
i (x) =

i+j∑
s=i−j

Γ(2j + 1)

4jΓ(i+ j − s+ 1)Γ(−i+ j + s+ 1)
T ∗
s (x). (18)

Proof. Multiplying both sides of (11) with T ∗
i (x) and direct use of Lemma

1, we get the desired result.

Remark 1. The following relation is satisfied:∫ 1

0

ŵ(x)U∗
i (x)T

∗
r (x) dx = σi,r, (19)

where U∗
i (x) is the shifted Chebyshev polynomials of the second kind and

σi,r =

 π, if (i− r) even, i ≥ r,

0, otherwise.
(20)

Remark 2. The following relation is satisfied∫ 1

0

x2 ŵ(x)T ∗
i (x)T

∗
s (x) dx = κi,s, (21)

where

κi,s =
π

32 ϵiϵs



1, if |s− i| = 2,

4, if |s− i| = 1,

6, if s− i = 0, i > 1,

3, if s = i = 0,

7, if s = i = 1,

0, otherwise.

(22)

3 Petrov–Galerkin approach for the time-fractional
Burgers’ equation

In this section, we consider the following time-fractional Burgers’ equation
[33]:

∂α χ(x, t)

∂ tα
+ χ(x, t)

∂ χ(x, t)

∂ x
−Ψ

∂2 χ(x, t)

∂ x2
= S(x, t), 0 < α < 1, (23)

subject to the following initial and boundary conditions:
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χ(x, 0) = g(x), 0 < x ≤ 1,

χ(0, t) = ζ1(t), χ(1, t) = ζ2(t), 0 < t ≤ 1, (24)

where Ψ is the kinematic viscosity and S(x, t) is the source term.

Now, to proceed with our proposed Petrov–Galerkin approach, we will
use the following transformation:

χ(x, t) := u(x, t) + Υ(x, t), (25)

where

Υ(x, t) = (1− x) (χ(0, t)− χ(0, 0)) + x (χ(1, t)− χ(1, 0)) + χ(x, 0), (26)

to convert (23) governed by the conditions (24) into the following modified
equation:

∂α u(x, t)

∂ tα
+ u(x, t)

∂ u(x, t)

∂ x
+ u(x, t)

∂Υ(x, t)

∂ x

+Υ(x, t)
∂ u(x, t)

∂ x
−Ψ

∂2 u(x, t)

∂ x2
= F (x, t), 0 < α < 1, (27)

governed by the following homogeneous conditions:

u(x, 0) = 0, 0 < x < 1,

u(0, t) = u(1, t) = 0, 0 < t ≤ 1, (28)

where

F (x, t) = S(x, t)− ∂α Υ(x, t)

∂ tα
−Υ(x, t)

∂Υ(x, t)

∂ x
+Ψ

∂2 Υ(x, t)

∂ x2
. (29)

Therefore, instead of solving (23) governed by (24), we can solve the modified
equation (27) governed by the homogeneous conditions (28).

3.1 Trial functions

Consider the following basis functions:

λ∗i (x) = T ∗
i+2(x)− T ∗

i (x),
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181 Tchebyshev Petrov-Galerkin stratagem for Burgers’ equation

ϕ∗j (t) = t T ∗
j (t). (30)

Remark 3. The polynomials λ∗i (x) can be written alternatively in the fol-
lowing form:

λ∗i (x) = −8x (1− x)U∗
i (x). (31)

The orthogonality relations of λ∗i (x) and ϕ∗j (t) are given by∫ 1

0

λ∗m(x)λ∗n(x)
1

(x (1− x))3/2
dx = 8π δn,m, (32)

and ∫ 1

0

ϕ∗m(t)ϕ∗n(t)
1

t2
√
t (1− t)

dx = hm δm,n, (33)

where hm is defined in (8).

Lemma 3. For all nonnegative integers m and n, the following linearization
formula holds:

λ∗m(x)
d λ∗i (x)

d x
= −i U∗

i−m−3(x) + (2 i+ 2)U∗
i−m−1(x)− (i+ 2)U∗

i−m+1(x)

+ i U∗
i+m−1(x)− (2 i+ 2)U∗

i+m+1(x) + (i+ 2)U∗
i+m+3(x).

(34)

Proof. We express Dλ∗i (x) as a combination of U∗
i (x) via (13). Then we

linearize λ∗m(x)Dλ∗i (x) using (14), we get the desired result.

Lemma 4. For all nonnegative integers m and n, the following linearization
formula holds:

ϕ∗n(t)ϕ
∗
j (t) =

t2

2

(
T ∗
j+n(t) + T ∗

j−n(t)
)
. (35)

Proof. The proof of this lemma is a direct result of Lemma 1.

Theorem 1. The first and second derivatives of ψ∗
m(x) can be expressed

explicitly as

d λ∗i (x)

d x
=

i+2∑
j=0

ςj,i T
∗
j (x),

d2 λ∗i (x)

d x2
=

i+1∑
j=0

τj,i T
∗
j (x), (36)
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where

ςj,i = 4



j + 1, if i+ 1 = j,

2, if (i− j) odd , j > 0,

1, if (i− j) odd , j = 0,

0, otherwise,

τj,i = δj

 8
(
3 i (i+ 2)− j2 + 4

)
, if (i− j) even , i ≥ j,

0, otherwise,

δj =

 1, if j = 0,

1
2 , otherwise.

(37)

Proof. Relations (36) can be deduced after using Corollary 1 when q = 1, 2

along with λ∗i (x) defined in (30), then collecting like terms and rearranging
the summations.

3.2 Petrov–Galerkin solution for the time-fractional
Burgers’ equation

Now, one may set

ΘN (Ω) = span{λ∗i (x)ϕ∗j (t) : i, j = 0, 1, . . . , N},

ΛN (Ω) = {u ∈ ΘN (Ω) : u(x, 0) = u(0, t) = u(1, t) = 0}, (38)

where Ω = [0, 1]2. Then any function uN (x, t) ∈ ΛN (Ω) may be written as

uN (x, t) =

N∑
i=0

N∑
j=0

cij λ
∗
i (x)ϕ

∗
j (t). (39)

The application of Petrov–Galerkin technique [39] is used to find uN (x, t) ∈
ΛN such that(
∂α uN (x, t)

∂ tα
, T ∗

r (x)T
∗
s (t)

)
ω(x,t)

+

(
uN (x, t)

∂ uN (x, t)

∂ x
, T ∗

r (x)T
∗
s (t)

)
ω(x,t)
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+

(
uN (x, t)

∂ΥN (x, t)

∂ x
, T ∗

r (x)T
∗
s (t)

)
ω(x,t)

+

(
ΥN (x, t)

∂ uN (x, t)

∂ x
, T ∗

r (x)T
∗
s (t)

)
ω(x,t)

−Ψ

(
∂2 uN (x, t)

∂ x2
, T ∗

r (x)T
∗
s (t)

)
ω(x,t)

= (F (x, t), T ∗
r (x)T

∗
s (t))ω(x,t) , 0 ≤ r, s ≤ N,

(40)

where T ∗
r (x)T

∗
s (t) is the test function and ω(x, t) = ŵ(x) ŵ(t).

Therefore, (40) can be written after using the definition of uN (x, t) (39)
as
N∑
i=0

N∑
j=0

cij gi,r bj,s +

N∑
m=0

N∑
n=0

N∑
i=0

N∑
j=0

cmn cij dm,i,r hn,j,s

+

N∑
m=0

N∑
n=0

N∑
i=0

N∑
j=0

cmn aij dm,i,r hn,j,s +

N∑
m=0

N∑
n=0

N∑
i=0

N∑
j=0

bmn cij dm,i,r hn,j,s

−Ψ

N∑
i=0

N∑
j=0

cij Zi,r Qj,s = Fr,s, 0 ≤ r, s ≤ N, (41)

where aij and bij are determined from the following relations:

aij =
1

8π hj

∫ 1

0

∫ 1

0

∂ΥN (x, t)

∂ x
λ∗i (x)ϕ

∗
j (t)

1

(x (1− x))3/2
1

t2
√
t (1− t)

dx dt,

bij =
1

8π hj

∫ 1

0

∫ 1

0

ΥN (x, t)λ∗i (x)ϕ
∗
j (t)

1

(x (1− x))3/2
1

t2
√
t (1− t)

dx dt.

(42)

Also,

gi,r = (λ∗i (x), T
∗
r (x))ŵ(x) , bj,s =

(
dα ϕ∗j (t)

d tα
, T ∗

s (t)

)
ŵ(t)

,

dm,i,r =

(
λ∗m(x)

d λ∗i (x)

d x
, T ∗

r (x)

)
ŵ(x)

, hn,j,s =
(
ϕ∗n(t)ϕ

∗
j (t), T

∗
s (t)

)
ŵ(t)

,

Zi,r =

(
d2 λ∗i (x)

d x2
, T ∗

r (x)

)
ŵ(x)

, Qj,s =
(
ϕ∗j (t), T

∗
s (t)

)
ŵ(t)

,
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and Fr,s = (f(x, t), T ∗
r (x)T

∗
s (t))ω(x,t) .

Theorem 2. The elements gi,r, bj,s, dm,i,r, hn,j,s, Zi,r, and Qj,s are given
by

gi,r =


− π

2ϵi
, if r − i = 0,

π
2 , if r − i = 2,

0, otherwise,

,

bj,s = π (−1)j Γ

(
3

2
− α

)
4F3


2,−j, j, 32 − α

1
2 ,−s− α+ 2, s− α+ 2

∣∣∣∣∣∣∣∣ 1
 ,

dm,i,r = −i σi−m−3,r + (2 i+ 2)σi−m−1,r − (i+ 2)σi−m+1,r + i σi+m−1,r

− (2 i+ 2)σi+m+1,r + (i+ 2)σi+m+3,r,

hn,j,s =
1

2
(κj+n,s + κj−n,s) ,

Zi,r =

 4π
(
3 i (i+ 2)− r2 + 4

)
, if (i− r) even, i ≥ r,

0, otherwise,

Qj,s =



π
8ϵi
, if s− j = 1,

π
8ϵs
, if j − s = 1,

π
4ϵj
, if s− j = 0,

0, otherwise.

(43)

Proof. The elements gi,r can be obtained after using the orthogonality re-
lation (7) and the definition of λ∗i (x) defined in (30), then collecting like
terms.

To find the elements bj,s, based on the definition of Caputo’s fractional
derivative (3) and the power form of T ∗

j (x) (6), one can write

bj,s =

(
dα ϕ∗j (t)

d tα
, T ∗

s (t)

)
ŵ(t)

=

j∑
k=0

j22k(k + 1)!(−1)j−k(j + k − 1)!

(2k)!(j − k)!(−α+ k + 1)!

∫ 1

0

T ∗
s (t)t

−α+k+1 ŵ(t) dt
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185 Tchebyshev Petrov-Galerkin stratagem for Burgers’ equation

=

j∑
k=0

√
πj4k(−1)j−kΓ(k + 2)Γ(j + k)Γ

(
k − α+ 3

2

)
Γ(2k + 1)Γ(j − k + 1)Γ(k − s− α+ 2)Γ(k + s− α+ 2)

. (44)

The last relation can be summed to give the following result:

bj,s = π (−1)j Γ

(
3

2
− α

)
4F3


2,−j, j, 32 − α

1
2 ,−s− α+ 2, s− α+ 2

∣∣∣∣∣∣∣∣ 1
 . (45)

The elements dm,i,r can be obtained after using Lemma 3 along with Remark
1.

Similarly, the elements hn,j,s can be obtained after using Lemma 4 along
with Remark 2.

The elements Zi,r can be obtained after using Theorem 1 along with the
orthogonality relation (7), collecting like terms, and rearranging the summa-
tions.

Finally, the elements Qj,s can be obtained after using Lemma 2 along
with the orthogonality relation (7) and doing some computations.

Remark 4. The inner product of (u(x, t), v(x, t))ω(x,t) , (u(x), v(x))ŵ(x), and
(u(t), v(t))ŵ(t) are defined as

(u(x, t), v(x, t))ω(x,t) =

∫ 1

0

∫ 1

0

u(x, t) v(x, t)ω(x, t) dx dt,

(u(x), v(x))ŵ(x) =

∫ 1

0

u(x) v(x) ŵ(x) dx,

(u(t), v(t))ŵ(t) =

∫ 1

0

u(t) v(t) ŵ(t) dt. (46)

Remark 5. The (N + 1) × (N + 1) nonlinear system of equations in (41)
in the unknown expansion coefficient cij can be solved through a suitable
numerical solver such as Newton’s iterative technique.

4 Error bound

Herein, we give an upper bound of the absolute errors (AEs) using Lagrange
interpolation polynomials.
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Algorithm 1: Coding algorithm for the proposed technique
Input Ψ, g(x), ζ1(t), ζ2(t), α, and S(x, t).
Step 1. Using transformation (25) to convert the nonlinear TFCE

(23)–(24), into modified equation (27)–(28)
Step 2. Assume an approximate solution uN (x, t) as in (39).
Step 3. Apply Petrov–Galerkin method to obtain the system in (41).
Step 4. Use Theorem 2 to get the elements of gi,r, bj,s, dm,i,r, hn,j,s, Zi,r,

and Qj,s.
Step 5. Use FindRoot command with initial guess

{cij = 10−i−j , i, j : 0, 1, . . . , N}, to solve the system (41) to get cij .
Output uN (x, t).

Let uN (x, t) ∈ ΛN (Ω) be the best approximation of u(x, t); then, the def-
inition of the best approximation enables us to write the following inequality:

||u(x, t)− uN (x, t)||∞ ≤ ||u(x, t)− vN (x, t)||∞, for all vN (x, t) ∈ ΛN (Ω).

(47)
Moreover, the previous inequality is also true if ûN denotes the interpolating
polynomial for u(x, t) at points (xi, tj), where xi are the roots of λ∗i (x), while
tj are the roots of ϕ∗j (t).

Using similar steps as in [12, 40], one has

u(x, t)− vN (x, t) =
∂N+1 u(η, t)

∂ xN+1 (N + 1)!

N∏
i=0

(x− xi) +
∂N+1 u(x, µ)

∂ tN+1 (N + 1)!

N∏
j=0

(t− tj)

− ∂2N+2 u(η̂, µ̂)

∂ xN+1 ∂ tN+1 ((N + 1)!)2

N∏
i=0

(x− xi)

N∏
j=0

(t− tj),

(48)

where η, η̂, µ, µ̂ ∈ [0, 1].

Now,

||u(x, t)− vN (x, t)||∞ ≤ max
(x,t)∈Ω

∣∣∣∣∂N+1 u(η, t)

∂ xN+1

∣∣∣∣ ||
∏N

i=0(x− xi)||∞
(N + 1)!

+ max
(x,t)∈Ω

∣∣∣∣∂N+1 u(x, µ)

∂ tN+1

∣∣∣∣ ||
∏N

j=0(t− tj)||∞
(N + 1)!
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− max
(x,t)∈Ω

∣∣∣∣ ∂2N+2 u(η̂, µ̂)

∂ xN+1 ∂ tN+1

∣∣∣∣
||
∏N

i=0(x− xi)||∞ ||
∏N

j=0(t− tj)||∞
((N + 1)!)2

. (49)

Since u is a smooth function on Ω, then there exist three constants ℓ1, ℓ2,
and ℓ3 such that

max
(x,t)∈Ω

∣∣∣∣∂N+1 u(x, t)

∂ xN+1

∣∣∣∣ ≤ ℓ1, max
(x,t)∈Ω

∣∣∣∣∂N+1 u(x, µ)

∂ tN+1

∣∣∣∣ ≤ ℓ2,

max
(x,t)∈Ω

∣∣∣∣ ∂2N+2 u(η̂, µ̂)

∂ xN+1 ∂ tN+1

∣∣∣∣ ≤ ℓ3. (50)

To minimize the factor ||
∏N

i=0(x−xi)||∞, let us use the one-to-one mapping
x = 1

2 (z + 1) between the intervals [−1, 1] and [0, 1] to deduce that

min
xi∈[0,1]

max
x∈[0,1]

∣∣∣∣∣
N∏
i=0

(x− xi)

∣∣∣∣∣ = min
zi∈[−1,1]

max
z∈[−1,1]

∣∣∣∣∣
N∏
i=0

1

2
(z − zi)

∣∣∣∣∣
=

(
1

2

)N+1

min
zi∈[−1,1]

max
z∈[−1,1]

∣∣∣∣∣
N∏
i=0

(z − zi)

∣∣∣∣∣
=

(
1

2

)N+1

min
zi∈[−1,1]

max
z∈[−1,1]

∣∣∣∣λN−1(z)

λ̄N

∣∣∣∣ , (51)

where λ̄N = 2N is the leading coefficient of λN−1(z) = TN+1(z) − TN−1(z)

and zi are the roots of λN−1(z).

Also, the factor ||
∏N

j=0(t− tj)||∞ may be minimized by using the one-to-
one mapping t = 1

2 (t̄ + 1) between the intervals [−1, 1] and [0, 1] to deduce
that

min
tj∈[0,1]

max
t∈[0,1]

∣∣∣∣∣∣
N∏
j=0

(t− tj)

∣∣∣∣∣∣ =
(
1

2

)N+1

min
t̄j∈[−1,1]

max
t̄∈[−1,1]

∣∣∣∣ϕN (t̄)

ϕ̂N

∣∣∣∣ , (52)

where ϕ̂N = 2N−2 is the leading coefficient of ϕN (t̄) =
(

t̄+1
2

)
TN (t̄) and t̄j

are the roots of ϕN (t̄).

Since

max
z∈[−1,1]

|λN−1(z)| = |TN+1(1)|+ |TN−1(1)| = 2,
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max
t̄∈[−1,1]

|ϕN+1(t̄)| = |ϕN+1(1)| = 1, (53)

then, inequalities (50), (51), (52), and (53) enable us to get the following
desired result:

||u(x, t)−uN (x, t)||∞ ≤ ℓ1
( 12 )

N

λ̄N (N + 1)!
+ℓ2

( 12 )
N+1

ϕ̂N (N + 1)!
+ℓ3

( 12 )
2N+1

λ̄N ϕ̂N ((N + 1)!)2
,

(54)
which represents an upper bound of the AE.

5 Illustrative examples

Example 1. [33, 37] Consider the time-fractional Burgers’ equation of the
form

∂α u(x, t)

∂ tα
+ u(x, t)

∂ u(x, t)

∂ x
− 2

∂2 u(x, t)

∂ x2
= g(x, t), (55)

subject to the following initial and boundary conditions:

u(x, 0) = 0, 0 < x ≤ 1,

u(0, t) = u(1, t) = 0, 0 < t ≤ 1, (56)

where g(x, t) = 2
Γ(3−α) t

2−α sin(π x)+π t4 sin(π x) cos(π x)+2π2 t2 sin(π x),
and u(x, t) = t2 sin(π x) is the exact solution of this problem.

Table 1 gives a comparison of AE between our method and the method
in [33] at α = 0.7 and α = 0.8. Figure 1 shows the maximum absolute error
(MAE) at different values of N when α = 0.5. Table 2 gives a comparison
of L∞-error between our method and methods in [37, 33] at different values
of α. Figure 2 shows the AE (left) and approximate solution (right) at
α = 0.9, N = 14.

Example 2. [33] Consider the time-fractional Burgers’ equation of the form

∂α u(x, t)

∂ tα
+ u(x, t)

∂ u(x, t)

∂ x
− ∂2 u(x, t)

∂ x2
= g(x, t), (57)

subject to the following initial and boundary conditions:

u(x, 0) = 0, 0 < x ≤ 1,

u(0, t) = t2, u(1, t) = −t2, 0 < t ≤ 1, (58)
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Table 1: Comparison of AE for Example 1

α = 0.7 α = 0.8

x Method in [33] Our method at M = 14 Method in [33] Our method at N = 14

0.1 2.18701× 10−5 5.55112× 10−17 8.10773× 10−7 5.55112× 10−17

0.2 4.20505× 10−5 1.11022× 10−16 1.57153× 10−6 1.11022× 10−16

0.3 5.88630× 10−5 2.22045× 10−16 2.22713× 10−6 1.11022× 10−16

0.4 7.06958× 10−5 3.33067× 10−16 2.71560× 10−6 0
0.5 7.61346× 10−5 2.22045× 10−16 2.97247× 10−6 0
0.6 7.41772× 10−5 3.33067× 10−16 2.94204× 10−6 0
0.7 6.44989× 10−5 4.44089× 10−16 2.59370× 10−6 1.11022× 10−16

0.8 4.76900× 10−5 3.33067× 10−16 1.93833× 10−6 1.11022× 10−16

0.9 2.53573× 10−5 5.55112× 10−17 1.03759× 10−6 5.55112× 10−17

4 6 8 10 12 14

10
-13

10
-9

10
-5

N

M
A
E

aa

Figure 1: The MAE of Example 1 at α = 0.5.

Table 2: Comparison of L∞-error of Example 1

α Method in [37] at N = 27, M = 212 Method in [33] at N = 27, M = 212 Our method at N = 14

0.2 5.47402× 10−5 4.76511× 10−5 3.33067× 10−16

0.3 5.46367× 10−5 4.75486× 10−5 3.33067× 10−16

0.4 5.44879× 10−5 4.74015× 10−5 2.22045× 10−16

0.5 5.42862× 10−5 4.72029× 10−5 7.77156× 10−16

where g(x, t) = 2
Γ(3−α) t

2−α cos(π x)− π t4 sin(π x) cos(π x) + π2 t2 cos(π x),
and u(x, t) = t2 cos(π x) is the exact solution of this problem.

Table 3 reports the AE at N = 12 and N = 14 when α = 0.5. Figure
3 shows the MAE at different values of N when α = 0.9. Table 4 gives a
comparison of L∞-error between our method and method in [33] at different
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Figure 2: The AE (left) and approximate solution (right) for Example 1 at α = 0.9, N =

14.

values of α. Figure 4 shows the exact and approximate solutions at α =

0.4, N = 14.

Table 3: The AE of Example 2 at α = 0.5

N = 12 N = 14

x t = 0.1 t = 0.5 t = 0.9 t = 0.1 t = 0.5 t = 0.9

0.1 5.05238× 10−16 1.26565× 10−14 4.10366× 10−14 6.50521× 10−19 6.93889× 10−18 4.16334× 10−17

0.2 1.22949× 10−15 3.07462× 10−14 9.96425× 10−14 2.60209× 10−18 1.38778× 10−17 5.55112× 10−17

0.3 1.43115× 10−15 3.57214× 10−14 1.14991× 10−13 8.67362× 10−19 2.77556× 10−17 1.11022× 10−16

0.4 1.04387× 10−15 2.59792× 10−14 8.32667× 10−14 1.95156× 10−18 1.73472× 10−17 1.38778× 10−17

0.5 1.88161× 10−19 1.16453× 10−17 2.50372× 10−17 2.69252× 10−19 1.10588× 10−17 5.19085× 10−17

0.6 1.04431× 10−15 2.60071× 10−14 8.32112× 10−14 2.81893× 10−18 3.81639× 10−17 1.24901× 10−16

0.7 1.43071× 10−15 3.56937× 10−14 1.15047× 10−13 8.67362× 10−19 1.38778× 10−17 0

0.8 1.22949× 10−15 3.07601× 10−14 9.95871× 10−14 2.60209× 10−18 2.77556× 10−17 0

0.9 5.05238× 10−16 1.26427× 10−14 4.10644× 10−14 6.50521× 10−19 2.08167× 10−17 9.71445× 10−17

4 6 8 10 12 14

10
-14

10
-11

10
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10
-5

N

M
A
E

aa

Figure 3: The MAE of Example 2 at α = 0.9.
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Table 4: Comparison of L∞-error of Example 2

Method in [33]

α N = 27, M = 212 M = 27, N = 211 Our method at N = 14

0.2 1.06427× 10−5 9.66513× 10−6 4.44089× 10−16

0.3 1.06304× 10−5 9.60898× 10−6 4.44089× 10−16

0.4 1.06126× 10−5 9.53096× 10−6 3.33067× 10−16

0.5 1.05886× 10−5 9.42186× 10−6 3.33067× 10−16

Figure 4: The exact and approximate solutions of Example 2 at α = 0.4, N = 14.

Example 3. [33] Consider the time-fractional Burgers’ equation of the form

∂α u(x, t)

∂ tα
+ u(x, t)

∂ u(x, t)

∂ x
− ∂2 u(x, t)

∂ x2
= g(x, t), (59)

subject to the following initial and boundary conditions:

u(x, 0) = 0, 0 < x ≤ 1,

u(0, t) = t2, u(1, t) = e t2, 0 < t ≤ 1, (60)

where g(x, t) = 2
Γ(3−α) e

x t2−α + t4 e2 x − t2 ex and u(x, t) = t2 ex is the exact
solution of this problem.

Table 5 gives a comparison of AE between our method and method in
[33] at α = 0.9. Table 6 gives a comparison of L∞-error between our method
and methods in [33] at different values of α. Figure 5 shows the AE (left)
and approximate solution (right) at α = 0.3, N = 12.
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Table 5: Comparison of AE for Example 3 at α = 0.9

Method in [33]

x N = 200,∆t = 0.0005 N = 80,∆t = 0.001 Our method at N = 12

0.1 6.18496× 10−9 2.23568× 10−7 5.55112× 10−17

0.2 7.14787× 10−9 3.99993× 10−7 1.11022× 10−16

0.3 3.49621× 10−9 5.30327× 10−7 2.22045× 10−16

0.4 3.99695× 10−9 6.14693× 10−7 2.22045× 10−16

0.5 1.42437× 10−8 6.52199× 10−7 2.22045× 10−16

0.6 2.56063× 10−8 6.40791× 10−7 0

0.7 3.55155× 10−8 5.76962× 10−7 2.22045× 10−16

0.8 3.98360× 10−8 4.55240× 10−7 0

0.9 3.17808× 10−8 2.67253× 10−7 0

Table 6: Comparison of L∞-error of Example 3

Method in [33]

α N = 27, M = 211 M = 27, N = 24 Our method at N = 12

0.2 5.69465× 10−7 1.97043× 10−5 2.22045× 10−16

0.3 5.66088× 10−7 1.99857× 10−5 2.22045× 10−16

0.4 5.61387× 10−7 2.03716× 10−5 2.22045× 10−16

0.5 5.54967× 10−7 2.09231× 10−5 2.22045× 10−16

Figure 5: The AE (left) and approximate solution (right) for Example 3 at α = 0.3, N =

12.

Example 4. Consider the following time-fractional Burgers’ equation of two
dimensional
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∂α u(x, y, t)

∂ tα
+ u(x, y, t)

(
∂ u(x, y, t)

∂ x
+
∂ u(x, y, t)

∂ y

)
− ∂2 u(x, y, t)

∂ x2

− ∂2 u(x, y, t)

∂ y2
= g(x, y, t), (61)

subject to the following initial and boundary conditions:

u(x, y, 0) = 0, 0 < x, y ≤ 1,

u(0, y, t) = t2 e−y, u(1, y, t) = t2 e1−y, 0 < y, t ≤ 1,

u(x, 0, t) = t2 ex, u(x, 1, t) = t2 ex−1, 0 < x, t ≤ 1, (62)

where g(x, t) = 2 ex−y

Γ(3−α) t
2−α − 2 t2 ex−y and u(x, t) = t2 ex−y is the exact

solution of this problem.

Table 7 illustrates the AE at different values of t when N = 6 and α = 0.2.
Figure 6 shows the AE at different values of t at N = 6 and α = 0.2.

Table 7: The AE of Example 4 at α = 0.2

x = y t = 0.3 t = 0.6 t = 0.9

0.2 5.50355× 10−14 2.19933× 10−13 4.94896× 10−13

0.4 4.41578× 10−14 1.7732× 10−13 4.01347× 10−13

0.6 4.40518× 10−14 1.75651× 10−13 3.92865× 10−13

0.8 5.50272× 10−14 2.19789× 10−13 4.94157× 10−13

Figure 6: The AE for Example 4 at α = 0.2, N = 6.
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6 Concluding remarks

In this study, using a special combination of shifted Chebyshev polynomial
bases, we built an explicit modal numerical solution based on the spectral
Petrov–Galerkin technique to handle the nonlinear time-fractional Burger-
type PDE in the Caputo sense. The procedure reduces the issue to a set of
nonlinear algebraic equations. Numerous important Chebyshev polynomial
characteristics were reported, along with various connection and linearization
equations that were mentioned and verified. All components of the resultant
matrices were also elegantly assessed. Additionally, studies of convergence
and error were created. The applicability and accuracy of the suggested
technique were illustrated through a number of illustrative instances, which
also show the absolute and anticipated error rates. As an expected future
work, we aim to employ the developed theoretical results in this paper along
with suitable spectral methods to treat some other problems, for instance,
[21, 3, 30]. All codes were written and debugged by Mathematica 11 on an HP
Z420 Workstation, Processor: Intel (R) Xeon(R) CPU E5-1620 - 3.6 GHz, 16
GB RAM DDR3, and 512 GB storage.
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