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1 Introduction

The cutting angle method is a powerful technique that can solve a wide range
of global optimization problems based on abstract convexity. This method
was proposed in 1999 as a method of global Lipschitz optimization and is
a deterministic global optimization technique that involves constructing a
sequence of lower approximations to an objective function [2]. In fact, this
method was developed as a generalization of the cutting plane method of
convex minimization. The original optimization problem is replaced by a
sequence of relaxed auxiliary problems that are based on the lower approx-
imations. Through this process, the sequence of global minimum solutions
of the relaxed problems eventually converges to the global minimum of the
original objective function. The articles [1, 3] discussed a method for globally
minimizing an increasing positively homogeneous function over the unit sim-
plex S = {x = (x1, . . . , xn) ∈ Rn

+ :
∑n

i=1 xi = 1}. They provided a thorough
examination of this method. In addition, Ferrer, Bagirov, and Beliakov [6]
employed the cutting angle method to solve the problem of minimizing the
difference of two convex functions.

A function f : Rn −→ R is classified as topical if it is increasing in the
natural partial ordering of Rn and plus-homogeneous, meaning that f(x +

λ1) = f(x) + λ for all x ∈ Rn and all λ ∈ R, where 1 denotes the vector
of the corresponding dimension with all components equal to one. Topical
functions have been studied in [7, 8, 10] and have found numerous applications
in different areas of applied mathematics, particularly in the modeling of
discrete event systems (see [7]).

Functions that are both increasing and plus-sub-homogeneous are referred
to as sub-topical functions, which are viewed as a natural extension of topical
functions [4]. The class of sub-topical functions is one of the most important
classes of abstract convex functions. In [8, 10], the authors showed that every
sub-topical function defined on Rn can be characterized as an abstract convex
function with respect to a set L that is called the set of elementary functions.
For each y ∈ Rn and each α ∈ R, the function φ(y,α) : Rn −→ R is defined
by

φ(y,α)(x) = sup{λ ∈ R : λ ≤ α, λ1 ≤ x+ y} for all x ∈ Rn,
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where
L = {φ(y,α) : y ∈ Rn, α ∈ R}.

It is worth noting that L is a more general class of functions than the class
of min-type functions [3, 9].

Here, we study the problem

min
x∈Sa

f(x),

where f : Rn −→ R is a sub-topical function and Sa is a simplex in Rn; that is,
Sa = {x = (x1, . . . , xn) ∈ Rn

+ :
∑n

i=1
xi

ai
= 1}, where a = (a1, . . . , an) ∈ Rn

++.
We developed a version of the cutting angle method to solve this problem.

The rest of this paper is organized as follows. Section 2 presents definitions
and preliminary results on sub-topical functions. In Section 3, a cutting angle
method is proposed for finding the global minimizers of sub-topical functions
over a simplex. Then, we present an approach to the numerical solution of
the subproblem of the algorithm. Finally, Section 4 presents the results of
numerical experiments.

2 Preliminaries

Let Rn
+ denote the cone of all n-vectors with nonnegative coordinates. We

assume that the usual order relation is defined in this cone as follows. For
x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn, x ≤ y if and only if xi ≤ yi

for all i. A function f : Rn −→ R̄ = [−∞,+∞] is said to be increasing if
f(x) ≤ f(y) for each x, y ∈ Rn such that x ≤ y. The function f is called plus
sub-homogeneous if f(x+λ1) ≤ f(x)+λ for all x ∈ Rn and all λ ≥ 0, where
1 = (1, . . . , 1) ∈ Rn. It is easy to see that f is plus sub-homogeneous if and
only if f(x + λ1) ≥ f(x) + λ for all x ∈ Rn and all λ ≤ 0. The definitions
and results that follow can be found in [9, 10].

Definition 1. A function f : Rn −→ R̄ is called sub-topical if it is increasing
and plus sub-homogeneous.
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Remark 1. A function f : Rn −→ R̄ is called topical if it is increasing and
f(x+λ1) = f(x)+λ for all x ∈ Rn and all λ ∈ R. It is clear that any topical
function is sub-topical.

Lemma 1 (see [10]). Let f : Rn −→ R̄ be a sub-topical function. The
following statements hold:

(i) If f(x) = +∞ for some x ∈ Rn, then f is identically equal to +∞.

(ii) If f(x) = −∞ for some x ∈ Rn, then f is identically equal to −∞.

Lemma 1 implies that a sub-topical function is either finite (i.e., finite-
valued at each x ∈ Rn) or identically +∞ or −∞. Therefore, in the remainder
of the paper, we only consider finite-valued sub-topical functions. Here are
some simple examples of finite-valued sub-topical functions.

Example 1. Any sub-linear function f : Rn −→ R such that f(1) ≤ 1 is plus
sub-homogeneous. So, an increasing and sub-linear function is sub-topical.

Example 2. Any function of the form

f(x) =
1

θ
ln

( n∑
i=1

e⟨ai,x⟩
)
, x ∈ Rn,

where ai ∈ Rn, ai ≥ 0, i = 1, 2, . . . , n, and θ ≥ max1≤i≤n⟨ai,1⟩, is sub-
topical. Indeed,

f(x+ λ1) = 1

θ
ln

( n∑
i=1

e⟨ai,x+λ1⟩)
=

1

θ
ln

( n∑
i=1

e⟨ai,x⟩eλ⟨ai,1⟩)
≤ 1

θ
ln

(
eλθ

n∑
i=1

e⟨ai,x⟩
)

=
1

θ

(
ln

(
eλθ

)
+ ln

( n∑
i=1

e⟨ai,x⟩
))

= λ+
1

θ
ln

( n∑
i=1

e⟨ai,x⟩
)

= λ+ f(x).
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The set ΓΓΓ of all sub-topical functions f : Rn −→ R̄ has several notable
properties, which we will mention below.

(1) We have ΓΓΓ + R = ΓΓΓ, that is, if f ∈ ΓΓΓ and γ ∈ R, then f + γ ∈ ΓΓΓ.

(2) ΓΓΓ is a convex set.

(3) Let fi ∈ ΓΓΓ for 1 ≤ i ≤ K, and let

f̂(x) = min
1≤i≤K

fi(x), f̃(x) = max
1≤i≤K

fi(x), (x ∈ Rn).

Then the functions f̂ and f̃ belong to ΓΓΓ.

(4) ΓΓΓ is a complete lattice, that is, if {fβ}β∈B is an arbitrary family of
elements of ΓΓΓ and

f(x) = sup
β∈B

fβ(x), (x ∈ Rn),

then the function f belongs to ΓΓΓ.

Remark 2. If f : Rn −→ R is a sub-topical function, then f is continuous on
Rn. Indeed, consider an arbitrary point x ∈ Rn and a sequence {xk} ⊆ Rn

that xk −→ x. Let ϵ > 0 be arbitrary. Then, there exists k0 ≥ 1 such
that x − ϵ1 ≤ xk ≤ x + ϵ1 for all k ≥ k0. Since f is increasing and plus
sub-homogeneous, it follows that

f(x)− ϵ ≤ f(x− ϵ1) ≤ f(xk) ≤ f(x+ ϵ1) ≤ f(x) + ϵ for all k ≥ k0.

This implies that f(xk) −→ f(x), which shows that f is continuous at x.

Now, we recall some definitions from abstract convexity (see for more details
[9, 12]). Consider a set X and a set H of functions h : X −→ R̄. The function
f : X −→ R̄ is called abstract convex with respect to H (or H-convex) if
there exists a subset U of H such that

f(x) = sup
h∈U

h(x), (x ∈ X).

The set H is called the set of elementary functions. Consider the function
φ : Rn × Rn × R −→ R defined by
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φ(x, y, α) = min
1≤i≤n

{α, xi + yi}, (x, y ∈ Rn, α ∈ R).

Let (y, α) ∈ Rn×R be arbitrary. Denote by φ(y,α) the function defined on Rn

by the formula φ(y,α)(x) = φ(x, y, α). Let Xφ = {φ(y,α) : y ∈ Rn, α ∈ R}.
Then it is known that any function f defined on Rn is sub-topical if and only
if f is Xφ-convex (see for more details [5, Theorem 3.2]).

Theorem 1. (see [5, Theorem 3.1]) The function f : Rn −→ R̄ is sub-topical
if and only if it satisfies the following inequality:

f(x) ≥ φ(y,α)(x) + f(−y + α1)− α for all x, y ∈ Rn for all α ∈ R. (1)

Inequality (1) implies the following statement.

Proposition 1. (see [5, Theorem 3.2]) Let f : Rn −→ R be a sub-topical
function and let x̄ ∈ Rn. Put ȳ = −x̄+f(x̄)1 and ᾱ = f(x̄). Then φ(ȳ,ᾱ)(x) ≤
f(x) for all x ∈ Rn and φ(ȳ,ᾱ)(x̄) = f(x̄).

Remark 3. Let x̄ ∈ Sa, ȳ = −x̄ + f(x̄)1 and let ᾱ = f(x̄). Define the
function φȳ as follows:

φȳ(x) = min
1≤i≤n

{xi + ȳi}, (x ∈ Sa). (2)

Then for each x ∈ Sa we have φ(ȳ,ᾱ)(x) = φȳ(x). Indeed, since x̄, x ∈ Sa,

we get
∑n

i=1
xi−x̄i

ai
= 0. This implies that there exists 1 ≤ i0 ≤ n such that

xi0 − x̄i0 ≤ 0. Therefore

xi0 + ȳi0 = xi0 − x̄i0 + f(x̄) ≤ f(x̄) = ᾱ.

Hence, min1≤i≤n{ᾱ, xi + ȳi} = min1≤i≤n{xi + ȳi}.

3 Cutting angle method

We now present the cutting angle method for finding a global minimizer of
the problem

min
x∈Sa

f(x), (3)

where f : Rn −→ R is a sub-topical function and Sa = {x = (x1, . . . , xn) ∈
Rn

+ :
∑n

i=1
xi

ai
= 1}, where a = (a1, . . . , an) ∈ Rn

++. The ith unit vector is
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denoted by ei = (0, . . . , 0, 1, 0, . . . , 0). It is worth noting that, if xi = aiei,

yi = −xi + f(xi)1 and αi = f(xi), then φ(yi,αi)(x) = φyi(x) = xi + yii =

xi + f(xi)− ai for all x = (x1, . . . , xn) ∈ Sa.

Algorithm 2:
Step 0: (initialization)

a) Take points xi = aiei for i = 1, . . . , n, and for each 1 ≤ i ≤ n,

construct the points yi = −xi + f(xi)1.

b) Define the function hn(x) = max1≤i≤n φyi(x) = max1≤i≤n(xi + yii)

for all x = (x1, . . . , xn) ∈ Sa.

c) Set k := n.

Step 1: Solve the following subproblem:

min
x∈Sa

hk(x). (4)

Step 2: Let y∗ be an optimal solution of Problem (4). Set k := k + 1 and
xk = y∗.

Step 3: Compute yk = −xk + f(xk)1. Define the function

hk(x) = max(hk−1(x), φyk(x)) = max
1≤j≤k

min
1≤i≤n

(xi + yji )

for all x = (x1, . . . , xn) ∈ Sa. Go to Step 1.

In Algorithm 2, the function hn is the first lower approximation of the
objective function f over Sa (note that the objective function f is from Rn to
R). This algorithm produces the sequence {hk}k≥n of lower approximations
of f such that

hk(x) ≤ hk+1(x) for all k ≥ n for all x ∈ Sa.

Note that Proposition 1 implies that hk(x) ≤ f(x) for all x ∈ Sa and all
k ≥ n.

Algorithm 2 is indeed a version of the cutting angle method, which is
a powerful technique for global optimization of sub-topical functions over a
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simplex. By a number of iterations of this algorithm, it produces xk as an
approximation of the global minimizer of f over Sa.

Let λk = minx∈Sa
hk(x), and let f(x∗) = minx∈Sa

f(x). It is clear that
λk ≤ f(x∗) for all k ≥ n.

Lemma 2. In Algorithm 2, let k ≥ n. Then yii ≤ yki for all 1 ≤ i ≤ n.

Proof. By Proposition 1 we have φyi(xk) ≤ f(xk) for all 1 ≤ i ≤ n. So

xk
i + f(xi)− ai = xk

i + yii ≤ f(xk), i = 1, . . . , n.

This implies that yii ≤ yki for all 1 ≤ i ≤ n.

Proposition 2. In Algorithm 2, let k ≥ n+1. If yjj = ykj for some 1 ≤ j ≤ n,
then xk is a global minimizer of the Problem (3).

Proof. We have

λk−1 = hk−1(x
k)

= max
1≤i≤k−1

φyi(xk)

≥ φyj (xk)

= yjj + xk
j

= ykj + xk
j

≥ φyk(xk)

= f(xk)

≥ f(x∗)

≥ λk−1.

Hence λk−1 = f(xk) = f(x∗). This completes the proof.

Proposition 3. In Algorithm 2, let k ≥ n+ 2. If yk ≤ yj for some n+ 1 ≤
j ≤ k − 1, then xk is a global minimizer of the Problem (3).

Proof. We have λk−1 = hk−1(x
k) ≥ φyj (xk) ≥ φyk(xk) = f(xk) ≥ f(x∗) ≥

λk−1. Therefore λk−1 = f(xk) = f(x∗), and so xk is a global minimizer of
the function f over Sa.
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If Algorithm 2 does not terminate after a finite iteration, then we show
that the sequence {xk} generated by it converges to a global minimizer of
the sub-topical function f on Sa. To this end, we first state and prove some
results. Note that the sequence of functions {fk}k≥1, defined on the set
X ⊆ Rn, is called equicontinuous on X if for every ϵ > 0 there exists δ > 0

such that |fk(x)− fk(t)| < ϵ whenever ∥x− t∥ < δ, x ∈ X, t ∈ X, and k ≥ 1.

Lemma 3. The sequence {φyk}k≥1 generated by Algorithm 2 is equicontin-
uous on Sa.

Proof. Let ϵ > 0 be given and let k ≥ 1. Put δ = ϵ, and let x = (x1, . . . , xn),

t = (t1, . . . , tn) ∈ Sa such that ∥x− t∥ < δ. Therefore

|xi − ti| < ϵ, i = 1, . . . , n. (5)

Now, assume that min1≤i≤n(xi − xk
i ) = xik − xk

ik
and min1≤i≤n(ti − xk

i ) =

ti′k − xk
i′k

for some ik, i′k ∈ {1, . . . , n}. We conclude that

xik − tik ≤ φyk(x)− φyk(t) ≤ xi′k
− ti′k .

It follows from (5) that |φyk(x) − φyk(t)| < ϵ. Hence the sequence {φyk} is
equicontinuous on Sa.

Lemma 4. The sequence {hk}k≥n generated by Algorithm 2 is equicontin-
uous on Sa.

Proof. Let ϵ > 0 be given. Put δ = ϵ, and let x = (x1, . . . , xn), t =

(t1, . . . , tn) ∈ Sa such that ∥x− t∥ < δ. By Lemma 3, we have

|φyk(x)− φyk(t)| < ϵ, k = 1, 2, . . . . (6)

Let k ≥ n. Now, assume that hk(x) = max1≤i≤k φyi(x) = φyi0 (x) and
hk(t) = max1≤i≤k φyi(t) = φyi1 (t) for some i0, i1 ∈ {1, . . . , k}. We conclude
that

φyi1 (x)− φyi1 (t) ≤ hk(x)− hk(t) = φyi0 (x)− φyi1 (t) ≤ φyi0 (x)− φyi0 (t).

It follows from (6) that |hk(x) − hk(t)| < ϵ. Hence the sequence {hk}k≥n is
equicontinuous on Sa.
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Remark 4. By the definition of the function hk, we conclude that the se-
quence {hk} in Algorithm 2 is also uniformly bounded on Sa. Indeed, we have
that the sequence {hk} is increasing and hk(x) ≤ f(x) for all x ∈ Sa and all
k ≥ n. On the other hand, any sub-topical function is continuous and Sa is a
compact set. So we get that the sequence {hk} is uniformly bounded on Sa.

Proposition 4. Let {xk} be the generated sequence by Algorithm 2 and let
x∗ be a limit point of this sequence. Then x∗ is a global minimum point of
the function φ(x) = supk≥n hk(x) over Sa.

Proof. Without loss of generality, assume that xk −→ x∗. Put λk =

hk(x
k+1). We have that the sequence {λk} is an increasing sequence and

λk ≤ φ(x) for all x ∈ Sa. Thus

lim
k−→∞

λk ≤ inf
x∈Sa

φ(x) ≤ φ(x∗). (7)

Now, we show that limk−→∞ λk = φ(x∗). Let ϵ > 0 be given. Since {hk} is
equicontinuous on Sa and xk −→ x∗, there exists N1 > 0 such that for each
m ≥ N1 we have

|hk(x
m)− hk(x

∗)| < ϵ

2
for all k ≥ n. (8)

On the other hand, It is clear that hk(x
∗) −→ φ(x∗). So there exists N2 > n

such that
|hk(x

∗)− φ(x∗)| < ϵ

2
for all k ≥ N2. (9)

Let N = max{N1, N2}. It follows from (8) and (9) that

|λk − φ(x∗)| ≤ |λk − hk(x
∗)|+ |hk(x

∗)− φ(x∗)| < ϵ

2
+

ϵ

2
= ϵ

for all k ≥ N. This implies that limk−→∞ λk = φ(x∗), and by (7) we conclude
that φ(x∗) = infx∈Sa

φ(x). This completes the proof.

We will now demonstrate the convergence of Algorithm 2.

Theorem 2. Let {xk} be the generated sequence by Algorithm 2 and let x∗

be a limit point of this sequence. Then x∗ is a global optimal solution of the
Problem (3).
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Proof. Since {hk} is uniformly bounded and equicontinuous on the compact
set Sa, then by [11, Theorem 7.25], this sequence has a subsequence that
is uniformly convergent on Sa. On the other hand, the sequence {hk} is
increasing, so {hk} converges uniformly to φ(x) = supk≥n hk(x) on Sa. It
is clear that φ(x) ≤ f(x) for all x ∈ Sa and φ(xk) = f(xk) for all k ≥ n

(indeed, by Proposition 1, for each k ≥ n, we have φyk(xk) = f(xk) and thus
hk(x

k) = f(xk) and φ(xk) = f(xk)). Now, let x∗ ∈ Sa be a limit point of the
sequence {xk} (the simplex Sa is a compact set, so {xk} has always a limit
point x∗ ∈ Sa). We have φ(x)− φ(xk) ≤ f(x)− f(xk) for all x ∈ Sa and all
k ≥ n. This implies that

φ(x)− φ(x∗) ≤ f(x)− f(x∗) for all x ∈ Sa. (10)

By Proposition 4, x∗ is a minimizer of φ over Sa. So φ(x) − φ(x∗) ≥ 0 for
all x ∈ Sa. Therefore, by (10), we conclude that f(x) − f(x∗) ≥ 0 for all
x ∈ Sa. Hence x∗ is a global minimizer of the function f over the set Sa.
This completes the proof.

Step 1 of Algorithm 2 involves finding the global minimum of the function
hk on the set Sa, which is the most challenging part of the algorithm. The
problem in Step 1 can be formulated as follows:

min hk(x)

subject to x ∈ Sa,
(11)

where
hk(x) = max

1≤j≤k
min

1≤i≤n
(xi + yji ),

k ≥ n, x = (x1, . . . , xn) ∈ Sa, and yj = −xj + f(xj)1.
We will now discuss an approach for solving the subproblem. We demon-
strate that Problem (11) can be transformed into a mixed integer linear
programming problem with 0 − 1 variables. This technique is widely used
and involves the introduction of a large positive parameter M . If we set
t = max1≤j≤k min1≤i≤n(xi + yji ), then it is clear that Problem (11) is equiv-
alent to the following problem:

Iran. J. Numer. Anal. Optim., Vol. 14, No. 1, 2024, pp 200–218
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min z = t

subject to min1≤i≤n(xi + yji ) ≤ t, 1 ≤ j ≤ k,

x ∈ Sa.

(12)

Each constraint min1≤i≤n(xi + yji ) ≤ t can be expressed as a set of n + 1

linear constraints of the following form

xi + yji −Muj
i ≤ t, 1 ≤ i ≤ n,

n∑
i=1

uj
i ≤ n− 1,

where uj
i ∈ {0, 1} for all i, j.

Hence, we conclude that Problem (12) is equivalent to the following mixed
integer linear programming problem:

min z = t

subject to xi − t−Muj
i ≤ −yji , 1 ≤ i ≤ n, 1 ≤ j ≤ k,∑n

i=1 u
j
i ≤ n− 1, 1 ≤ j ≤ k,∑n

i=1
xi

ai
= 1,

xi ≥ 0, uj
i ∈ {0, 1}, 1 ≤ i ≤ n, 1 ≤ j ≤ k.

(13)

Despite the fact that this technique increases the number of constraints and
variables with each iteration, it also has the advantage of allowing the use
of software packages designed for solving mixed integer linear programming
problems, such as MATLAB, LINGO, and so on, to solve the subproblem.

Remark 5. There is a natural question that, in Problem (13), how big should
M be. Let |f(x)| ≤ C for all x ∈ Sa, and let A = max1≤i≤n(ai). Then it is
clear that |xi + yji | ≤ A+C for all i and j. This implies that, it is enough to
assume that M ≥ 2A+ 2C.

At the end of this section, we present the complete version of the cutting
angle method for finding the global optimal solution of Problem (3).

Iran. J. Numer. Anal. Optim., Vol. 14, No. 1, 2024, pp 200–218



Daryaei and Yaghoobi 212

Algorithm 3: Cutting angle method
Initialization:
Set xi = aiei for i = 1, . . . , n, and for each 1 ≤ i ≤ n, compute the points
yi = −xi + f(xi)1. Find the optimal solution y∗ of Problem (13)
according to k = n. Set k := n+ 1 and F := ∅.

Iteration k − n:

1) Set xk = y∗, F := F ∪ {f(xk)} and compute the point
yk = −xk + f(xk)1.

i) Let f(x̂k) = minF .

ii) If there exists 1 ≤ j ≤ n such that yjj = ykj , then terminate the
algorithm; xk is a global optimal solution of Problem (3).

iii) For k ≥ n+ 2, if there exists n+ 1 ≤ j ≤ k − 1 such that
yk ≤ yj , then terminate the algorithm; xk is a global optimal
solution of Problem (3).

2) Find the optimal solution y∗ of Problem (13). Set k := k + 1 and go
to iteration k − n.

Remark 6. It is clear that, if Algorithm 3 does not terminate after a fi-
nite iteration, then the sequence {x̂k} tends to a global optimal solution of
Problem (3).

4 Numerical results

In this section, we will provide three numerical examples to evaluate the
effectiveness of the proposed cutting angle method. We have implemented
the method using MATLAB and carried out the computations on a personal
computer with the following specifications: Microprocessor: Intel® Core™
i5-7200U (2.5 GHz, up to 3.1 GHz, 3 MB cache, 2 cores); Memory: 8 GB
DDR4-2133.

In each of the examples, we have selected an objective function that is
sub-topical. We have then summarized the numerical results in tables, which
allow us to easily evaluate the performance of the algorithm.
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Example 3. Consider
min f(x1, x2)

s.t. x1 + x2 = 1,

x1, x2 ≥ 0,

(14)

where
f(x1, x2) =

1

5
ln(e3x1 + e5x2).

The graph of the objective function f and functions hi (i = 2, 3, 4, 5) over
the unit simplex S1 = {(x1, x2) : x1 + x2 = 1, x1, x2 ≥ 0} are shown in
Figure 1. The optimal solution and the optimal value of Problem (14) are
x∗ = (0.688853, 0.311147) and f∗ = 0.507312, respectively.

Figure 1: Graph of the objective function f of Problem (14) and the functions hi (i =
2, 3, 4, 5) over the unit simplex S1 = {(x1, x2) : x1 + x2 = 1, x1, x2 ≥ 0}.
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Table 1: Obtained results by the cutting angle method for Example 3

Iter Optimal point found x̂k Optimal value found f(x̂k) Time (sec)
1 (0.695813, 0.304187) 0.507385 0.01

13 (0.685517, 0.314483) 0.507329 0.19

20 (0.690637, 0.309363) 0.507317 0.34

34 (0.688083, 0.311917) 0.507314 0.73

64 (0.688721, 0.311279) 0.507312 2.71

Example 4. Consider

min f(x1, x2, x3)

s.t. x1 +
1
2x2 +

1
3x3 = 1,

x1, x2, x3 ≥ 0,

(15)

where

f(x1, x2, x3) = 0.1max{0.2x1 + 0.3x2 + 0.5x3, 0.1x1 + 0.7x2 + 0.1x3,

0.4x1 + 0.38x2 + 0.2x3}+ 0.025 ln(e9x1 + e5x2 + e12x3).

Note that the function f is not differentiable on the simplex Sa = {(x1, x2, x3) :

x1 +
1
2x2 +

1
3x3 = 1, x1, x2, x3 ≥ 0}. The graph of the objective function f

over the simplex Sa is shown in Figure 2. The optimal solution and the opti-
mal value of Problem (15) are x∗ = (0.5658, 0.6699, 0.2978) and f∗ = 0.1911,
respectively.

Table 2: Obtained results by the cutting angle method for Example 4

Iter Optimal point found x̂k Optimal value found f(x̂k) Time (sec)
1 (0.0859, 0.9609, 1.3009) 0.4859 0.02

2 (0.2923, 1.1673, 0.3723) 0.2407 0.04

4 (0.4787, 0.6702, 0.5587) 0.2282 0.11

5 (0.5668, 0.7583, 0.1623) 0.1947 0.15

27 (0.5604, 0.6496, 0.3444) 0.1919 4.86

33 (0.5796, 0.6689, 0.25784) 0.1916 7.64
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Figure 2: Graph of the objective function f of Problem (15) over the simplex Sa =

{(x1, x2, x3) : x1 + 1
2
x2 + 1

3
x3 = 1, x1, x2, x3 ≥ 0}.

Now, we present an example that the global optimal solution is a bound-
ary point of the feasible set of the problem.

Example 5. Consider

min f(x1, x2, x3)

s.t. x1 + x2 + x3 = 1,

x1, x2, x3 ≥ 0,

(16)

where

f(x1, x2, x3) = 0.1max{0.2x1 + 0.3x2 + 0.5x3, 0.1x1 + 0.7x2 + 0.1x3}

+ 0.4min{0.2x1 + 0.3x2 + 0.5x3, 0.1x1 + 0.7x2 + 0.1x3}

+
1

60
ln(e9x1 + e5x2 + e12x3).

The graph of the objective function f over the simplex Sa is shown in Figure
3. The optimal solution and the optimal value of Problem (16) are x∗ =

(0.6025, 0, 0.3975) and f∗ = 0.1693, respectively (note that x∗ is a boundary
point of the simplex Sa).
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Table 3: Obtained results by the cutting angle method for Example 5

Iter Optimal point found x̂k Optimal value found f(x̂k) Time (sec)
1 (0.3812, 0.3176, 0.3012) 0.2199 0.03

3 (0.6923, 0, 0.3077) 0.1744 0.18

22 (0.6136, 0, 0.3864) 0.1694 3.95

Figure 3: Graph of the objective function f of Problem (16) over the simplex S1 =

{(x1, x2, x3) : x1 + x2 + x3 = 1, x1, x2, x3 ≥ 0}.

5 Conclusion

This paper has proposed the cutting angle method as a means of finding the
global minimum solution of a sub-topical function over a simplex. The algo-
rithm utilized the abstract convexity of sub-topical functions to estimate the
optimal value by solving mixed integer linear programming problems. The
efficiency of this method has been demonstrated through numerical experi-
ments.

Overall, the proposed cutting angle method provided a promising ap-
proach for solving sub-topical optimization problems with a simplex con-
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straint. Future research can explore the extension of this algorithm to handle
more complex sub-topical optimization problems with additional constraints.
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