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Abstract

In this study, an indirect method is proposed based on the Chebyshev
pseudo-spectral method for solving optimal control problems governed by
Burgers’ equation. Pseudo-spectral methods are one of the most accurate
methods for solving nonlinear continuous-time problems, specially optimal

control problems. By using optimality conditions, the original optimal control
problem is first reduced to a system of partial differential equations with
boundary conditions. Control and state functions are then approximated by

interpolating polynomials. The convergence is analyzed, and some numerical
examples are solved to show the efficiency and capability of the method.
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1 Introduction

Time-dependent partial differential equations (PDEs) play an important role
in various fields of application, such as fluid dynamics [4,28], electro magnet-
ics [17,24], or heat transfers [10]. Often, these differential equations consist of
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nonlinear terms, which are challenging to solve numerically. Furthermore, in
engineering applications, we often interest in an optimal solution of the con-
sidered PDE with a certain objective function. This leads to the mathemati-
cal field of PDE constrained optimization where a cost function is minimized
and the PDE is considered as a constraint.

Optimal control of viscous Burgers’ equation is one of the most important
PDEs constraint optimization, which is taken into consideration and several
papers have recently been presented in its numerical solution. Kobayashi [12]
has concerned with adaptive stabilization and regulator design for a viscous
Burgers’ equation by nonlinear boundary control. Yilmaz and Karasozen [29]
by using the high level modeling and simulation package COMSOL Multi-
physics solved the optimal control of unsteady Burgers’ equation without
constraints and with control constraints. Also, they applied an all-at-once
method for the optimal control of the unsteady Burgers’ equation [30]. More-
over, in other work, they [11] transformed the optimality system for boundary
controlled unsteady Burgers’ equation after linearization into a biharmonic
equation in the space-time domain. Smaoui et al. [23] have dealt with the
sliding mode control (SMC) of the forced generalized Burgers’ equation via
the Karhunen–Loeve (K-L) Galerkin method. Hashemi and Werner [8] pre-
sented a finite difference scheme for the one-dimensional viscous Burgers’
equation, which boundary conditions are taken as control inputs. Zeng and
Zhang [31] designed a new preconditioning technique along with MINRES
(minimal residual) in nonstandard inner product for the linear system of
equations arising for optimal control of the unsteady Burgers’ equation. Ku-
cuk and Sadek [13] analyzed the dynamics of the forced Burgers’ equation
subject to Dirichlet boundary conditions by using the boundary control with
the objective of minimizing the distance between the final state function and
target profile along with the energy of the control. Also, they applied a
robust technique for solving optimal control of coupled Burgers’ equation;
see [21]. Noack and Walther [16] used adjoint techniques for efficient eval-
uations of the gradient of the objective in gradient based on optimization
algorithms. Marburger and Pinnau [15] showed the convergence of method
to solve optimal control problems, where the constraints have been discretized
by a particle method. Allahverdi et al. [2] discussed the efficiency of various
numerical methods for the inverse design of the Burgers’ equation. An aug-
mented Lagrangian-SQP technique depending upon second-order sufficient
optimality condition is analyzed in [27]. In [5], a comparison of three differ-
ent numerical methods for optimal control of Burgers’ equation is carried out.
In [25], a Lagrangian-Newton-SQP method is presented for the solution of
optimal control of Burgers’ equation, where the control is restricted by point-
wise lower and upper bounds. Proper orthogonal decomposition method is
utilized in [14] to solve optimal control problems of the Burgers’ equation.
Furthermore, some controllability results for viscous Burgers’ equation with
distributed controls are presented in [6].
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In some papers, at first the problem is discretized on one of the variables
and then the Runge–Kutta method is applied to discrete the optimality con-
ditions. To achieve good results, we have to take the number of points of
discretization big enough that it can be too time consuming and has compu-
tational complexity.

The pseudo-spectral (PS) methods are one of the most accurate methods
to solve continuous-time problems including ordinary differential equations
(ODEs) and PDEs. Using the direct Chebyshev PS(CPS) method for optimal
control problems governed by PDEs does not usually give an explicit solu-
tion. Hence, we use an indirect CPS method for solving necessary optimal
conditions in an optimal control problem of Burgers’ equation and we obtain
an approximate optimal solution. It is the first time that the CPS method is
applied by discretization of variables synchronic. By numerical examples, it
can be seen that the CPS method is more effective than other methods and
we can achieve the better results for the solution of optimal control problem
of Burgers’ equation. In fact, the error of CPS method is less than that of
other methods.

The paper is organized as follows: In Section 2, we introduce the optimal
control problem of Burgers’ equation. In Section 3, we give the optimality
conditions for optimal control problem of Burgers’ equation. In Section 4,
we utilize the CPS method to discretize optimality conditions. In Section 5,
the convergence of the method is analyzed. Finally, the numerical examples
and conclusion are given in Sections 6 and 7, respectively.

2 Optimal control problem of Burgers’ equation

The distributed optimal control problem for the Burgers’ equation can be
stated as follows:

Minimize J [y, u] =
1

2

∫ T

0

∫ b

a

(y(t, x)− z(t, x))2dxdt+
α

2

∫ T

0

∫ b

a

u2(t, x)dxdt

(1)

subject to

yt(t, x) + y(t, x)yx(t, x)− νyxx(t, x) = Φ(u), (t, x) ∈ Q = [0, T ]× [a, b], (2)

y(t, a) = y(t, b) = 0, t ∈ Σ = [0, T ], (3)

y(0, x) = y0(x), x ∈ Ω = [a, b], (4)

where y(., .) is the state variable, u(., .) is the control variable, α > 0 is the
regularization parameter, ν > 0 denotes the viscosity parameter, and Φ is a
given function. An usual selection of function Φ is as follows:
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Φ(u) =

{
u u in Ω,

0 u in Ω− Ω,

where Ω is the set of active controls; see [5, 25,27].

At first, optimality conditions for problem (1)–(4) are given, then we indi-
rectly develop the CPS method to achieve an approximate optimal solution.

3 Optimality conditions

Here, we summarize the process of achieving the optimality conditions for
the optimal control problem (1)–(4).
Let L1

loc(Ω) be the set of all functions that are Lebesgue integrable on every
compact subset of Ω and let W k,2(Ω) be the linear space of all functions
w ∈ L2(Ω) having weak derivatives Dαw in L2(Ω) for all multi-indices α of
length | α |≤ k. Assume that C∞

0 (Ω) is the space of differentiable functions
of every arbitrary order on Ω. The closure of C∞

0 (Ω) in W k,p(Ω) is denoted

by W k,p
0 (Ω). Moreover, we define Hk

0 (Ω) =W k,2
0 (Ω).

Definition 1. Let y ∈ L1
loc(Ω) and let some multi-index α be given. If

a function ω ∈ L1
loc(Ω) satisfies∫

Ω

y(x)Dαv(x)dx = (−1)|α|
∫
Ω

ω(x)v(x)dx, for all v ∈ C∞
0 (Ω),

then ω is called the weak derivative of y (associated with α).

Let H = L2(Ω) and V = H1
0 (Ω) be Hilbert spaces. We make use of the

following Hilbert space

W (0, T ) = {ϕ ∈ L2([0, T ];V ) : ϕt ∈ L2([0, T ];V ⋆)},

where V ⋆ denotes the dual space of V . The inner product in the Hilbert
space V is given with the natural inner product in H as

(ϕ, ψ)V = (ϕ′, ψ′)H , for ϕ, ψ ∈ V,

where ϕ′ and ψ′ are the derivative of ϕ and ψ, respectively.

Definition 2. Every function y ∈W (0, T ) that satisfies{
< yt(t), ϕ >V ⋆,V +ν(yt(t), ϕ)V + (y(t)yx(t), ϕ)H = ((f +Φ(u))(t), ϕ)H

ϕ ∈ V, t ∈ [0, T ], (y(0), χ)H = (y0, χ), χ ∈ H,

where
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< yt(t), ϕ >V ⋆,V =

∫
Ω

η.ϕdx+

∫
Ω

η′.ϕ′dx, η ∈ V,

is called a weak solution for Burgers’ equation (2) and conditions (3) and (4).

In order to achieve the optimality conditions, the operator e : X −→ Y
is introduced by

e(y, u) = (e1(y, u), e2(y, u)) = (yt − νyxx + yyx − f − Φ(u), y(0)− y0),

where y(0) = y(0, x) , X =W (V )×L2(Ω̄), and Y = L2(V )×H is identified
with Y ⋆ = L2(V ⋆) × H the dual of Y . We use L2(V ) for L2(Σ;V ). Now,
the optimal control problem (1)–(4) can be transformed as the following
minimization problem with equality constraints

minimize J(y, u)

subject to e(y, u) = 0.

Theorem 1. Let (y⋆, u⋆) be an optimal solution of (1)–(4). Then there exist
Lagrange multipliers p⋆ : [0, T ] × Ω −→ ℜ and λ⋆ satisfying the first-order
necessary optimality conditions

L′(y⋆, u⋆, p⋆, λ⋆) = 0, e(y⋆, u⋆) = 0

with the Lagrangian

L(y, u, p, λ) = J(y, u)− (e1(y, u), p)L2(V ⋆),L2(V ) − (e2(y, u), λ)H .

Hence, first-order optimality conditions lead to the following optimality
system (see [9, 26,27])

yt − νyxx + yyx = Φ(u), (t, x) ∈ Q,

pt + νpxx + ypx = yd − y, (t, x) ∈ Q,

y(t, a) = y(t, b) = 0, t ∈ Σ,

y(0, x) = y0, x ∈ Ω,

p(t, a) = p(t, b) = 0, t ∈ Σ,

p(T, x) = 0, x ∈ Ω,

αu+ p = 0, (t, x) ∈ Q.

(5)

From the last equation of system (5), we have

u = − 1

α
p. (6)

By using (6), we can express (5) as follows:
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yt − νyxx + yyx = Φ(− 1
αp), (t, x) ∈ Q,

pt + νpxx + ypx = yd − y, (t, x) ∈ Q,

y(t, a) = y(t, b) = 0, t ∈ Σ,

p(t, a) = p(t, b) = 0, t ∈ Σ,

y(0, x) = y0(x), x ∈ Ω,

p(T, x) = 0, x ∈ Ω.

(7)

Now, we utilize the CPS method to solve optimality conditions (7) and obtain
an approximate optimal solution for the optimal control problem (1)–(4).

4 CPS method to approximate the optimal solution

Chebyshev polynomials are in center of the CPS method, and hence we first
introduce these polynomials and then demonstrate the CPS method to solve
optimality conditions (7).

Chebyshev polynomials [1,18] are orthogonal polynomials, which play an
important role in the theory of approximation. These polynomials are defined
on [−1, 1] as follows:

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, . . . . (8)

These polynomials can be generated from the following recurrence relation-
ship:

Tj+1(x) = 2xTj(x)− Tj−1(x), j ≥ 1, x ∈ [−1, 1]. (9)

It is possible to give an explicit expression of Chebyshev polynomials as

Tj(x) = cos(j cos−1 x). (10)

It is now easy to verify that TN (.) has N zeros within the interval (−1, 1)

as xk = cos (2k−1)π
2N , k = 1, 2, . . . , N . However, in this paper, we use the

CGL points on [−1, 1] which are as follows:

xj = − cos
πj

N
, 0 ≤ j ≤ N, (11)

where they are the roots of (1 − x2)T ′
N (x). For interpolating in the CPS

method, the following Lagrange polynomials are utilized:

Lk(x) =

N∏
j=0
j ̸=k

x− xj
xk − xj

=
2

Nµk

N∑
j=0

1

µj
Tj(xk)Tj(x), k = 0, 1, . . . , N, x ∈ [−1, 1] ,
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where

µj =

{
2, j = 0, N,

1, 1 ≤ j ≤ N − 1,

and we have

Lk(tj) = δkj =

{
1, j = k,

0, j ̸= k.
(12)

To use the CPS method, the variables of system (7) are transformed to in-
terval [−1, 1] by the following linear transformations:

t =
T

2
t̄+

T

2
, t ∈ [0, T ], t̄ ∈ [−1, 1],

x =
b− a

2
x̄+

b+ a

2
, x ∈ [a, b], x̄ ∈ [−1, 1].

(13)

By (13), the optimality conditions (7) can be written as follows:

Yt̄ = ψ1 (Y (t̄, x̄), P (t̄, x̄), Yx̄(t̄, x̄), Yx̄x̄(t̄, x̄)) , (t̄, x̄) ∈ [−1, 1]× [−1, 1],

Pt̄ = ψ2 (Y (t̄, x̄), P (t̄, x̄), Px̄(t̄, x̄), Px̄x̄(t̄, x̄)) , (t̄, x̄) ∈ [−1, 1]× [−1, 1],

Y (t̄,−1) = Y (t̄, 1) = 0, t̄ ∈ [−1, 1],

P (t̄,−1) = P (t̄, 1) = 0, t̄ ∈ [−1, 1],

Y (−1, x̄) = Y0(x̄), x̄ ∈ [−1, 1],

P (1, x̄) = 0, t̄ ∈ [−1, 1],

(14)

where

Y (t̄, x̄) = y(
T

2
t̄+

T

2
,
b− a

2
x̄+

b+ a

2
),

P (t̄, x̄) = p(
T

2
t̄+

T

2
,
b− a

2
x̄+

b+ a

2
),

Yd(t̄, x̄) = yd(
T

2
t̄+

T

2
,
b− a

2
x̄+

b+ a

2
),

Y0(x̄) = y0(
b− a

2
x̄+

b+ a

2
),

ψ1 (Y, P, Yx̄, Yx̄x̄) =
T

2

(
(

2

b− a
)2νYx̄x̄ − 2

b− a
Y Yx̄ − Φ(− 1

α
P )

)
,

ψ2 (Y, P, Px̄, Px̄x̄) =
T

2

(
−(

2

b− a
)2νPx̄x̄ − 2

b− a
Y Px̄ + Yd − Y

)
.

We assume that ψ1 and ψ2 have bounded and continuous derivatives with
respect to their arguments. Hence, there exist constants M1 and M2 such
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that

|ψ1 (Y, P, Yx̄, Yx̄x̄)− ψ1

(
Ỹ , P̃ , Ỹx̄, Ỹx̄x̄

)
| ≤M1

(
|Y − Ỹ |+ |P − P̃ |

)
,

(15)

|ψ2 (Y, P, Px̄, Px̄x̄)− ψ2

(
Ỹ , P̃ , P̃x̄, P̃x̄x̄

)
| ≤M2

(
|Y − Ỹ |+ |P − P̃ |

)
.

Now, to approximate the optimal solution, we utilize the following polyno-
mials interpolating:{

Y N (t̄, x̄) =
∑N

i=0

∑N
j=0 ā

N
ijLi(t̄)Lj(x̄),

PN (t̄, x̄) =
∑N

i=0

∑N
j=0 b̄

N
ijLi(t̄)Lj(x̄),

(16)

where āNij and b̄Nij , for i, j = 0, 1, . . . , N , are the unknown coefficients. By
(12), we have {

Y N (t̄i, x̄j) = āNij ,

PN (t̄i, x̄j) = b̄Nij ,
(17)

where

t̄i = − cos(
πi

N
), x̄j = − cos(

πj

N
).

To express the derivatives Y N
t̄ (., .), Y N

x̄ (., .), Y N
x̄x̄(., .), P

N
t̄ (., .)PN

x̄ (., .), and
PN
x̄x̄(., .), we can use the matrix multiplication D = (Dkj) and get

Y N
t̄ (t̄p, x̄k) =

∑N
i=0 ā

N
ikDpi,

Y N
x̄ (t̄p, x̄k) =

∑N
j=0 ā

N
pjDkj ,

Y N
x̄x̄(t̄p, x̄k) =

∑N
j=0 ā

N
pjD̂kj ,

PN
t̄ (t̄p, x̄k) =

∑N
i=0 b̄

N
ikDpi,

PN
x̄ (t̄p, x̄k) =

∑N
j=0 b̄

N
pjDkj ,

PN
x̄x̄(t̄p, x̄k) =

∑N
j=0 b̄

N
pjD̂kj ,

(18)

where

Dkj = L′
j(t̄k) =



µk

µj
(−1)k+j 1

t̄k − t̄j
, j ̸= k,

− t̄k
2− 2t̄2k

, 0 ≤ j = k ≤ N − 1,

−2N2 + 1

6
, j = k = 0,

2N2 + 1

6
, j = k = N,

(19)

and D̂ = D · D = (D̂kj) where D̂kj =
∑N

l=0DklDlj , k, j = 0, 1, . . . , N . In
fact, multiplying by the matrix D transforms a vector of the state variables
at the CGL points to the vector of approximate derivatives at these points.
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Now, by relations (16), (17), and (18), conditions (7) can be written as the
following discrete form:
∑N

i=0 ā
N
ikDpi − ψ1

(
āNpk, b̄

N
pk,

∑N
j=0 ā

N
pjDkj ,

∑N
j=0 ā

N
pjD̂kj

)
= 0,∑N

i=0 b̄
N
ikDpi − ψ2

(
āNpk, b̄

N
pk,

∑N
j=0 b̄

N
pjDkj ,

∑N
j=0 b̄

N
pjD̂kj

)
= 0,

āNp0 = āNpN = 0, b̄Np0 = b̄NpN = 0, āN0k = Y0(x̄k), b̄
N
Nk = 0, k, p = 0, 1, . . . , N.

(20)

By solving the system of algebraic equations (20), we can obtain pointwise
and continuous approximate optimal solutions as (16) and (17), respectively.
Also, by (6), the approximate optimal control can be given as

UN (t̄, x̄) =
−1

α

N∑
i=0

N∑
j=0

b̄NijLi(t̄)Lj(x̄), (t̄, x̄) ∈ [−1, 1]× [−1, 1].

Moreover, the optimal value of functional (1) can be approximated as follows:

JN =
T

8

N∑
k=0

N∑
p=0

wkwp[ā
N
pk − z

(
T

2
(t̄p + 1),

b− a

2
x̄k +

b+ a

2

)
+ αc̄N2

pk ] (21)

where c̄Npk = 1
α b̄

N
pk, and ws, s = 0, 1, . . . , N , are the quadrature weights of the

numerical approximation (21). For even N , the weights are{
w0 = wN = 1

N2−1

ws = wN−s =
4
N

∑N
2

′′

j=0
1

1−4j2 cos(
2πjs
N ), s = 1, 2, . . . , N2 ,

(22)

and for odd N ,{
w0 = wN = 1

N2

ws = wN−s =
4
N

∑N−1
2

′′

j=0
1

1−4j2 cos(
2πjs
N ), s = 1, 2, . . . , N−1

2 .
(23)

The double prime in the weights formula denotes the first and the last ele-
ments have to be halved.

Remark 1. Notice that the approximation solutions (16) can be written
as the following Kronecker (tensor) product form:

Y (t̄, x̄) ≈ Y N (t̄, x̄) =
N∑
i=0

N∑
j=0

āNijLi(t̄)Lj(x̄) = L(t̄, x̄)TY

P (t̄, x̄) ≈ PN (t̄, x̄) =
N∑
i=0

N∑
j=0

b̄NijLi(t̄)Lj(x̄) = L(t̄, x̄)TP ,
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where

L(t̄, x̄) = [L0(t̄)L0(x̄) · · ·L0(t̄)LN (x̄)L1(t̄)L0(x̄) · · ·L1(t̄)LN (x̄) · · ·
LN (t̄)L0(x̄) · · ·LN (t̄)LN (x̄)]

= [L0(t̄) L1(t̄) · · ·LN (t̄)]⊗ [L0(x̄) L1(x̄) · · ·LN (x̄)]

= L(t̄)⊗ L(x̄),

and the symbol “⊗ ” denotes the Kronecker product. Also

TY = [āN00 · · · āN0N āN10 · · · āN1N · · · āNN0 · · · āNNN ]′,

TP = [b̄N00 · · · b̄N0N b̄N10 · · · b̄N1N · · · b̄NN0 · · · b̄NNN ]′,

where the symbol “ ′ ” denotes the transpose. All the components of TY and
TP are unknown and our aim is to obtain them (A similar representation can
be seen in [22,32,33]).

5 The convergence and error analysis

In this section, first we give the following definition and then analyze the
convergence of the presented method.

Assume that Ω̄ = [−1, 1]× [−1, 1]. We apply Cr(Ω̄) for the space of func-
tions with continuous derivatives of rth order.

Definition 3. [19] The function W : R+ → R+ with the following prop-
erties is called a modulus of continuity if

i) W is increasing,

ii) limz→0W (z) = 0,

iii) W (z1 + z2) ≤W (z1) +W (z2), for any z1 and z2 ∈ R+,

iv) there exists a constant c such that cW (z) ≥ z for all 0 < z ≤ 2.

Some important modulus of continuity can be defined as

W (z) = zα, 0 < α ≤ 1. (24)

Now, assume that B2 is the unit circle in R2. We say that a continuous
function f(·, ·) on Ω̄ admits W (.) as a modulus of continuity, if the following
value is finite

|f(·, ·)|W = sup{ |f(t̄, x̄)− f(t̃, x̃)|
W

(
∥(t̄, x̄)− (t̃, x̃)∥∞

) : (t̄, x̄), (t̃, x̃) ∈ Ω̄, (t̄, x̄) ̸= (t̃, x̃)}·

(25)
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Suppose that space C1
W (B2) includes all functions f(·, ·) on B2 with contin-

uous first order partial derivatives, and it equips with the following norm:

∥f(·, ·)∥1,W = ∥f(·, ·)∥∞ + ∥ft̄(·, ·)∥∞ + ∥fx̄(·, ·)∥∞ + |ft̄(·, ·)|W + |fx̄(·, ·)|W ·
(26)

Also, we define the space C1
W (Ω̄) as follows:

C1
W (Ω̄) = {f(·, ·) ∈ C1(Ω̄) : for all (t̃, x̃) ∈ Ω̄, there exists a mapϕ : B2 → Ω̄,

s.t. (t̃, x̃) ∈ Int(ϕ(B2)) and f ◦ ϕ(·, ·) ∈ C1
W (B2)}. (27)

It can be proved that if Ω̄ =
∪l

i=1 Int(ϕi(B
2)) for some ϕ1, . . . , ϕl, then

f(·, ·) ∈ C1
W (Ω̄) if and only if f ◦ ϕi(·, ·) ∈ CW (B2) for each i = 1, . . . , l.

Moreover, C1
W (Ω̄) with norm

∥f(·, ·)∥1,W =

l∑
i=1

∥f ◦ ϕi(·, ·)∥1,W (28)

is a Banach space (for more details, see [19]). Now, we show the space of all
polynomials of total degree at most 2N on Ω̄ by Pol(N,N, Ω̄), that is,

Pol(N,N, Ω̄) = {η(t̃, x̃) =
N∑
i=0

N∑
j=0

γij t̃
ix̃j : (t̃, x̃) ∈ Ω̄, γij ∈ R}.

Theorem 2. For any f(·, ·) ∈ C1
W (Ω̄), there is a polynomial η(·, ·) ∈

Pol(N,N, Ω̄) such that

∥f(·, ·)− η(·, ·)∥∞ ≤ c0c1
2N

W (
1

2N
), (29)

where c1 = ∥f(·, ·)∥1,W and c0 is a constant that depends on W (·), but inde-
pendent of N .

Proof. The proof is a result of Theorem 2.1 in [19].

Now, to guarantee the existence of solution for the system of algebraic
equations (20), we relax it as follows:

|
∑N

i=0 ā
N
ikDpi − ψ1

(
āNpk, b̄

N
pk,

∑N
i=0 ā

N
ikDpi,

∑N
j=0 ā

N
pjDkj ,

∑N
j=0 ā

N
pjD̂kj

)
|

≤
√
N

2N−1W ( 1
2N−1 ), p, k = 1, 2, . . . , N − 1

|
∑N

i=0 b̄
N
ikDpi − ψ2

(
āNpk, b̄

N
pk,

∑N
i=0 b̄

N
ikDpi,

∑N
j=0 b̄

N
pjDkj ,

∑N
j=0 b̄

N
pjD̂kj

)
|

≤
√
N

2N−1W ( 1
2N−1 ), p, k = 1, 2, . . . , N − 1

|āNp0| ≤
√
N

2N−1W ( 1
2N−1 ), |ā

N
pN | ≤

√
N

2N−1W ( 1
2N−1 ), p = 0, 1, . . . , N,

|b̄Np0| ≤
√
N

2N−1W ( 1
2N−1 ), |b̄

N
pN | ≤

√
N

2N−1W ( 1
2N−1 ), p = 0, 1, . . . , N,

|āN0k − Y0(x̄k)| ≤
√
N

2N−1W ( 1
2N−1 ), |b̄

N
Nk| ≤

√
N

2N−1W ( 1
2N−1 ), k = 0, 1, . . . , N,

(30)
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where N is sufficiently big and W (·) is a given modulus of continuity. Since
limN→∞√

N
2N−1W ( 1

2N−1 ) = 0, any solution (ā, b̄)N = ((āNpk, b̄
N
pk); p, k = 0, 1, . . . , N)

for system of algebraic inequalities (30) is a solution for system of algebraic
equations (20) when N tends to infinity.

Now, we show that system (30) is feasible, that is, it has at least one
solution (ā, b̄)N .

Theorem 3. Let (Y (·, ·), P (·, ·)) be a solution for system (14), where Y (·, ·)
and P (·, ·) are in C1

W (Ω̄). Then there is a positive integer K such that, for
any N ≥ K, the system (30) has a solution as

(ā, b̄)N = ((āpk, b̄pk); p, k = 0, 1, . . . , N). (31)

Moreover, (ā, b̄)N satisfies{
|Y (t̄p, x̄k)− āNpk| ≤ L

2N−1W ( 1
2N−1 ), p, k = 0, 1, . . . , N,

|P (t̄p, x̄k)− b̄Npk| ≤ L
2N−1W ( 1

2N−1 ), p, k = 0, 1, . . . , N,
(32)

where L is a positive constant independent of N .

Proof. Assume that η1(·, ·) and η2(·, ·) in Pol(N − 1, N, Ω̄) are the best
polynomial approximations of Yt̄(·, ·) and Pt̄(·, ·), respectively. By Theorem
2, we get {

∥Yt̄(t̄, x̄)− η1(t̄, x̄)∥∞ ≤ γ1

2N−1W ( 1
2N−1 ), (t̄, x̄) ∈ Ω̄,

∥Pt̄(t̄, x̄)− η2(t̄, x̄)∥∞ ≤ γ2

2N−1W ( 1
2N−1 ), (t̄, x̄) ∈ Ω̄,

(33)

where γ1 and γ2 are two constants independent of N . We define{
Ỹ (t̄, x̄) = Y (−1, x̄) +

∫ t̄

−1
η1(τ, x̄)dτ, (t̄, x̄) ∈ Ω̄

P̃ (t̄, x̄) = P (−1, x̄) +
∫ t̄

−1
η2(τ, x̄)dτ, (t̄, x̄) ∈ Ω̄,

(34)

and
āNpk = Ỹ (t̄p, x̄k), b̄Npk = P̃ (t̄p, x̄k), p, k = 0, 1, . . . , N. (35)

We show that (ā, b̄)N = ((āNpk, b̄
N
pk); p, k = 0, 1, . . . , N) satisfies system (30).

By (33), (34), and (35), for (t̄, x̄) ∈ Ω̄, we get

|Y (t̄, x̄)− Ỹ (t̄, x̄)| = |
∫ τ

−1

(Yt̄(τ, x̄)− η1(τ, x̄))dτ | ≤
∫ τ

−1

|Yt̄(τ, x̄)− η1(τ, x̄)| dτ

≤ γ1
2N − 1

W (
1

2N − 1
)

∫ τ

−1

dτ ≤ 2γ1
2N − 1

W (
1

2N − 1
).

(36)

Also, by a similar procedure, for (t̄, x̄) ∈ Ω̄, we gain
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|P (t̄, x̄)− P̃ (t̄, x̄)| ≤ 2γ2
2N − 1

W (
1

2N − 1
). (37)

Now, by relation (34), the functions Ỹ (·, x̄) and P̃ (·, x̄), for any x̄ ∈ [−1, 1],
are polynomials of total degree at most 2N . Hence, their derivatives at CGL
nodes t̄0, t̄1, . . . , t̄N are exactly equal to the value of polynomial at the nodes
multiplied by the differential matrix D, defined by (19). Thus, we have

N∑
i=0

āNikDpi = Ỹt̄(t̄p, x̄k),

N∑
i=0

b̄NikDpi = P̃t̄(t̄p, x̄k); p, k = 0, 1, . . . , N. (38)

Therefore, by relations (15) and (36), we get∣∣∣∣∣∣
N∑
i=0

aNikDpi − ψ1

āNpk, b̄Npk, N∑
j=0

āNpjDkj ,
N∑
j=0

āNpjD̂kj

∣∣∣∣∣∣
≤

∣∣∣Ỹt̄(t̄p, x̄k)− Yt̄(t̄p, x̄k)
∣∣∣

+

∣∣∣∣∣∣Yt̄(t̄p, x̄k)− ψ1

āNpk, b̄Npk, N∑
j=0

āNpjDkj ,
N∑
j=0

āNpjD̂kj

∣∣∣∣∣∣
= |η1(t̄p, x̄k)− Yt̄(t̄p, x̄k)|

+

∣∣∣∣∣ψ1 (Y (t̄p, x̄k), P (t̄p, x̄k), Yx̄(t̄p, x̄k), Yx̄x̄(t̄p, x̄k))

−ψ1

āNpk, b̄Npk, N∑
j=0

āNpjDkj ,
N∑
j=0

āNpjD̂kj

∣∣∣∣∣∣
≤ |η1(t̄p, x̄k)− Yt̄(t̄p, x̄k)|+M1

(∣∣Y (t̄p, x̄k)− āNpk
∣∣+ ∣∣P (t̄p, x̄k)− b̄Npk

∣∣)
≤ γ1

2N − 1
W (

1

2N − 1
) +M1

(
2γ1

2N − 1
W (

1

2N − 1
) +

2γ2
2N − 1

W (
1

2N − 1
)

)

=
γ1(2M1 + 1) + 2M1γ2

2N − 1
W (

1

2N − 1
), p, k = 1, . . . , N − 1, (39)

where M1 and M2 are Lipschitz constants of ψ1 and ψ2, respectively. More-
over, by a similar process, we obtain∣∣∣∣∣∣

N∑
i=0

bNikDpi − ψ2

āNpk, b̄Npk, N∑
j=0

b̄NpjDkj ,
N∑
j=0

b̄NpjD̂kj

∣∣∣∣∣∣ (40)

≤ γ2(2M2 + 1) + 2M2γ1
2N − 1

W (
1

2N − 1
), p, k = 1, . . . , N − 1.
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Further, for boundary conditions, we get∣∣∣Ỹ (−1, x̄k)− Y0(x̄k)
∣∣∣ ≤ ∣∣∣Ỹ (−1, x̄k)− Y (−1, x̄k)

∣∣∣+ |Y (−1, x̄k)− Y0(x̄k)|

≤ 2γ1
2N − 1

W (
1

2N − 1
), k = 0, 1, . . . , N. (41)

Also, for all p, k = 0, 1, . . . , N , we have∣∣∣P̃ (1, x̄k)∣∣∣ = ∣∣∣P̃ (1, x̄k)− P (1, x̄k)
∣∣∣ ≤ 2γ2

2N − 1
W (

1

2N − 1
), (42)∣∣∣Ỹ (t̄p,−1)

∣∣∣ = ∣∣∣Ỹ (t̄p,−1)− Y (t̄p,−1)
∣∣∣ ≤ 2γ1

2N − 1
W (

1

2N − 1
), (43)∣∣∣Ỹ (t̄p, 1)

∣∣∣ = ∣∣∣Ỹ (t̄p, 1)− Y (t̄p, 1)
∣∣∣ ≤ 2γ1

2N − 1
W (

1

2N − 1
), (44)∣∣∣P̃ (t̄p,−1)

∣∣∣ = ∣∣∣P̃ (t̄p,−1)− P (t̄p,−1)
∣∣∣ ≤ 2γ2

2N − 1
W (

1

2N − 1
), (45)∣∣∣P̃ (t̄p, 1)∣∣∣ = ∣∣∣P̃ (t̄p, 1)− P (t̄p, 1)

∣∣∣ ≤ 2γ2
2N − 1

W (
1

2N − 1
). (46)

Hence, if we select K such that

max{γ1(2M1 + 1) + 2M1γ2, γ2(2M2 + 1) + 2M2γ1, 2γ1, 2γ2} ≤
√
N,

for N ≥ K, then by (39)–(46), pair (ā, b̄)N satisfies system (30).

Now, we show that the sequence of solutions of problem (30) and sequence
of their interpolating polynomials converge to the solution of the problem
(14).

Theorem 4. Let {(ā, b̄)N = ((āNpk, b̄
N
pk); p, k = 0, 1, . . . , N}∞N=K be a se-

quence of solution of system (30) and let {(Y N (·, ·), PN (·, ·))}∞N=K be their
interpolating polynomials sequence defined by (16). Also, we assume that, for
any x̄ in [−1,−1], the sequence {(Y N (−1, x̄), PN (−1, x̄), Y N

t̄ (·, ·), PN
t̄ (·, ·))}∞N=K

has a subsequence {(Y Ni(−1, x̄), PNi(−1, x̄), Y Ni

t̄ (·, ·), PNi

t̄ (·, ·))}∞i=0 that uni-
formly converges to (ϕ∞1 (x̄), ϕ∞2 (x̄), λ1(·, ·), λ2(·, ·)) where λ1(·, ·), λ2(·, ·) ∈
C2(Ω̄), ϕ∞1 (·), ϕ∞2 (·) ∈ C2([−1, 1]) and limi→∞Ni

= ∞. Then the pair

(Ỹ (t̄, x̄), P̃ (t̄, x̄)) =
(
lim
i→∞

Y Ni(t̄, x̄), lim
i→∞

PNi(t̄, x̄)
)
, (47)

for (t̄, x̄) ∈ Ω̄, is a solution of system (14).

Proof. By attention to the assumptions, we have{
Ỹ (t̄, x̄) = ϕ∞1 (x̄) +

∫ t̄

−1
λ1(τ, x̄)dτ,

P̃ (t̄, x̄) = ϕ∞2 (x̄) +
∫ t̄

−1
λ2(τ, x̄)dτ.

(48)
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We first show that (Ỹ (t̄, x̄), P̃ (t̄, x̄)) for t̄ ∈ [−1, 1] and x̄ = xk, k = 0, 1, . . . , N
satisfy system (14). Assume that (Ỹ (·, x̄k), P̃ (·, x̄k)) for some k = 1, . . . , N−1
does not satisfy the first equation of (14). Then, there is a τ in (−1, 1) such
that

Ỹt̄(τ, x̄k)− ψ1

(
Ỹ (τ, x̄k), P̃ (τ, x̄k), Ỹx̄(τ, x̄k), Ỹx̄x̄(τ, x̄k)

)
̸= 0.

Since CGL nodes {t̄p}Np=0 when N → ∞ are dense in [−1, 1], there is a
sequence {t̄lNi

}∞i=1 such that 0 < lNi < Ni and limi→∞ t̄lNi
= τ . Thus

lim
i→∞

(
Ỹt̄(t̄lNi

, x̄k)− ψ1

(
Ỹ (t̄lNi

, x̄k), P̃ (t̄lNi
, x̄k), Ỹx̄(t̄lNi

, x̄k), Ỹx̄x̄(t̄lNi
, x̄k)

))
= Ỹt̄(τ, x̄k)−ψ1

(
Ỹ (τ, x̄k), P̃ (τ, x̄k), Ỹx̄(τ, x̄k), Ỹx̄x̄(τ, x̄k)

)
̸= 0. (49)

On the other hand, since limi→∞
√
Ni

2Ni−1W ( 1
2Ni−1 ) = 0, by (30), we obtain

lim
i→∞

(
Ỹt̄(t̄lNi

, x̄k)− ψ1

(
Ỹ (t̄lNi

, x̄k), P̃ (t̄lNi
, x̄k), Ỹx̄(t̄lNi

, x̄k), Ỹx̄x̄(t̄lNi
, x̄k)

))
= 0,

which is a contradiction to (49). Thus (Ỹ (t̄, x̄), P̃ (t̄, x̄)) (for all t̄ ∈ [−1, 1]
and x̄ = x̄k, k = 1, . . . , N − 1) satisfies the first equation of (14). By a
similar procedure, we can show that it satisfies the second equation. Also,
it can be easily proved that (Ỹ (·, x̄k), P̃ (·, x̄k)), for k = 0, 1, . . . , N , satisfies
the boundary conditions. For example we show that Ỹ (−1, x̄k) = Y0(x̄k) for
k = 0, 1, . . . , N . We have

0 ≤ |Ỹ (−1, x̄k)− Y0(x̄k)| = | lim
i→∞

Y Ni(−1, x̄k)− Y0(x̄k)|

= lim
i→∞

|Y Ni(−1, x̄k)− Y0(x̄k)| = lim
i→∞

|āNi

0k − Y0(x̄k)|

≤ lim
i→∞

√
Ni

2Ni − 1
W (

1

2Ni − 1
) = 0.

Hence Ỹ (−1, x̄k) = Y0(x̄k) for all k = 0, 1, . . . , N . Now, we know that
nodes {x̄k}Nk=0 when N → ∞, are dense in [−1, 1]. Therefore the pair

(Ỹ (·, ·), P̃ (·, ·)) defined by (47) is a solution for (14) on Ω̄ = [−1, 1] ×
[−1, 1].

6 Numerical examples

In the following examples, we use the Levenberg–Marquardt method (a quasi-
Newton method) for FSOLVE command in MATLAB software to solve alge-
braic system (20).
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Example 1. Consider problems (1)–(4), where T = 1, α = 1, ν = 0.01
and 0.05, y0 = sin(4πx), Φ(u) = u, and z(t, x) = 0. The approximate opti-
mal value of objective function computed by the CPS and LPS [20] methods
for ν = 0.01 and 0.05 and N = 10, 20, 30 and 40 are shown in Table 1.
We observe that our numerical results are better than the results of the LPS
method. In Figures 1 and 2, we show the obtained approximate optimal state
and control for ν = 0.05 and different values of N .
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(a) The approximate optimal state for N = 10 and ν = 0.05 (b) The approximate optimal state for N = 20 and ν = 0.05
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(c) The approximate optimal state for N = 30 and ν = 0.05 (d) The approximate optimal state for N = 40 and ν = 0.05

Figure 1: The approximate optimal state for Example 1
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(a) The approximate optimal control for N = 10 and ν = 0.05 (b) The approximate optimal control for N = 20 and ν = 0.05
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(c) The approximate optimal control for N = 30 and ν = 0.05 (d) The approximate optimal control for N = 40 and ν = 0.05

Figure 2: The approximate optimal control for Example 1

Table 1: Comparison of objective function values for Example 1

ν = 0.01 ν = 0.01 ν = 0.05 ν = 0.05
N Presented method LPS method [20] Presented method LPS method [20]
10 0.033014881174862 0.0828638100277 0.016911085761598 0.01590006952876
20 0.040440356851832 0.0620867108909 0.013730446517693 0.01519309308076
30 0.029728232559725 0.0466282421253 0.015082505388501 0.01519227846689
40 0.029005091596013 0.0463124455511 0.015073940981453 0.01519176630695

Example 2. Consider optimal control problem (1)–(4). Let T = 1, α = 0.05,
ν = 0.01, and z(t, x) = y0(x) where

y0(x) =

{
1, x ∈ (0, 12 ],

0 otherwise.
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is the initial condition and

Φ(u) =

{
u, u on (0, T )× ( 14 ,

3
4 ),

0, otherwise.

Table 2 shows the approximate optimal values of objective function for dif-
ferent values of N by the CPS method. In Figures 3 and 4, the optimal state
and optimal control are presented, respectively.
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(a) The approximate optimal state for N = 15 (b) The approximate optimal state for N = 20
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(c) The approximate optimal state for N = 30 (d) The approximate optimal state for N = 40

Figure 3: The approximate optimal state for Example 2
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(c) The approximate optimal control for N = 30 (d) The approximate optimal control for N = 40

Figure 4: The approximate optimal control for Example 2

Table 2: Approximate values of objective functional for Example 2

N JN
20 0.106416588965259
25 0.085739365971895
30 0.083129631634715

Example 3. Consider optimal control problem (1)–(4). Assume that T =
10, α = 1, Φ(u) = u, and z(t, x) = y0(x) where y0 is defined in Example 2.
We apply the CPS method to this problem. In Table 3, the values of cost
functional using CPS method for different values of N are listed. In Figures
5 and 6, the approximate optimal state and optimal control are illustrated,
respectively.
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Table 3: Approximate values of objective functional for Example 3

N JN
10 0.795502231705757
20 0.732649373291908
30 0.605003194783743
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(c) The approximate optimal state for N = 30 (d) The approximate optimal state for N = 40

Figure 5: The approximate optimal state for Example 3
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(a) The approximate optimal control for N = 10 (b) The approximate optimal control for N = 20
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(c) The approximate optimal control for N = 30 (d) The approximate optimal control for N = 40

Figure 6: The approximate optimal control for Example 3

Example 4. Consider the optimal control of Burgers’ equation (1)–(4) with
T = 10, α = 0.1, ν = 0.01, Φ(u) = u, and the desired state z(t, x) =
y0(x) where y0 = exp(−x) sin(2πx), x ∈ [0, 1]. The numerical results are
displayed in Table 4 for different values of N by using our method. In Figures
7 and 8, we show the approximate optimal state and control, respectively.

Table 4: Approximate values of objective functional for Example 4

N JN
20 0.121081851037199
30 0.116980721067958
40 0.115852005217238
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(a) The approximate optimal state for N = 10 (b) The approximate optimal state for N = 20
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(c) The approximate optimal state for N = 30 (d) The approximate optimal state for N = 40

Figure 7: The approximate optimal state for Example 4
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(a) The approximate optimal control for N = 10 (b) The approximate optimal control for N = 20
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(c) The approximate optimal control for N = 30 (d) The approximate optimal control for N = 40

Figure 8: The approximate optimal control for Example 4

7 Conclusions

In this paper, we proposed an efficient Chebyshev pseudo spectral method
to solve the optimal control problem governed by Burgers’ equation. By
applying this method, we discretized the optimality conditions and obtained
a system of algebraic equations. We achieved a good approximate optimal
solution with good accuracy. We analyzed the feasibility and convergence of
the presented method.
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