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Application of modified hat functions
for solving nonlinear quadratic integral
equations

F. Mirzaee® and E. Hadadiyan

Abstract

A numerical method to solve nonlinear quadratic integral equations (QIE)
is presented in this work. The method is based upon modification of hat func-
tions (MHFSs) and their operational matrices. By using this approach and
the collocation points, solving the nonlinear QIE reduces to solve a nonlin-
ear system of algebraic equations. The proposed method does not need any
integration for obtaining the constant coefficients. Hence, it can be applied
in a simple and fast technique. Convergence analysis and associated theo-
rems are considered. Some numerical examples illustrate the accuracy and
computational efficiency of the proposed method.

Keywords: Modification of hat functions; Nonlinear quadratic integral
equation; Vector forms; Operational matrix; Error analysis.

1 Introduction

Over the last years, the integral equations have been used increasingly in
different areas of applied science. This tendency could be explained by the
deduction of knowledge models which describe real physical phenomena. For
details, we refer to [1, 2, 4-9, 12-18, 23, 25, 26]. In particular, quadratic
integral equations (QIEs) have many useful applications in the real world.
For example, QIEs are often applicable in the theory of radiative transfer,
the kinetic theory of gases, the theory of neutron transport, the queuing
theory and the traffic theory. The QIEs can be very often encountered in
many applications. The quadratic integral equations have been studied in
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several papers and monographs [1, 2, 4-26, 29, 30]. In this paper, we study
the numerical solution of a QIE:

@) =ate)+ ([ mtetito siay) ([ kaletato sy )
(1)
where x € D = [0,1], g(z) € C3(D), Ui(z, f(x)),Uz(z, f(x)) € C3(D x R)
and ki(z,y), ka(z,y) € C3(D x D) are known functions, f(z) € C3(D) is
an unknown function and we will obtain the approximate solution in the
truncated MHFs series form

so that f;; ¢ = 0,1,...,m, are the unknown MHFs coefficients and h;(x);
1=0,1,...,m, are the MHF's.

To mention some recent works on QIEs, see e.g., [1,8,12,14,15,25,26] and
for some applications we refer readers to [18,23]. Existence, uniqueness and
some other properties of the solution to these problems were established in
[33]. It should be recalled that nonlinear QIEs have been treated extensively
with the measure of noncompactness and a fixed point theorem of Darbo
type. This approach seems to be too restrictive. Furthermore, in most of the
above investigations, some additional assumptions in terms of the measure
of noncompactness were imposed on g(z).

The plan for this paper is as follows: In Section 2, we describe MHFs
and their properties. In Section 3, we will apply these sets of MHFs for
approximating the solution of QIEs. In Section 4, theorems are proved for
convergence analysis. Numerical results are given in Section 5 to illustrate
the efficiency and the accuracy of our algorithms. Finally, Section 6 concludes
the paper.

2 Modification of hat functions

The purpose of this section is to collect a number of definitions and lemmas
concerning MHF's. we first construct the set of MHF's.

An (m + 1)-set of MHF's consists of (m + 1) functions which are defined
over district D as follows [3,29]

sz (z — h)(z — 2h) 0 <z < 2h,
ho(z) =

0 otherwise,

ifiisoddand 1 <i<m —1,
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) @ —(i—Dh)(x—(i+1)h) (i—Dh <z < (i+1)h,
U 0 otherwise,

if7iseven and 2 <i < m — 2,
o=z — (i = Dh)(z — (i —2)h) (i —2)h < z < ih,
hi(z) = { 5hs(z — (i + 1)R)(x — (i +2)h) ih <2 < (i +2)h,

0 otherwise,

sz(@—(1—h))(@—(1-2h)) 1-2n<z <],
0 otherwise,
where m > 2 is an even integer and h = % It is obvious that
1i=j,
hi(jh) = (2)

0 i#j,

0 ¢iseven and |[i — j| > 3,

0 iisodd and |i — j| > 2,

and

Let us write the MHF's vector H(z) as follows

H(z) = [ho(z), hi(2), ..., hp(z)]; z € D. (4)
An arbitrary function f(z) defined over D can be expanded by the MHFs
as
f(z)~ FTH(z) = H' (x)F,
where
F - [f07f17 .. '7fm]T7
and

fi = f(ih); i=0,1,...,m.

Similarly an arbitrary function of two variables, k(z,y) on district D x D
may be approximated with respect to MHF's such as
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k(z,y) =~ HT (2)KH(y),

where H(z) and H(y) are MHFs vector of dimension (m + 1) and K is the
(m+1) x (m+ 1) MHFs coefficients matrix.

According to (2) and expanding fom hi(y)dy, i = 0,1,...,m by MHFs,
integration of vector H(z) defined in (4) can be expressed as

Awawy:PH@x (5)

where P is the (m + 1) x (m + 1) matrix as follows

05 44 444...44
0 8 16 16 16 16 16 ... 16 16
0-14 9 8 88...8 8

p |00 8 16161616... 16 16

P=31000-1498..838
000000O..816
0000000..-14

By considering (2), (3) and expanding entries of H(z)H” (z) by MHFs,
we obtain
H(@)HT (z) =~ diag(H (x)),
so we have B
H(z)H" (v)F ~ FH(x), (6)

where F be an (m+1)-vector and F is an (m+1) x (m+1) diagonal matrix.
Also, if Ais an (m + 1) x (m + 1)-matrix, we have

HT(2)AH(z) ~ HT () A, (7)

where A is an (m + 1)-vector with elements equal to the diagonal entries of
matrix A.

3 Basic idea

In this section, we will provide the basic idea. This idea includes of
approximating the solution of nonlinear quadratic integral equations (1). To
solve this equation, we first consider the approximations
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wy (z) = Uy (z, f(x))
=U; (l’ g(z (fo k1 (z, y)wi(y dy) (fom kQ(z’y)MQ(y)dy))’
wo(x) = Us(z, f(x))

= Uy (1: g(z (fo k1 (z,y)wi(y dy) (foz kz(z,y)wg(y)dy)) .

(8)

We approximate function wy (z), we(x), k1 (z,y) and ko(z,y) by MHFs,
wi(z) ~ WifH(z) = HT (x)Wr,
wo(z) ~ WL H(z) = HT (2)Ws,

ki(x,y) ~ H" (¢)K1H (y) = H” (y) K1 H (z),

ko(z,y) =~ H" (v)K2H (y) = H" (y) K2" H(z),

where Wi, Ws, K1 and K2 are MHFs coefficients of wq(x),ws(x), ki (x,y)
and ko (z,y), respectively. Substituting (9) in (8), we get

HT (2)W; ~ Ul(:v g(a (fo HT (z)K1H (y)H T(y)Wldy)
< ( Sy HY () K2H () H (5)Wady) ),
HT ()W ~ U2<:vg (fo HT (x)K1H(y)H T(y)Wldy)
(fo HT (z)K2H (y) T(y)w2dy)).
Using (5) and (6), yields
HT (@)W1 = Uy (w,9(w) + (HT (@) K\W, PH(2) ) (H () K2W2PH(x)) )
HT ()W, = Us (i, g(x) + (HT (&) KWW, PH(2) ) (HT (2) K22 PH () ) )

where W; = diag(W;), i = 1,2, are an (m + 1) x (m + 1) diagonal matrices.
From (7), we have

o= (x’g(‘”) " <H T<$>K1/VVTP) (HT(;U)K?VZP)) 7
= <x’g(m) i (H (@) KU P > <HT(@£W§P>> | "
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where KiVA[éP, i = 1,2, be an (m + 1)-vector with elements equal to the

diagonal entries of matrix Kif/lvfiP. We can rewrite Kif/r/iP, i = 1,2, as
follows

—

KiW,P = AiW;, i=1,2, (11)
where
Aipg = KipgPyp, p,g=0,1,...,m

Substituting (11) into (10) and replacing ~ by =, we obtain
HT ()W = Uy (z,9(z) + HT (2) AW, HT (2) A2W5) |
HT(.T)WQ = U2 (x,g(:lc) + HT(m)AlleT(LU)A2W2) .

Now, using Newton-Cotes nodes as

2i—1
2(m+1)’

T =

1=12,....m+1,

then
HT(Z‘i)Wl =U; (J:Z-,g(xi) + HT(.IZ')AIWlHT<.’Ei)A2W2> R
HT(JTZ‘)WQ = U2 (J}i,g(l‘i> + HT(xi)AlleT(xi)AQVVg) .

We have a system of (m+1)? nonlinear equations and (m+1)? unknowns.
After solving the above nonlinear system, we can find W; and W5 and then

f(x) =~ f(z) = g(x) + H () AAWL H” (2) A2W5.

4 Convergence analysis

In this section, for confirming the accuracy of the proposed scheme in
the previous section analytically, we provide an upper bound for difference
between the exact solution of (1) and our approximated solution. We show
that the MHFs method, is convergent of order O(h?®). We define

|lgll = sup [g(z)].
xeD

€ C3(D )andgm( ) be
Yito 9(xi)hi(x). Also,

Theorem 1. Suppose z; =ih, i =0,1,. ( )
the MHFs expansions of g(x) that deﬁned as gm( =
assume that e, = ||g — gm|| where x € D, then

em = O(Rh®).
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Proof. According to definition of MHFs, the g,,(x) is the quadratic poly-
nomial interpolation on [z;_g,2;). Therefore, for the interpolation error on
[€i—2,x;), we have [31]

1d(&) 1
() = 9(0) — gn(r) = LIS T o)y i=2.4m,
i =i—2

%

where z,& € [x;_2,%;). Let v(z) =[], _, o(x —xy), so

1 By(e;
”ei,mH == sup g(§ ) ’U(Cﬂ) ) v = 2a47 , M,
6 TE[Ti—2,x;) dz
" Pg(&)
1 9\Si
||ei7m|| < 6 dr3 ‘ ( )| ) 2343 ,m
zE€[Ti—2,x;) X
On the other hand, we have
em = sup |g(z) — gm(x)| = max sup  |g(x) — gm ()]

zeD i=2,4,...,m

=24,...,
So 8
1 .
em < =  max sup g(?) lv(x)] .
6 i=24,..;m pep, ya,)| AT

and the maximum value

H§/:i72($ - a:i/)

of H;Zi_z(x - xi/)‘ is obtained at z = (i — 1 — @)h, we have

Since |v(z)| < SUPze(z;_g,a,)

2v/3h3
lv(z)] < 9

, Vo € [x;-2,2;).

Therefore, it is not difficult to verify that

n < | 221 = O (12)
So
em = O(h3).
This completes the proof. O

Theorem 2. Let x; = y; = ih, i =0,1,...,m, k(z,y) € C3(D x D) and
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m m
ko (2,9) = Y Y k(@i y;)ha(x)hy (),
i=0 j=0
be the MHF's expansions of k(x,y). Then
em = O(h?),

where ey, = ||k — k|| and (x,y) € D x D.

Proof. ky,(z,y) is the quadratic polynomial interpolation of k(z,y) on ;; =
[i—1,2;) X [yj—1,Yy;). Therefore for the interpolation error on €2;;,
[27]

we have

eij,m(xvy) = k(may) - km(m,y)

ZEM H (x—xif)+lw H (y— ;)

6 O0a® 21 6 0y’ i
1 0%(E,m}) + !
"5 ooy M e 1 0=w),

where i,j = 2,4,...,m, ©,§,§ € [xi—1,2;) and y,1;,1; € [y;-1,y;). So we
have

1 k(& y) Pk(x,m;) 1 9%(&}, )
||61.7 m” - 6 ($72;161:)QLJ O3 'U(.’E) + ay3 ’U,(y) 6 axgay ’U(CL’)U(y) )
or
1 k(& y 3k(x,n;)
el <5 sup 3 |ZHED ooy | ZHERD 1)
! 6 (@), a9y’
1| 8%k(&],n))

6 Ox30y3

|v(z)] IU(y)I} 7

where i, j = 2,4,...,m, v(z) = HZ,:i,Q(x—xi/) and u(y) = H‘;/:j72(y_yj/).
On the other hand, we have

Em = sup |k(957y) - km(ﬂﬁ,yﬂ
(z,y)eDxD
= max sup |k(z,y) —km(z,y)| = max |lejm]-
1,7=2,4,.. ST (3 )€ i,j=2,4,...,m
So
1 Ok( .
en<g sy {[ZHED ) [ZHE )
6 1,j=2,4,... m(w,y)EQ” 8
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67.(¢1 o
| a2 o )} -
We know,
lv(z)| < 2\/9§h3, Vo € [z;-9,2;),
and s
ol < 28 vy e o).
Therefore, it is not difficult to verify that
n < g TR+ SR+ a T = o, )
S0
em = O(h®).
This completes the proof. O

Let fm(x), gm(x), kim(x,y) and U; p (2, f(x)), for ¢ = 1,2, are the MHF's
expansions of f(z), g(x), ki(z,y) and U;(x, f(z)), respectively. According to
Theorems 1, 2 and expression (1), we have

fm(z) + O(hs) = gm(z) + O(hB)
([ (o) + O02) (U o o) + OU) + 00%)) )
0

x ( / " (oo, 9) + OU™) (Unon (3, Fn () + O(H) + O(h*)) dy) ,

where x € D. By ignoring the terms included O(h?), we have

fn(2) = gon() + ( [ btz Vin fm(y))dy)

x ( I kz,mu,y)Uz,m(y,fm<y>>dy) | (14)

where x € D. Now, assume the following hypotheses:
(M1) Suppose that the error of MHFs is denoted by

Em = f = fmll-

(M2) || f] < M.
(M3) The nonlinear term U; (z,y) and Us(x,y) satisfies in the Lipschitz
and linear growth condition such that

|Ur(x,31) — Ur(z,y2)| + |Uz(x, 1) — Uz(2,y2)| < Llyr — 2| ,
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where (z,y1), (z,y2) € D x R | and

|Ur(@,y)| + [U2(z,9)] < L1+ y]), (z,y) € DxR.

(M4) Let
k1l < My,
and
([ k2| < M.
(M5) Let
erm = |[k1 — k1ml| < C1R?,
and

€2,m = ||k2 - kQ,mH < Céh37

where C1 and C4 are constants that can be defined as coefficient C' in (13).
(M6) Let 2L(C4h® + Ma)(My + C{h3)(L(1 + M) + C1h%) < 1,
where
UL = Upmll < C1h%,

and C is constant that can be defined as coefficient C' in (12).

Theorem 3. Suppose f(x) and f,,(x) be the exact and approximate solutions
of (1) respectively. Also, above assumptions of (M1)-(M6) are satisfied, then
we have

E,, = O(h®).

Proof. Assume that w; ,, () and w;(x) be the approximate and exact solution
of (8). we define

wl,m(x) = Ul,m<x’fm(x))7 wQ,m(x) = U2,m(x’fm(x)) )

and
W1,m () = Ur (2, fru(2)), W2,m(z) = Us(x, frm (7)) -

According to (1) and (14), we have
f(.%‘) - fm(x) = g(m) - gm($>
([ mt ot sna) ([ ket st sway

_ (/0m kv m (2, y)wi,m (y, fm(y))dy> (/OZ oz (2, Y) w2, m (¥, f’”(y))dy>

+ O(h?),

Therefore,
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F (@)= fn() = g(x)gm<x>+( / "y (3, f(y))dy)

([ eyt sy = ([ kant st £t |

i (/0”” kzm (2, y)w2,m (Y, fm(y))dy>

X K/Ox kl(w,y)m(y,f(y))dy) - (/Ow kl,m(w,y)wLm(y,fm(y))dy)]
+ O(h?).

So
Em < em + |1zl k1]l llwill 2wz — K2 mws |

+ 2l [kl Nweumll [krws =k mws mll + O(R?).
Since z € D, then ||z]|?> < 1. So
Em < em + [kl [Jwi]] [k2we — K2 mwz m |

+ [k2mll Nwzmll [Frws = k1 mwy ]| + O(R?). (15)
‘We have

[w; = wiml| < [[w; = Wi |+ @5, — Wi || < LEm+Cih®, i=1,2, (16)

where C; and Cy are constants that can be defined as coefficient C' in (12).
Also, we have

l|wi,m || < Jwi — Wil + ||will < LEm + Cih* + L(1+ M), (17)

and
[k2,mll < kg — Koml| + [lka| < CoR° + M . (18)

Now, according to Theorem 2 and inequalities (14), (15) and assumptions
(M4)-(M5), we have

|kiwi — kimwim || < Kill |lwi — wimll + wim|l ki — ki mll

< My(LE,;,+C;h*)+Clh* (LE,,+C;h*+ L(1+M)) . (19)

From Theorem 1 and inequalities (15)-(17) and assumptions (M3)-(M4),
we can rewrite (15), as follows

Epn < Ch3 + MyL(1 + M) (L(Mg + CLh3) By + Coh3(My + C4h®)

FLCYA(1+ M) ) + (C4h* + M) (LEy + Cih® + L(1+ M)
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X (L(M1 LR B + C1R3 (M + CLR3) + LOR3 (1 + M)) +O(h?),

where C' is defined in (12). Without loss of generality, ignoring the term
included E?, and h®, we have

(c + ((Mchg + MaLC)(1+ M) + My Ms(Ch + 02))L(1 + M)>h3

E, <
1—2L(M; + C{h3) (M2 + C5R3)(L(1 + M) + C1h3)
+ O(h®).
This completes the proof. O

5 Numerical examples

To illustrate the accuracy and efficiency of proposed method, some ex-
amples are provided. The algorithms associated with the numerical method
were performed using Matlab. We have checked that when more points are
used the accuracy improves significantly.

Example 1. Consider the following nonlinear QIE [33]

1) = (s + i) + ([ wrwan) ([ Erwa). sep

(20)

with the exact solution f(z) = x2.

Table 1 and Figure 1 illustrate the error results for this example. Also,
we compare the maximum absolute error computed by the present method,
repeated trapezoidal (RT) method [33] and Adomian decomposition (AD)
method [33] in Table 2.

Example 2. Consider the following nonlinear QIE [33]

o) =0 (5 + 5 )+ ([ St e ([ evan). 2

where x € [0, 1] with the exact solution f(z) = =.

Table 3 and Figure 2 illustrate the error results for this example. Also,
we compare the maximum absolute error computed by the present method,
RT method [33] and AD method [33] in Table 4.

Example 3. Consider the following nonlinear QIE
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Table 1: Absolute error for m = 8,16, 32 of f(z) of Equation (18)

Nodes x Present method
m=8 m=16 m=32

x = 0.0 0 0 0

x = 0.1 8.8569950e-13 1.9081958e-17 0

x = 0.2 2.9361930e-13 1.0984269e-14  6.3490879e-15
x=0.3 2.7433902e-11  4.7872678e-12  3.7166104e-13
x=0.4 1.4692486e-10  2.1893068e-10  1.1033702e-11
x=0.5 1.4339294e-09 1.2865681e-10  1.0435374e-11
x = 0.6 1.4664141e-07  1.0643045e-08 6.9546968e-10
x = 0.7 4.2146640e-07  2.6710975e-08 1.5046137e-08
x = 0.8 6.8445266e-06  3.6807176e-07 5.1551159¢e-08
x=10.9 3.1263755e-06  2.7156875e-06  1.6706609e-07
x=1.0 4.2731139e-06  6.9580496e-07 1.1520629e-07

Table 2: Table 2: Comparison of the absolute errors of Example 1

Methods Maximum error
RT Method
m = 10 6.38458E-5
m = 100 6.30669E-7
m = 1000 6.30590E-9
AD Method
q=>5 3.62460E-5
q=10 9.23545E-7
q=15 2.35318E-8
Present method
m = 10 1.15435E-5
m = 100 5.72511E-9
m = 1000 1.05104E-11
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Table 3: Absolute error for m = 8, 16,32 of f(z) of Equation (19)

Nodes x Present method
m=8 m=16 m=32

x = 0.0 0 0 0

x = 0.1 1.7137234e-6 3.3597747e-7  2.0934872e-8
x = 0.2 6.0344397e-6 3.7285951e-7  1.1336895e-7
x=0.3 1.7380694¢e-5 1.0109144e-6  2.0167842e-7
x=0.4 8.0824578e-6 3.4573577e-6  2.0948964e-7
x =0.5 1.1099971e-6 7.1694685e-8  5.0373049¢-9
x = 0.6 4.5992070e-5 7.5092211e-6  4.7997155e-7
x = 0.7 8.4403496e-5 5.4418147e¢-6  1.7002589¢-6
x=0.8 1.9036412e-4 1.1238576e-5  2.3184972e-6
x=0.9 7.8122715e-5 3.0755442¢-5  1.8469227e-6
x=1.0 1.9011556e-5 2.0920818e-6  2.8234706e-6

Table 4: Comparison of the absolute errors of Example 2

Methods Maximum error
RT Method
m = 10 1.07275E-3
m = 100 8.44338E-7
m = 1000 8.44337E-9
AD Method
q=>5 8.44492E-5
q=10 8.44338E-7
q=15 8.44337E-8
Present method
m = 10 1.25539E-4
m = 100 1.27663E-8
m = 1000 2.35536E-11
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- --m=8 , s’ o

Absolute error ( logarithmic scale )

Absolute error ( logarithmic scale )

10'10 L L L L L L L L L

Figure 2: Absolute errors (on logarithmic scale) for Example 2, with m = 8, 16, 32

1@ =g+ ( [+ nrwa) ([ eostear). seo
(22
where

o(z) = sin(z) + <x63 N g B sin(2x)(81 +22%) mcoz@x)) (1 B esin(w)) ,

and the exact solution is f(z) = sin(x).

Table 5 and Figure 3 illustrate the error results for this example. Also,
we compare the maximum absolute error computed by the present method,
block-pulse functions (BPFs) method [30] and hat functions (HFs) method
[28] in Table 6.
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Table 5: Absolute error for m = 8,16, 32 of f(z) of Equation (20)

Nodes x Present method
m==8 m=16 m=32

x = 0.0 0 0 0

x =0.1 1.6976811e-5 3.1978554e-6  1.9245960e-7
x = 0.2 5.3369972¢-5 3.0671554e-6  1.0777490e-6
x =0.3 1.4115880e-4 9.0002882¢-6  1.5689730e-6
x =04 5.0416870e-5 2.5604305e-5 1.6783596e-6
x=0.5 1.5197939¢-5 2.3033416e-6  2.9173156e-7
x = 0.6 2.5006880e-4 3.6295409¢-5  2.0906182¢-6
x = 0.7 3.2816702e-4 1.8134154e-5 6.9241732e-6
x = 0.8 5.4658908e-4 3.4864263e-5 6.6704623e-6
x =0.9 7.9549634e-5 5.0605385e-5  2.3233806e-6
x=1.0 1.9488394e-4 4.0158163e-5 6.8004887¢-6

Table 6: Comparison of the absolute errors of Example 3

Methods

Maximum error

BPFs Method

m=2_8
m = 16
m = 32

HFs Method

m=_8
m = 16
m = 32

Present method

m=3_
m = 16
m = 32

1.15609E-1
6.36185E-2
3.32452E-2

2.22432E-2
5.79464E-3
1.51873E-3

5.57591E-4
7.12826E-5
1.10246E-5

6 Conclusion

The MHFs method have been proposed for solving nonlinear quadratic inte-
gral equations. One of the advantages of this method is that the numerical
solution of the nonlinear QIEs can be converted into a system of algebraic

equations using the operational matrices.

Furthermore, it is proved that

MHFs method is convergence and the order of convergence is O(h®). The
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Figure 3: Absolute errors (on logarithmic scale) for Example 3, with m = 8, 16, 32

proposed method does not need any integration for obtaining the constant
coefficients hence, it can be applied in a simple and fast technique. The com-
parison of the obtained results with those based on other methods shows that
the present method is a powerful mathematical tool for finding the numerical
solutions of such equations.
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