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Controlling semi-convergence
phenomenon in non-stationary
simultaneous iterative methods
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Abstract

When applying the non-stationary simultaneous iterative methods for
solving an ill-posed set of linear equations, the error usually initially de-
creases but after some iterations, depending on the amount of noise in the

data, and the degree of ill-posedness, it starts to increase. This phenomenon
is called semi-convergence. We study the semi-convergence behavior of the
non-stationary simultaneous iterative methods and obtain an upper bound

for data error (noise error). Based on this bound, we propose new ways
to specify the relaxation parameters to control the semi-convergence. The
performance of our strategies is shown by examples taken from tomographic
imaging.

Keywords: Simultaneous iterative methods; Semi-convergence; Relaxation
parameters; Tomographic imaging.

1 Introduction

A mark-point in the history of medical imaging, was the discovery by Wil-
helm Röntgen in 1895 of x-rays [10, 22]. The problem of generating medical
images from measurements of the radiation around the body of a patient
was considered much later. Hounsfield patented the first CT-scanner in 1972
(and was awarded, together with Cormack, in 1979 the Nobel Prize for this
invention). This reconstruction problem belongs to the class of inverse prob-
lems, which are characterized by the fact that the information of interest is
not directly available for measurements. The imaging device (the camera)
provides measurements of a transformation of this information. In practice,
these measurements are both imperfect (sampling) and inexact (noise).
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Figure 1: Semi-convergence phenomenon

The mathematical basis for tomographic imaging was laid down by Jo-
hann Radon already in 1917 [20]. The word tomography means “reconstruc-
tion from slices”. It is applied in Computerized (Computed) Tomography
(CT) to obtain cross-sectional images of patients. Fundamentally, tomo-
graphic imaging deals with reconstructing an image from its projections. The
relationship between the unknown distribution (or object) and the physical
quantity which can be measured (the projections) is referred to as the forward
problem. For several imaging techniques, such as CT, the simplest model for
the forward problem involves using the Radon transform R, see [1, 16, 18].
If χ denotes the unknown distribution and β the quantity measured by the
imaging device, we have

Rχ = β.

The discrete problem, which is based on expanding χ in a finite series of
basis-functions, can be written as

Ax ≃ b, (1)

where the vector b is a sampled version of β and the vector x, in the case
of pixel-(2D) or voxel-(3D) basis, is a finite representation of the unknown
object. The matrix A ∈ Rm×n, typically large and sparse, is a discretization
of the Radon transform. An approximative solution to this linear system
could be computed by iterative methods, which only require matrix-vector
products and hence do not alter the structure of A.

Initially the iteration vectors approach a regularized solution while con-
tinuing the iteration often leads to iteration vectors corrupted by noise. This
phenomenon is called semi-convergence by Natterer [18]; for analysis of the
phenomenon, see, e.g., [1,2,9,11,13,19,21]. The typical overall error behavior
is shown in Figure 1.

The Algebraic Reconstruction Technique (ART) is a fully sequential
method, and has a long history and rich literature. Originally it was pro-
posed by Kaczmarz [15], and independently, for use in image reconstruction
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by [13]. The vector of unknowns is up-dated at each equation of the system,
after which the next equation is addressed. In the simultaneous algorithms
the current iterate is first projected on all sets to obtain intermediate points,
and then the next iterate is made by an averaging process, as convex com-
bination, of intermediate points. The prototype of these algorithms is the
well-known Cimmino method [5]. We now explain block-iterative method.
The basic idea of a block-iterative algorithm is to partition the data A and
b of the system (1) into blocks of equations (rows) and treat each block ac-
cording to the rule used in the simultaneous algorithm for the whole system,
passing, e.g., cyclically over all the blocks, see Figure 2.

An iteration vector of the non-stationary simultaneous iterative method
(SIM) is defined as follows

xk+1 = xk + λkA
TM(b−Axk), k = 0, 1, · · · (2)

with x0 ∈ Rn where {λk}∞k=1 are relaxation parameters and M is a given
symmetric positive definite (SPD) matrix which depends on the particular
method. In some papers in image reconstruction from projections, the term
“simultaneous iterative reconstruction technique (SIRT)” is used for “SIM”;
see, e.g., [7, 8, 21]. Several well-known simultaneous methods can be written
as (2) for appropriate choices of the matrix M . With M = I we get the
classical Landweber method [17]. Choosing M = 1

mdiag(1/∥ai∥2) where ai
denotes the ith row of A leads to Cimmino’s method [5]. The CAV method [4]
uses M = diag(1/

∑n
j=1Nja

2
ij) where Nj is the number of non-zeroes in the

jth column of A.
We study semi-convergence behavior of the non-stationary SIM, when

applied to noisy data. Our main focus is to propose some techniques for
updating relaxation parameters to control the data error. Having a reliable
stopping rule leads to stop the iterative method in an iteration which makes
a proper approximation of the sought solution. Otherwise, we may stop
the iteration process early or far from a proper iteration index. For this
reason we introduce relaxation parameters to postpone the semi-convergence
phenomenon.

The iteration index of an iterative method may be considered as a regu-
larizing parameter. We explain this a bit more. Let x∗ be the sought solution
using exact data and let x̄k and xk denote the iterate using noisy and exact
data respectively. Then we have

∥x̄k − x∗∥ ≤ ∥x̄k − xk∥+ ∥xk − x∗∥. (3)

Therefore, the error decomposes into two components, the data error (or noise
error) and the approximation error (or iteration error). The semi-convergence
of the iteration interplays between these two error terms.

The semi-convergence behavior of the SIM with constant relaxation pa-
rameter is analyzed in [8] where the relatedM -matrix is a symmetric positive
definite (SPD) matrix. Based on this stationary, they suggest two strate-



..

G
al
le
y
P
ro
of

54 T. Nikazad and M. Karimpour

C
1

C
2

C
3

C
4

C
5

C
6

xk

xk+1

C
1

C
2

C
3

C
4

C
5

C
6

xk

xk+1

C
1

C
2

C
3

C
4

C
5

C
6

xk

xk+1

Figure 2: (right to left) sequential method, simultaneous method and sequential block-
iterative method

gies for picking relaxation parameters to control the upper bound of data
error. The obtained sequence of relaxation parameters is nonnegative and
nonascending.

Later in [7], the projected version of the non-stationary SIM is studied
where the M -matrix is again assumed SPD. As [8], they consider nonascend-
ing sequence of relaxation parameters and emphasize both strategies of [8].
In [7], using nonexpansivity of the projection operator leads to assuming two
cases, i.e., the full column-rank problem (rank(A) = n) and the rank-deficient
problem (rank(A) < n) which is handled by a slightly modified problem.
Furthermore, they present upper bounds for noise error and iteration error
where rank(A) = n, see [7, Theorems 3.3 and 3.8] respectively. Also those
bounds can be achieved for the modified problem with an unknown regular-
ization parameter (see [7, (3.22),(3.23)]) under some assumptions [7, Lemma
3.9]. In section 2, we give an analysis of non-stationary SIM without having
any restriction on rank(A). Additional to strategies given in [8] and [7], we
introduce another strategy for choosing relaxation parameters which is able
to make more reduction in noise error upper bound comparing with the old
strategies.

In Section 3, we consider SIM and give its semi-convergence analysis with
three strategies for picking relaxation parameters. We demonstrate the per-
formance of our strategies by examples taken from tomographic imaging in
Section 4.

2 Simultaneous iterative algorithm

In this section we give an analysis of the non-stationary SIM without assum-
ing any restriction on rank(A).

Let ∥x∥ =
√
xTx and ∥x∥M =

√
xTMx denote the 2-norm and a weighted

Euclidean norm respectively. Also, let M1/2 and ρ(Q) denote the square
root of M and the spectral radius of Q respectively. For W ∈ Rm×n, we
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use N(W ) and R(W ) to denote the null space and range of W respectively.
The orthogonal projection from Rn onto N(W ) is denoted by P (W ). Also
the orthogonal complement of a subspace K of Rn is denoted by K⊥. Here
xM (A, b) denotes a solution of min ∥Ax − b∥M with the minimal Euclidean
norm.

The convergence analysis of SIM can be obtained in, e.g., [14, Theorem
II.3] and [3].

Theorem 1. Let ρ = ρ(ATMA) and assume that 0 ≤ ϵ ≤ λk ≤ (2 − ϵ)/ρ.
If ϵ > 0, or ϵ = 0 and Σ∞

k=0 min(ρλk, 2 − ρλk) = ∞, then the iterates of (2)
converge to xM (A, b) + P (A)x0.

2.1 The error in the k-th iteration

As we mentioned before, in this section, we give the same upper bound as [7,
Theorems 3.3 and 3.5] but without any restriction on rank(A). Based on
our analysis, we give another strategy for choosing relaxation parameters.
This strategy is capable to reduce noise error upper bound more than the old
strategies given in [8] and [7].

Let B = ATMA , x∗ = xM (A, b) and consider the singular value decom-
position (SVD) of M1/2A as

M1/2A = UΣV T

where Σ = diag(σ1, ...., σp, 0, ..., 0) ∈ Rm×n with σ1 ≥ σ2 ≥ ... ≥ σp > 0 and
p is the rank of A. Let zk = xk − x∗. Using (2) we have

zk+1 = zk + λkA
TM(b−Azk −Ax∗) = (I − λkB)zk

which leads to

zk =

k−1∏
i=0

(I − λk−1−iB)z0.

Since z0 = x0 − x∗, we obtain

xk = x∗ +
k−1∏
i=0

(I − λk−1−iB)(x0 − x∗). (4)

Using the orthogonal decomposition theorem, we have Rn = N(B)⊕N(B)⊥

and N(B)⊥ = R(B). Therefore we get x0 = x̂0+P (B)x0 where x̂0 ∈ N(B)⊥

and P (B)x0 ∈ N(B). Thus we can rewrite (4) as
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xk = x∗ +
k−1∏
i=0

(I − λk−1−iB) (x̂0 + P (B)x0 − x∗) . (5)

Since BP (B)x0 = 0 and P (B) = P (A), we obtain

k−1∏
i=0

(I − λk−1−iB)P (B)x0 = P (B)x0 = P (A)x0. (6)

Since x̂0, x
∗ ∈ N(B)⊥, we can rewrite x̂0 − x∗ as

x̂0 − x∗ =

p∑
j=1

cjvj (7)

where cj and vj are scalar and the j-th column of V respectively. Using (5),
(6), (7) and the SVD of B, we obtain the following expression for the k-th
iteration

xk = x∗ + P (A)x0 +

k−1∏
i=0

(I − λk−1−iV ΣTΣV T )(

p∑
j=1

cjvj) = x∗ + P (A)x0+

+ V diag

(
k−1∏
i=0

(1− λiσ
2
1), . . . ,

k−1∏
i=0

(1− λiσ
2
p), 1, . . . , 1

)
V T

p∑
j=1

cjvj

= x∗ + P (A)x0 +

p∑
j=1

k−1∏
i=0

(1− λiσ
2
j )cjvj . (8)

Let b = b+ δb and

xk+1 = xk + λkA
TM(b−Axk) (9)

where δb is the perturbation consisting of additive noise. Setting zk = xk−x∗,
we get

zk = zk−1 + λk−1A
TM(b+ δb−Azk−1 −Ax∗)

= (I − λk−1B)zk−1 + λk−1A
TMδb

=

k−1∏
i=0

(I − λk−1−iB)z0 +

k−2∑
i=0

k−1∏
j=i+1

(I − λk−1−jB)λiA
TMδb+

+ λk−1A
TMδb. (10)

Since x0 = x0, similar to (8), we have
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xk = x∗ + P (A)x0 +

p∑
j=1

k−1∏
i=0

(1− λiσ
2
j )cjvj+

+

k−2∑
i=0

k−1∏
j=i+1

(I − λk−1−jB)λiA
TMδb+ λk−1A

TMδb. (11)

We now assume that the sequence of relaxation parameters is nonnegative
and nonascending, i.e.,

0 < λi+1 ≤ λi (12)

and consider the following function introduced in [8]

Ψk(σ, λ) =
1− (1− λσ2)k

σ
. (13)

Theorem 2. Let ω = ∥M1/2δb∥ and 0 < λk ≤ 1
σ2
1
. The noise error of SIM

is bounded above by

∥xk − xk∥ ≤ ωλ0σ1
λk−1σp

Ψk(σp, λk−1). (14)

Proof. By subtracting (8) and (11), we obtain

xk − xk =
k−2∑
i=0

k−1∏
j=i+1

(I − λk−1−jB)λiA
TMδb+ λk−1A

TMδb. (15)

Therefore we have

∥xk − xk∥ ≤
k−2∑
i=0

λi

∥∥∥∥∥∥
k−1∏

j=i+1

(I − λk−1−jB)ATMδb

∥∥∥∥∥∥+ λk−1∥ATMδb∥. (16)

Using the SVD of M1/2A, we get that

k−1∏
j=i+1

(I − λk−1−jB)ATM1/2 = V

k−1∏
j=i+1

(I − λk−1−jΣ
TΣ)V TV ΣTUT

= VWi,kU
T

where

Wi,k = diag

 k−1∏
j=i+1

(1− λjσ
2
1)σ1, . . . ,

k−1∏
j=i+1

(1− λjσ
2
p)σp, 0, . . . , 0

 .
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Using (12) and 0 < λk ≤ 1
σ2
1
, we obtain∥∥∥∥∥∥

k−1∏
j=i+1

(I − λk−1−jB)ATM1/2

∥∥∥∥∥∥ ≤ ∥Wi,k∥ = max
1≤s≤p

∥∥∥∥∥∥
k−1∏

j=i+1

(1− λjσ
2
s)σs

∥∥∥∥∥∥
≤ σ1(1− λk−1σ

2
p)

k−1−i. (17)

Since ∥ATMδb∥ ≤ σ1ω, we conclude that, using (12),(17) and the assump-
tions of theorem,

∥xk − xk∥ ≤
k−2∑
i=0

λ0ω

∥∥∥∥∥∥
k−1∏

j=i+1

(I − λk−1−jB)ATM1/2

∥∥∥∥∥∥+ λ0σ1ω

≤
k−2∑
i=0

λ0ωσ1(1− λk−1σ
2
p)

k−1−i + λ0σ1ω

=
k−1∑
s=0

λ0ωσ1(1− λk−1σ
2
p)

s

=
ωλ0σ1
λk−1σp

1− (1− λk−1σ
2
p)

k

σp

=
ωλ0σ1
λk−1σp

Ψk(σp, λk−1).

This completes the proof.

Remark 1. To obtain a similar result as (14) where the projected case of (2)
is employed, we refer to [7, Theorem 3.3] where it is assumed rank(A) = n.

Similar to [8], we consider the equation

gk−1(y) = (2k − 1)yk−1 − (yk−2 + · · ·+ y + 1) = 0 (18)

which has a unique real root ζk ∈ (0, 1). The roots satisfy 0 < ζk < ζk+1 < 1
and limk→∞ ζk = 1 (see [8, Propositions 2.3, 2.4]), and they can easily be
precalculated, see Table 1.

Again, let σ1 denote the largest singular value of M1/2A. Then we have
the following alternative upper bound for the noise error.

Theorem 3. Assume that σ1 ≤ 1/
√
λk−1; then

∥xk − x̄k∥ ≤ ωλ0σ1√
λk−1σn

1− ζkk√
1− ζk

, (19)

where ζk is the unique root in (0, 1) of (18).
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Table 1: The unique root ζk ∈ (0, 1) of gk−1(y) = 0, cf. (18), as function of the iteration
index k

k ζk k ζk k ζk k ζk k ζk k ζk
2 0.3333 7 0.8156 12 0.8936 17 0.9252 22 0.9424 27 0.9531
3 0.5583 8 0.8392 13 0.9019 18 0.9294 23 0.9449 28 0.9548

4 0.6719 9 0.8574 14 0.9090 19 0.9332 24 0.9472 29 0.9564
5 0.7394 10 0.8719 15 0.9151 20 0.9366 25 0.9493 30 0.9578
6 0.7840 11 0.8837 16 0.9205 21 0.9396 26 0.9513 31 0.9592

Proof. Using [8, Proposition 2.3] we obtain the following bound for the func-
tion Ψk(σ, λ) appearing in (14):

max
1≤i≤n

Ψk(σi, λk−1) ≤ max
0<σ≤σ1

Ψk(σ, λk−1)

≤ max
0<σ≤1/

√
λk−1

Ψk(σ, λk−1) ≤
√
λk−1

1− ζkk√
1− ζk

. (20)

The assumption in the theorem implies

σ1 ≤ 1/
√
λk−1 ⇔ λk−1 ≤ 1/σ2

1 . (21)

Then by (14) and (20), and assuming (21), we obtain the bound in (19).

Remark 2. The case λk−1 ∈ (1/σ2
1 , 2/σ

2
1) is discussed in [8, Remark 2.2].

3 Choice of relaxation parameters

Using (19), we propose following strategies for choosing relaxation parame-
ters:

Ψ1 − rule : λk =


√
2

σ2
1
, for k = 0, 1

2
σ2
1
(1− ζk), for k ≥ 2,

(22)

Ψ2 − rule : λk =


√
2

σ2
1
, for k = 0, 1

2
σ2
1
(1− ζk)(1− ζkk )

−2, for k ≥ 2
(23)

Ψ3 − rule : λk =


√
2

σ2
1
, for k = 0, 1

2
σ2
1
(1− ζk)

r−1(1− ζkk )
2, for k ≥ 2

(24)

where {ζk}k≥2 are the roots of (18) and 1 < r ≤ 2.
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Figure 3: Noise error upper bound (25) for different strategies with the factor ω/σp

omitted

Remark 3. Using (19) and strategies (22-24), we have the following upper
bounds for noise error

∥xk − xk∥ ≤


ω
σp

(1− ζkk )(1− ζk)
−1, Ψ1

ω
σp

(1− ζkk )
2(1− ζk)

−1, Ψ2

ω
σp

(1− ζk)
−r/2, Ψ3

(25)

for k ≥ 2.

Figure 3 shows the behavior of noise error upper bound (25) for different
strategies. As it seen, Ψ3 with r = 1 and Ψ3 with r = 3 give the smallest
and largest upper bounds respectively. Furthermore, Ψ3 with r = 1.5 gives
smaller upper bound than Ψ1 and Ψ2.

Remark 4. It is easy to check that, using [8, Theorems 3.1 and 3.3], the
both strategies (22) and (23) satisfy all conditions of Theorem 1. Therefore,
the sequence xk generated by (2) converges to xM (A, b) + P (A)x0.

Next we will check that the relaxation parameters defined in (24) satisfy
all conditions of Theorem 1.

Proposition 1 The sequence generated by (2) with strategies (24) converges
to xM (A, b).

Proof. Since ρ = σ2
1 , we have 0 ≤ ρλk ≤ 2. Using [8, (2.17), (3.10)], we obtain

that
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∑
k≥2

(1− ζk)
r−1(1− ζkk )

2 >
∑
k≥2

(
1− 2k

2k + 1

)r−1(
1− k − 1

2k − 1

)2

=
∑
k≥2

(
1

2k + 1

)r−1(
k

2k − 1

)2

>
∑
k≥2

k2

(2k + 1)r+1
. (26)

It is clear that (26) diverges if r ≤ 2. Therefore, we have Σk≥2λk = ∞. It is
easy to check that min{ρλk, 2− ρλk} = ρλk for k sufficiently large. Thus, all
conditions of Theorem 1 hold and consequently the sequence xk generated
by (2) converges to xM (A, b) + P (A)x0.

4 Numerical results

In this section we give two examples of computerized tomography field. We
used 5% and 10% white Gaussian noises to produce noisy data. The constant
optimal relaxation parameter λopt refers to the strategy when a constant
value of the relaxation parameter is used, chosen such that it gives rise to the
smallest relative error within 20 iterations. For the choices of M matrix in
SIM, we always use Cimmino’s method. We compare our results with cgne
which is a Krylov-type method. The method cgne is sometimes also called
cgls. This method is scaled by M1/2, i.e., using M1/2A, M1/2b instead of
A, b.

As we mentioned before, Theorems 2 and 3 and the strategies (22-24)
are based on (12). Note that the convergence analysis is not based on the
nonascending property. Since ζk < ζk+1 and using [8, Proposition 3.3], both
strategies (22) and (23) satisfy (12). For the the third strategy (24) we have

(1− ζk)
r−1(1− ζkk )

2 > (1− ζk+1)
r−1(1− ζkk )

2

> (1− ζk+1)
r−1(1− ζk+1

k+1 )
2

provided that
ζk+1
k+1 > ζkk . (27)

We do not have any mathematical proof which shows (27) holds but our
numerical tests verifies (27) where r ≥ 1.

Our first tests are based on the standard head phantom from [13]. We
report some numerical tests with an example taken from the field of tomo-
graphic image reconstruction from projections, using the SNARK09 software
package [6]. The phantom is discretized into 63×63 pixels, and 16 projections
(evenly distributed between 0 and 174 degrees) with 99 rays per projection
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Figure 4: Relative error histories in SIM using small phantom with different relaxation
strategies

are used. The resulting matrix A has dimension 1584 × 3969, so that the
system of equations is highly underdetermined. Figure 4 shows the error his-
tories for SIM, using the optimal fixed relaxation parameter as well as Ψ1, Ψ2

and Ψ3 strategies with noisy data.

Based on behavior of noise error upper bound, see Figure 3, using Ψ3

with r = 1 gives the smallest upper bound. This fact is confirmed by Figure
4 (left) where 5% noise is used. But using 10% noise, Figure 4 (right), leads
to fast semi-convergence. The reason could be the large value of ω in (19)
which is eliminated in all strategies. However, the results of Ψ3 rule with
r = 1.5 and Ψ1 rule are proper where 10% noise is used.

In our second example we used the (matlab-based) package AIRtools [12]
to produce the phantom, the matrix and the right-hand side (with and with-
out noise). We again used 5% and 10% white Gaussian noises. The phantom
is now discretized into 365 × 365 pixels. We take 88 projections (evenly
distributed between 0 and 179 degrees) with 516 rays per projection. The
resulting projection matrix A has dimension 40892 × 133225, so that again
the system of equations is underdetermined. Figure 4 shows the relative er-
ror histories of SIM with noisy data. As it is seen, this figure shows that the
results of Ψ3 rule with r = 1 are close to the results of optimal rule.

For both noise levels and phantoms, cgne is the fastest method. However it
also shows a distinctive semi-convergence behavior making it more dependent
on a reliable stopping rule than SIM with our strategies.
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Figure 5: Relative error histories in SIM using the big phantom
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ایستا غیر همزمان تکراری های روش در همگرایی شبه پدیده کنترل

پور کریم مهدی و آزاد نیک تورج

ریاضی دانشکده ایران، صنعت و علم دانشگاه

١٣٩۴ اسفند ۵ مقاله پذیرش ،١٣٩۴ آذر ١۶ شده اصلاح مقاله دریافت ،١٣٩۴ فروردین ٢٨ مقاله دریافت

معادلات از بدوضع دستگاه یک حل برای غیرایستا همزمان تکراری های روش کارگیری به هنگام : چکیده
ها داده در موجود اختلال مقدار به بسته تکرار چند از پس اما یابد می کاهش خطا معمولا ابتدا در خطی،
ما شود. می نامیده همگرایی شبه پدیده این کند. می افزایش به شروع خطا دستگاه، بدوضعی میزان و
خطای برای بالا کران یک و کرده بررسی ایستا غیر همزمان تکراری های روش رابرای همگرایی شبه رفتار
آزاد پارامترهای تعیین برای جدیدی های راه ما کران این براساس آوریم. می بدست ( اختلال (خطای داده
تصویر از که هایی مثال وسیله به ما راهکارهای کارآمدی کنیم. می پیشنهاد همگرایی شبه کنترل منظور به

شوند. می مشخص اند آمده پزشکی پرتونگاری

پزشکی. پرتونگاری تصویر آزاد؛ پارامترهای همگرایی؛ شبه همزمان؛ تکراری های روش : کلیدی کلمات


