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Noisy label relabeling by nonparallel
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Abstract

In machine learning, models are derived from labeled training data where
labels signify classes and features define sample attributes. However, noise
from data collection can impair the algorithm’s performance. Blanco,
Japón, and Puerto proposed mixed-integer programming (MIP) models
within support vector machines (SVM) to handle label noise in training
datasets. Nonetheless, it is imperative to underscore that their models
demonstrate an observable escalation in the number of variables as sample
size increases. The nonparallel support vector machine (NPSVM) is a bi-
nary classification method that merges the strengths of both SVM and twin
SVM. It accomplishes this by determining two nonparallel hyperplanes by
solving two optimization problems. Each hyperplane is strategically po-
sitioned to be closer to one of the classes while maximizing its distance
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from the other class. In this paper, to take advantage of NPSVM’s fea-
tures, NPSVM-based relabeling (RENPSVM) MIP models are developed
to deal with the label noises in the dataset. The proposed model adjusts
observation labels and seeks optimal solutions while minimizing compu-
tational costs by selectively focusing on class-relevant observations within
an ϵ-intensive tube. Instances exhibiting similarities to the other class are
excluded from this ϵ-intensive tube. Experiments on 10 UCI datasets show
that the proposed NPSVM-based MIP models outperform their counter-
parts in accuracy and learning time on the majority of datasets.

AMS subject classifications (2020): Primary 6BT09; Secondary 90C11.

Keywords: Label noise; SVM; Mixed-integer program; Nonparallel SVM.

1 Introduction

Support Vector Machine (SVM) [8, 34, 35] is a renowned technique em-
ployed for binary classification in diverse domains, such as abnormal recog-
nition [22], stock market prediction [1], and pose estimation [36]. Despite
its proficient performance, SVM encounters substantial computational de-
mands when solving the Quadratic Programming Problem (QPP) for large
datasets. In response to this challenge, Jayadeva, Khemchandani, and Chan-
dra [19] introduced the Twin SVM (TWSVM), a method that utilizes two
nonparallel hyperplanes. These hyperplanes are positioned closer to each
of the two classes while maintaining a minimum unit distance from sam-
ples of the other class. In contrast to SVM, TWSVM tackles two smaller
QPPs, thereby mitigating the training time complexity. The TWSVM frame-
work has been extended through various adaptations, including the Wavelet
TWSVM by Ding et al. [11, 12] with glowworm swarm optimization, an
enhanced K-nearest neighbor TWSVM by Nasiri and Mir [26] addressing
noise and outliers, and an automatic TWSVM by Jimenez-Castano, Alvarez-
Meza, and Orozco-Gutierrez [20] for imbalanced datasets using kernel rep-
resentation. Although TWSVM offers valuable attributes, it encounters a
challenge in computing the inverses of specific matrices as part of its model
training process. This task becomes impractical or even infeasible for siz-
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267 Noisy label relabeling by nonparallel support vector machine

able datasets when utilizing conventional methods. Conversely, the stan-
dard SVM can efficiently solve large-scale problems through algorithms like
Sequential Minimal Optimization (SMO). To address this concern, Nonpar-
allel SVM (NPSVM) [33] is introduced, which integrates SVM’s benefits into
TWSVM. This integration incorporates the utilization of the SMO algorithm
[21, 28] and the concept of semi-sparseness [33], collectively enhancing the
overall performance of the model.

The existence of label noise within datasets can have a substantial
impact on the accuracy and generalizability of supervised learning algo-
rithms. Instances with incorrect labels may originate from diverse origins,
such as human errors, label switching, or intentional introduction of noise
[25, 23, 24, 27]. It has been the subject of several research studies. An-
gluin and Laird [2] introduced a noise model that establishes a sample for
learning in noisy environments. They also suggested computationally feasible
learning algorithms for noisy domains and explored extending these concepts
to broader contexts. However, a drawback of their model is the question
of whether there are domains where approximately correct identification is
computationally feasible without noise. However, it becomes computation-
ally infeasible even with moderate levels of noise. Another study by Xiao
et al. [38] devised an optimal attack strategy and used heuristic methods
for practical computation. Biggio, Nelson, and Laskov [4] introduced an al-
gorithmic strategy that effectively manages adversarial alterations of labels.
This technique involves the adjustment of the kernel matrix when labels are
independently flipped with equal probabilities. Another alternative, as pre-
sented in a prior work [15], entails the process of detecting and eliminating
inaccurately labeled instances. This involves the selection of samples con-
sidered dubious and necessitating additional scrutiny. Obtaining labels with
reduced levels of noise might entail increased time and expenses. Neverthe-
less, this endeavor holds the potential to significantly augment classification
accuracy. To address this challenge, Duan and Wu [13] proposed a novel
learning approach that leverages both noisy and less noisy labels extracted
from a limited portion of the training dataset. This methodology involves
the estimation of noise rate parameters and the inference of precise labels by
utilizing a noise model built upon flipping probabilities and a logistic regres-
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sion classifier. While the methods presented in [4, 15] effectively tackle label
noise in data, they do so through a two-phase process. The aspect related to
label noise is addressed before the training process, and the models do not
handle label noise simultaneously with the primary task. Thulasidasan et
al. [31] introduced an innovative approach to mitigate label noise within the
context of Deep Neural Network (DNN) classification. Their methodology
involves the introduction of a new loss function, enabling the DNN to decide
to abstain from classifying certain samples, thereby avoiding confusion. At
the same time, this approach improves the classification performance of sam-
ples that are not abstained from. The proposed method holds substantial
promise for considerably augmenting the accuracy and robustness of DNN
classifiers in real-world practical applications. In [7], the authors presented
a technique for estimating the level of label noise and showed that imple-
menting importance reweighting can enhance classification accuracy when
dealing with label noise and evaluates the reliability of two classification ap-
proaches: Convolutional neural networks and convolutional neural networks
with importance reweighting. Despite the merits of models in [31, 7], they
suffer from the explosion of parameters as the number of layers increases
for some tasks, such as natural language processing and computer vision,
which results in demanding high computation resources. Blanco, Japón, and
Puerto [5] introduced a unique approach for constructing optimal classifi-
cation trees that consider the presence of noisy labels in the training data.
Their method combines margin-based classifiers with outlier detection tech-
niques to improve performance. It utilizes two main components: (1) the
splitting rules of the tree are designed to maximize class separation margins,
following SVM principles, and (2) during tree construction, some training
sample labels can be adjusted to identify and address label noise. These
elements are integrated to create the final optimal classification tree. Bertsi-
mas et al. [3] introduced a robust optimization approach for addressing label
noise by introducing a new variable representing the probability of mislabel-
ing for each training point. They also imposed a constraint to limit the total
number of mislabeled points below a specified threshold, considering worst-
case scenarios. However, a limitation of their method is its primary focus on
constructing a classifier robustly, concentrating on worst-case scenarios, and
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controlling label noise with a budget hyperparameter. Also, their approach
prioritizes worst-case scenarios and does not explore all possible parameter
vectors (w, b) for different scenarios.

Recently, in [6], the authors have formulated SVM-based mixed-integer
programming (MIP) models to effectively handle classification tasks in the
presence of noisy labels. In contrast to the existing techniques, their method-
ology involves a simultaneous process of constructing an SVM-based classifier
while adjusting the labels of observations to achieve an optimal solution. A
significant advantage of their approach lies in its capability to derive separat-
ing hyperplanes that conventional SVM methods cannot achieve. However,
it is important to highlight that the Relabel SVM-based (RESVM) model
introduced in [6] exhibits a noteworthy increase in the number of variables
as the number of samples rises. To tackle this issue, they further proposed
a clustering-based relabeling (CRESVM) model by employing clustering and
classification in the SVM framework.

In this paper, the relabeling idea is employed within NPSVM to take ben-
efit of its features. Each proposed MIP model considers instances within the
class represented by the ϵ-intensive tube. If any of these instances share sim-
ilarities with the other class, the samples belonging to the original class are
excluded from the ϵ-insensitive tube. In most datasets, RENPSVM exhibits
fewer linear constraints and variables in comparison to RESVM. Moreover,
while the CRESVM model introduced in [6] possesses fewer linear constraints
and variables than both RESVM and RENPSVM, its demerit is the utiliza-
tion of nonlinear constraints. Besides the above, the structure of NPSVM
allows parallel implementation of the proposed MIP models, leading to faster
learning times on most datasets. The main contributions of this paper are
summarized as follows:

(1) Expanding the NPSVM models into MIP models to address label noise
in a manner that not only adjusts the labels of observations but also
achieves an optimal solution simultaneously.

(2) Minimizing the computational cost by avoiding the consideration of all
observations as potential candidates for the label changes in the model.
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Instead, we focus on instances related to the class that the model aims
to represent within an epsilon (ϵ)-intensive tube.

(3) Parallelization of the proposed MIP models, which results in faster
learning times on the majority of datasets.

(4) Computational experiments conducted on 10 UCI datasets reveal that
RENPSVM outperforms RESVM and CRESVM in terms of classifica-
tion accuracy while demonstrating similar learning times to RESVM
and CRESVM.

(5) The outcomes of evaluating our algorithms on diverse real-world datasets
demonstrate that our suggestions exhibit greater resilience against at-
tacks than the recent relabel models approach mentioned in [6].

The rest of this paper is organized as follows. Section 2 briefly reviews
TWSVM and NPSVM. In Section 3, we delve into our proposed model
and provide a comparison of the number of constraints and variables with
RESVM and CRESVM models in [6]. Moving on to Section 4, computational
experiments are conducted on 10 UCI datasets to illustrate the efficiency of
the proposed models in comparison to those outlined in [6]. Also, this section
encompasses two statistical tests aimed at highlighting differences between
the proposed model and those from [6]. Ultimately, Section 5 presents con-
cluding remarks.

2 Background

Consider a classification problem with the dataset D = {(x1, y1), (x2, y2)

, . . . , (xl, yl)}, where xi ∈ Rn and yi ∈ {+1,−1} for i = 1, . . . , l denote sam-
ples and labels of samples, respectively. We further symbolize the sets of
indices associated with positive and negative classes as I+ and I−, respec-
tively. This is defined as

I+ = {i |yi = +1}, I− = {i |yi = −1}.

In this section, we present a concise overview of the TWSVM and NPSVM
models.
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271 Noisy label relabeling by nonparallel support vector machine

2.1 TWSVM

Consider A ∈ Rm1×n and B ∈ Rm2×n as the data matrices containing points
belonging to I+ and I−, respectively. The TWSVM functions as a binary
classifier, establishing two nonparallel hyperplanes via solving two smaller
QPPs compared to a large one in SVM as follows:

min
w1, b1, ξ2

1
2 ||Aw1 + e1b1||2 + c1e

T
1 ξ2

s.t. −(Bw1 + e2b1) + ξ2 ≥ e2,

ξ2 ≥ 0,

(1)

and
min

w2, b2, ξ1

1
2 ||Bw2 + e2b2||2 + c2e

T
2 ξ1

s.t. (Aw2 + e1b2) + ξ1 ≥ e1,

ξ1 ≥ 0,

(2)

where c1 and c2 are predetermined trade-off factors between the error variable
vectors ξ1 and ξ2. Also, e1 and e2 are vectors of ones with appropriate
dimensions. The first term in the objective function of (1) (or (2)) aims to
maintain the hyperplane in proximity to the points of one class (I+), while
the constraints work to ensure that the hyperplane remains at a unit distance
from the points of the other class (I−). The Wolfe dual forms of (1) and (2)
are given by

max
α

eT2 α− 1
2α

TG(HTH)−1GTα

s.t. 0 ≤ α ≤ c1e2
(3)

and
max
β

eT2 β − 1
2β

TP (QTQ)−1PTβ

s.t. 0 ≤ β ≤ c2e1,
(4)

where G = [B; e2], H = [A; e1], P = [A; e1], and Q = [B; e2]. As we see, dual
models involve using the inverse of GTG and HTH, which are multiplied by
Lagrangian multipliers α ∈ Rm1 and β ∈ Rm2 . Finally, the nonparallel hy-
perplanes are obtained from the solutions α and β of (3) and (4), respectively,
through

z1 = −(HTH)−1GTα, where z1 = [wT
1 b1] (5)

and

Iran. J. Numer. Anal. Optim., Vol. 14, No. 1, 2024, pp 265–290



Sahleh and Salahi 272

z1 = −(QTQ)−1PTβ, where z2 = [wT
2 b2]. (6)

While TWSVM handles smaller QPPs compared to SVM, it is not without
drawbacks [32]. Firstly, TWSVM, in addressing its primal problems, exclu-
sively minimizes empirical risk, neglecting the essential aspect of minimizing
structural risk present in conventional SVMs. Secondly, to handle singularity
concerns, TWSVM employs approximations by substituting inverse matrices,
leading to solutions that are only approximative. Thirdly, the computational
complexity of TWSVM is impeded by the necessity to compute inverse ma-
trices, rendering it impractical for extensive datasets. Moreover, TWSVM is
confined to linear classification and lacks a straightforward extension to non-
linear scenarios. The demand for swift solvers, such as the SMO algorithm
used for standard SVMs, adds another layer of complexity. Lastly, TWSVM
compromises sparsity by employing a quadratic loss function, resulting in a
situation where the majority of points in a class exert substantial influence
on each decision function, consequently forfeiting the advantages associated
with sparsity.

2.2 The NPSVM

The NPSVM, which is a generalized version of TWSVM, provides a more
comprehensive formulation than TWSVM and determines two nonparallel
hyperplanes using a similar approach. The key difference is that NPSVM
represents each class within ϵ-insensitive tubes (Figure 1) and inherits the
advantages of SVM that TWSVM lacks, such as utilizing the SMO algorithm
and avoiding the computation of matrix inverses during its model training
process. The NPSVM solves the following two QPPs:

min
w1, ,b1, η1, η2, ξ1

1
2 ||w1||2 + c1e

T
1 (η1 + η2) + c2e

T
2 ξ1

s.t. (wT
1 xi + b1) ≤ ϵ1 + η1i, i ∈ I+,

−(wT
1 xi + b1) ≤ ϵ1 + η2i, i ∈ I+,

wT
1 xi + b1 ≤ −1 + ξ1i i ∈ I−,

ξ1, η1, η2 ≥ 0,

(7)
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and
min

w2, b2, η′
1, η

′
2, ξ2

1
2 ||w2||2 + c3e

T
2 (η

′
1 + η′2) + c4e

T
1 ξ1

s.t. wT
2 xi + b2 ≤ ϵ2 + η′1i, i ∈ I−,

−(wT
2 xi + b2) ≤ ϵ2 + η′2i, i ∈ I−,

wT
2 xi + b2 ≥ 1− ξ2i i ∈ I+,

ξ2, η
′
1, η

′
2 ≥ 0,

(8)

where ci > 0 (i = 1, . . . , 4) are trade-off factors for error variables ηi and ξi

(i = 1, 2). The aim of (7) is to maximize the margin between the hyperplanes
of ϵ-intensive tube, which can be mathematically expressed as 2ϵ

∥w1∥ . The
first and second set of constraints ensure that the positive class is largely
concentrated within the ϵ-band situated between the hyperplanes wT

1 x+b1 =

ϵ and (wT
1 x)+ b1 = −ϵ. The third set of constraints push away negative class

from the hyperplane wT
1 x + b1 = −1 as far as possible. Similar description

holds for problem (8).

Figure 1: Illustration of NPSVM.
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3 Relabel NPSVM

In contrast to TWSVM, NPSVM eliminates the need for specific matrix
inversions during model training, making it particularly advantageous when
dealing with substantial datasets, where traditional methods may become
extremely challenging or unfeasible. However, akin to the standard SVM,
NPSVM retains efficiency in addressing large-scale problems by utilizing the
SMO algorithm. In NPSVM, the introduction of an ϵ-insensitive loss function
naturally incorporates a regularization term. This characteristic distinguishes
it from the initial TWSVM or improved TBSVM, with these latter models
being special cases of the more general NPSVM. Notably, NPSVM reverts
to the initial TWSVM or TBSVM when the corresponding parameters are
appropriately chosen. Additionally, the transition from semi-sparseness to
complete sparseness is promoted within the NPSVM framework [33]. In this
section, we explore the implementation of the relabeling approach within
NPSVM, aiming to bolster its robustness against label noise in datasets.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 1, 2024, pp 265–290



275 Noisy label relabeling by nonparallel support vector machine

Figure 2: Original data dataset Figure 2 (a). Optimal separating hyperplanes with (9)
Figure 2 (b). Instances from the positive dataset that remain within the ϵ-intensive tube
are colored purple, while instances that are excluded from the respective constraint are
colored green.

To apply relabeling on NPSVM, initially, we aim for the positive class to
be predominantly positioned within the ϵ-intensive tube while maximizing
its distance from the other class. The gap between the hyperplanes of ϵ-
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intensive tube is controlled via the loss function. This results in enhancing the
alignment between the nonparallel hyperplanes and the classes they represent.
Due to the presence of label noise, there are some instances that appear to
belong to a specific class based on their labels, but they bear a resemblance
to a different class (the blue color in Figure 2 (a)). To determine whether
the samples of the positive class are to be included within the ϵ-insensitive
tube or not, a binary variable vector is incorporated into the model. This
vector determines which instances are removed from the ϵ-insensitive tube
(green color in Figure 2 (b)) and which instances remain inside it (purple
color in Figure 2 (b)). This binary variable vector is integrated into both the
constraints and the objective function, effectively preventing the extensive
relabeling of observations. The first relabeling NPSVM (RENPSVM) model
is formulated as follows:

min
w1, ,b1, η1, η2, ξ1, θ1

1
2 ||w1||2 + c1e

T
1 (η1 + η2) + c2e

T
3 ξ1 + c3e

T
1 θ1

s.t. (wT
1 xi + b1)θ1i ≤ ϵ1 + η1i, i ∈ I+,

−(wT
1 xi + b1)θ1i ≤ ϵ1 + η2i, i ∈ I+,

(wT
1 xi + b1)(1− θ1i) ≤ −1 + ξ1i +M1(1− θ1i), i ∈ I+,

wT
1 xi + b1 ≤ −1 + ξi i ∈ I−,

θ1i ∈ {0, 1}, i ∈ I+,

w1 ∈ Rn, b1 ∈ R,

η1, η2, ξ1 ≥ 0,

(9)
where ci > 0 (i = 1, 2, 3) are trade-off parameters and M1 is large positive
constant that is chosen such that its associated constraint becomes redundant
when θ = 0. The second term in objective function η1 + η2 controls the error
for the gap between the hyperplanes wT

1 x + b1 = ϵ and wT
1 x + b1 = −ϵ. In

the third set of constraints, we strive to distance the negative class from the
hyperplane wT

1 x + b1 = −1. The error vector ξ1 is assessed using the soft
margin loss function. The binary variable vector θ1 determines whether the
samples of the positive class are to be included within the ϵ-insensitive tube or
not. Typically, when θ1i = 1, it signifies that the ith instance belongs to the
positive class. This is represented by the first three sets of constraints in (9).
The final term in the objective function serves to avoid extensive reassignment
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277 Noisy label relabeling by nonparallel support vector machine

of labels to observations, a situation that might result in producing ineffectual
classifiers. The second RENPSVM model corresponding to other classes is
as follows:

min
w2, ,b2, η′

1, η
′
2, ξ2,θ2

1
2 ||w2||2 + c4e

T
2 (η

′
1 + η′2) + c5e

T
3 ξ2 + c6e

T
2 θ2

s.t. (wT
2 xi + b2)θ2i ≤ ϵ2 + η′1, i ∈ I−,

−(wT
2 xi + b2)θ2i ≤ ϵ2 + η′2, i ∈ I−,

(wT
2 xi + b2)(1− θ2i) ≥ 1− ξ2i −M2(1− θ2i), i ∈ I−,

wT
2 xi + b2 ≥ 1− ξ2i, i ∈ I+,

θ2i ∈ {0, 1}, i ∈ I−,

w2 ∈ Rn, b2 ∈ R,

η′1, η
′
2, ξ2 ≥ 0.

(10)
Both models (9) and (10) exhibit nonlinearity in the constraints. To linearize
those constraints, we introduce variables α, α0, β, β0 as

βi = w1θ1i, β0i = b1θ1i, (11)

αi = w2θ2i, α0i = b2θ2i. (12)

Now by adding the following constraints to (9) and (10)

w1 −M3θi ≤ βi ≤ w1 +M3θi, i ∈ I+,

−M3(1− θ1i) ≤ βi ≤ M3(1− θ1i), i ∈ I+,

b1 −M3θ1i ≤ β0i ≤ b1 +M3θ1i, i ∈ I+,

−M3(1− θ1i) ≤ β0i ≤ M3(1− θ1i), i ∈ I+,

and

w2 −M4(θ2i) ≤ αi ≤ w2 +M4(θ2i), i ∈ I−,

−M4(1− θ2i) ≤ αi ≤ M4(1− θ2i), i ∈ I−,

b2 −M4(θ2i) ≤ α0i ≤ b2 +M4(θ2i), i ∈ I−,

−M4(1− θ2i) ≤ α0i ≤ M4(1− θ2i), i ∈ I−.

We obtain the following problems:
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min
w1, ,b1, η1, η2, β, β0, ξ1, θ1

1
2 ||w1||2 + c1e

T
1 (η1 + η2) + c2e

T
3 ξ1 + c3e

T
1 θ1

s.t. βT
i xi + β0i ≤ ϵ1 + η1i, i ∈ I+,

−(βT
i xi + β0i) ≤ ϵ1 + η2i, i ∈ I+,

wT
1 xi + b1 − (βT

i xi + β0i) ≤ −1 + ξ1i +M1(1− θ1i), i ∈ I+,

wT
1 xi + b1 ≤ −1 + ξi i ∈ I−,

w1 −M3θi ≤ βi ≤ w1 +M3θi, i ∈ I+,

−M3(1− θ1i) ≤ βi ≤ M3(1− θ1i), i ∈ I+,

b1 −M3θ1i ≤ β0i ≤ b1 +M3θ1i, i ∈ I+,

−M3(1− θ1i) ≤ β0i ≤ M3(1− θ1i), i ∈ I+,

βi ∈ Rn, β0i ∈ R, i ∈ I+,

θ1i ∈ {0, 1}, i ∈ I+,

w1 ∈ Rn, b1 ∈ R,

η1, η2, ξ1 ≥ 0,

and

min
w2, ,b2, η′

1, η
′
2, α, α0, ξ2,θ2

1
2 ||w2||2 + c4e

T
2 (η

′
1 + η′2) + c5e

T
3 ξ2 + c6e

T
2 θ2

s.t. αT
i xi + α0i ≤ ϵ2 + η′1, i ∈ I−,

−(αT
i xi + α0i) ≤ ϵ2 + η′2, i ∈ I−,

wT
2 xi + b2 − (αT

i + α0i) ≥ 1− ξ2i −M2(1− θ2i), i ∈ I−,

wT
2 xi + b2 ≥ 1− ξ2i, i ∈ I+,

w2 −M4(θ2i) ≤ αi ≤ w2 +M4(θ2i), i ∈ I−,

−M4(1− θ2i) ≤ αi ≤ M4(1− θ2i), i ∈ I−,

b2 −M4(θ2i) ≤ α0i ≤ b2 +M4(θ2i), i ∈ I−,

−M4(1− θ2i) ≤ α0i ≤ M4(1− θ2i), i ∈ I−,

α2i ∈ Rn, α0i ∈ R, i ∈ I−,

θ2 ∈ {0, 1}, i ∈ I−,

w2 ∈ Rn, b2 ∈ R,

η′1, η
′
2, ξ2 ≥ 0,

where Mi, with i = 1, . . . , 4, represent significant positive constants. As
known, MIP models are NP-hard problems, and solving large-scale MIP
problems can be computationally challenging and often requires sophisti-
cated optimization algorithms and heuristics to find near-optimal solutions
within reasonable time frames [37]. To compare the proposed MIP mod-
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els with those in [6], their number of variables and constraints of models
are provided in Table 1. According to this table, it becomes evident that
the number of variables for each model of RENPSVM is lower than that of
RESVM when mi

l ≤ n+2
n+4 (for i = 1, 2), which is the case for datasets where

the number of features exceeds seven. Also, each RENPSVM MIP model has
less linear constraints than RESVM when mi

l ≤ n+1
n+2 (for i = 1, 2), which

is the case for datasets where n ≥ 7. It should also be noted that despite
the fact that CRESVM has less linear constraints compared to both RESVM
and RENPSVM, its demerit is that is has nonlinear constraints.

Table 1: Number of variables and constraints of RESVM, CRESVM, and RENPSVM

RESVM CRESVM RENPSVM (13) RENPSVM (13)

Variables ln+ 3l + n+ 1 4l + 3n+ 1 m1n+ 4m1 + l + n+ 1 m2n+ 4m2 + l + n+ 1

Linear constraints 6l + 4ln 5l 4m1n+ 9m1 +m2 + l 4m2n+ 9m2 +m1 + l

Nonlinear constraints 0 2l 0 0

4 Computational experiments

To demonstrate the effectiveness of RENPSVM, we conducted experiments
using a set of 10 UCI datasets, as detailed in Table 2. To evaluate the
models’ resilience to label noise, we executed three distinct experiments for
each dataset. For the Vertebral dataset, two scenarios are considered. First
(Vertebral1), distinguishing patients as either Normal (100) or those with
Disk Hernia (60); and second (Vertebral2), categorizing patients as either
Normal (100) or Abnormal, with Abnormal encompassing individuals with
Disk Hernia (60) or Spondylolisthesis (150). These experiments encompassed
the original datasets, along with two scenarios involving the introduction of
random label flips in the training data at percentages of 20% and 50%. The
implementation of all models is carried out in MATLAB 2020 (64-bit) on
a computer equipped with an Intel Core i5 processor and 4 GB of RAM.
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Also, RESVM, CRESVM, and RENPSVM models are solved using the CVX-
Mosek [16]. For all models, the hyperparameters ci (i = 1, . . . , 4) are chosen
from the set {2i|, i = −8, . . . , 8}, taking into consideration their impact on the
models’ performance. To mitigate issues like overfitting and bias across all
datasets, we employed a 10-fold cross-validation methodology. This technique
partitions the dataset into ten equally sized subsets, as recommended by
[14]. Subsequently, the models are trained on nine of these subsets, while the
remaining subset is utilized to compute the prediction error of the models.
This process is repeated for each of the ten subsets. Finally, the average
classification accuracy is computed using the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN
,

where TP, TN, FP, and FN denote the number of true positive, true neg-
ative, false positive and false negative, respectively. Computational results
are summarized in Table 3.

Table 2: Characteristics of datasets

Datasets Samples Positive Negative Features Classes
Car 1594 1210 384 7 2

Haberman 306 225 81 3 2
Cancer 699 458 241 9 2

Vertebral 310 60 100 7 3
Hayes-Ruth 102 51 51 5 2
Diabetes 768 500 268 8 2
Ionosphere 351 225 126 34 2

Votes 435 267 168 16 2
Heart 270 260 120 13 2
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Table 3: Performance comparison of all models

Flip percentage
0.0 0.2 0.5

Datasets Method Accuracy(Time)

RESVM 100(53.40) 79.98(51.38) 51.38(56.04)

Car CRESVM 100(68.61) 78.41(82.67) 52.01(86.69)

RENPSVM 100(161.89) 79.99(99.37) 51.25(73.93)

RESVM 71.29(449.52) 63.36(405.02) 48.93(116.95)

Haberman CRESVM 75.438(13.79) 59.57(290.36) 49.18( 188.52)

RENPSVM 72.87(104.42) 66.025(30.28) 55.89 (28.32)

RESVM 94.85(40.15) 58.50(125.75) 48.93(116.95)

Cancer CRESVM 96.28(311.55) 69.07(311.35) 48.074 (309.69)

RENPSVM 97(45.92) 77.97(42.02) 53.06( 36.01)

RESVM 100(23.055) 77.07(108.57) 55.01 (108.75)

Vertebral1 CRESVM 100(114.80) 76.87(9.23) 55.01 (21.57)

RENPSVM 100(16.12) 80(16.21) 56.26(30.89)
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RESVM 81.29(347.71) 68.81(366.69) 55.005(108.76)

Vertebral2 CRESVM 76.7742(311.88) 64.39(25.41) 51.62(96.93)

RENPSVM 79.67(18.47) 69.032(18.06) 55.447(18.82)

RESVM 51.09(111.36) 50.12(107.37) 52.90(108.51)

Hayes-roth CRESVM 53.51(308.04) 53.92(51.91) 49.22(47.81)

RENPSVM 62.54(32.57) 62.30(14.33) 54.63(13.99)

RESVM 65.10(115.84) 55.73(114.52) 51.53(115.80)

Diabet CRESVM 69.52(309.61) 55.75(281.17) 50.51 (305.35)

RENPSVM 75.65(43.79) 56.51(34.75) 51.69(36.04)

RESVM 84.88(316.98) 56.13(318.21) 51.85(316.65)

Ionosphere CRESVM 82.9(312.50) 69.22(40.40) 45.48(27.55)

RENPSVM 85.18(68.81) 68.39(65.44) 53.85(65.21)

RESVM 95.88(310.98) 76.99(310.41) 50.33 (319.23)

Votes CRESVM 94.49(299.53) 74.41(308.84) 44.17(311.22)

RENPSVM 95.62(35.25) 78.88(32.73) 54.28 (27.02)
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RESVM 78.89(09.23) 54.81(309.49) 53.387 (359.49)

Heart CRESVM 83.70(28.73) 74.41(308.84) 52.96 (72.06)

RENPSVM 85.18(21.81) 72.59(326.27) 55.93(319.05)

According to Table 3, for the original datasets, RENPSVM exhibits su-
perior accuracy compared to the other models across all datasets except for
Votes and Vertebral2. Additionally, it demonstrates equivalent accuracy to
the other models for datasets such as Car and Vertebral1. In the aspect of
learning time, RENPSVM outperforms CRESVM and RESVM, except for
Car. Additionally, RENPSVM secures the second-best position in terms of
learning time for Haberman and Cancer datasets. When considering a label
flip scenario of 20%, it becomes evident that the accuracy of RENPSVM sur-
passes that of the other models for all datasets except Heart and Ionosphere.
However, in terms of learning time, RENPSVM generally outperforms other
models, except for Car, Vertebral1, Ionosphere, and Heart. Among these,
Vertebral and Ionosphere are notable as being the second-best in terms of
learning time. When dealing with a label flip rate of 50%, among all the
datasets, only Car does not exhibit the highest accuracy with the proposed
model. Turning to learning time, the proposed model demonstrates superior-
ity over all other models, except for Car, Vertebral1, Ionosphere, and Heart,
which secure the position of being the second-best performers. By analyzing
the comprehensive results presented in Table 3, it becomes evident that as
the percentage of flipped labels increases, the proposed model exhibits supe-
rior accuracy compared to the referenced models and demonstrates enhanced
robustness.

Next, the modified Friedman test is initially conducted to assess whether
distinctions exist among the three models. Following this, the Nemenyi post-
hoc test is utilized to enable the comparison of multiple methods, offering
pairwise assessments between them. This post-hoc analysis assists in deter-
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mining the presence of significant differences between the considered meth-
ods.

To determine whether the results of the three models in Table 3 differ or
not, the modified Friedman test is conducted. The Friedman test, being a
nonparametric statistical test, does not rely on assumptions about the under-
lying data distribution [9]. For each dataset, individual ranks are assigned
to all algorithms, with the top-performing algorithm receiving rank 1, the
second-best algorithm receiving rank 2, and so forth. In cases of ties, average
ranks are employed. Let rij denote the rank of the jth algorithm on the ith
dataset. The test examines the average rank for each algorithm, denoted as
r̄j =

∑n
i=1 rij . To account for the potential conservatism of the Friedman

test, a modified version of it is calculated as outlined by [18].

Ff =
(N − 1)X 2

F

N(k − 1)−X 2
F

, (13)

where X 2
F is equal to 12N

k(k+1) (
∑k

j=1 r̄
2
j − k(k+1)2

4 ), N represents the num-
ber of datasets, and k denotes the number of methods. Furthermore,
Ff is distributed according to the F-distribution with degrees of freedom
(k − 1, (k − 1)(N − 1)). The average accuracy ranks corresponding to Table
3 are presented in a tabular format as shown in Table 4. The critical value
at a significance level of α = 0.1 for Ff (2, 18) is determined to be 3.63.
Considering the average ranks (Table 4), the X 2

F values for scenarios with
label flip percentages of 0%, 20%, and 50% are 3.8, 9.8, and 10.05, respec-
tively. The corresponding Ff values are 2.1111, 8.6471, and 9.0905. Given
that the Ff values for the 20% and 50% scenarios exceed the critical value
of Ff (3, 16) = 3.63, and considering that the rank of RENPSVM is lower
than that of RESVM and CRESVM, it can be inferred that there exists a
significant distinction between RENPSVM and the models introduced in [6]
for these particular scenarios.
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Table 4: Average accuracy rank of all models

Flip percentage
Method 0.0 0.2 0.5

RESVM 2.3 2.5 2.25

Average rank CRESVM 2.2 2.3 2.55

RENPSVM 1.5 1.2 1.2

The Nemenyi post-hoc test serves as a statistical technique utilized for the
comparison of multiple methods, offering pairwise comparisons to ascertain
the presence of significant distinctions. To execute this test for pairwise
comparisons, we compute a parameter known as the critical difference (CD).
The CD is determined by considering the number of datasets, the number of
methods, the chosen significance level, and the average rank associated with
each model from Table 4. When the difference in average ranks between the
two methods exceeds the CD value, it can be inferred that a noteworthy and
statistically significant difference exists between those two methods. The CD
value is calculated as follows:

CD = qα=0.1

√
k(k + 1)

6N
,

where the parameter q represents the critical value, while k signifies the
number of models, and N denotes the number of datasets. For a significance
level of 0.1 and considering four methods, the critical value extracted from
the Nemenyi distribution table amounts to q = 2.3122. Substituting these
values into the above equation yields a computed CD value of 1.0340. The
difference between the average ranks of the two models is represented as Ξ. In
the scenario where the label flip percentage is 0%, we encounter the following
conditions:

Ξ(RENPSVM − RESVM) = |1.5− 2.3| = 0.8 < CD(1.0340),
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Ξ(RENPSVM − CRESVM) = |1.5− 2.2| = 0.7 < CD(1.0340),

When the flip percentage of labels is 20% we have:

Ξ(RENPSVM − RESVM) = |1.2− 2.5| = 1.3 > CD(1.0340),

Ξ(RENPSVM − CRESVM) = |1.2− 2.3| = 1.1 > CD(1.0340).

Finally, in the case when the flip percentage of labels is 50%, we have

Ξ(RENPSVM − RESVM) = |1.2− 2.25| = 1.05 > CD(1.0340),

Ξ(RENPSVM − CRESVM) = |1.2− 2.55| = 1.35 > CD(1.0340).

Based on the preceding results, it is evident that a significant difference exists
between RENPSVM and the other models, except for the original dataset.

5 Conclusions

In this paper, we have introduced MIP models based on NPSVM for the pur-
pose of relabeling noisy data. Our approach effectively refines observation
labels while simultaneously achieving an optimal solution. We achieve sig-
nificant reductions in computational costs by strategically avoiding the con-
sideration of all observations as potential candidates for label adjustments
in the model. Instead, we concentrate on instances associated with the class
that the model aims to represent within an ϵ-intensive tube. The inherent
structure of NPSVM allows for parallel execution of the proposed MIP mod-
els, resulting in accelerated learning times across the majority of datasets.
Our findings indicate that, for datasets with a number of features exceeding
seven, each RENPSVM MIP model has fewer linear constraints and variables
compared to RESVM, subject to specific conditions. This holds true for the
majority of datasets. Additionally, the CRESVM model also exhibits fewer
linear constraints and variables compared to both RESVM and RENPSVM,
although it introduces the trade-off of incorporating nonlinear constraints.
The effectiveness of our proposed models is evaluated through experiments
conducted on 10 UCI datasets. The outcomes showcased that RENPSVM
models exhibit better performance in terms of classification accuracy and
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learning, akin to RESVM and CRESVM, respectively, for most datasets and
as the percentage of flipped labels increases, the proposed RENPSVM model
demonstrates superior accuracy compared to the referenced models and show-
cases enhanced robustness. Moreover, we employed the modified Friedman
test and Nemenyi post-hoc test to assess the influence of label noise on our
model’s performance relative to other methods. The tests revealed that a
notable distinction between RENPSVM and other models exists, except for
the original datasets. For future work, one may consider extending the pro-
posed model to multi-class classification, either through a one-vs-one-vs-rest
approach [29] or by adapting it into a regression model. This adaptation
can be particularly useful for handling label noise in target values, a common
challenge in regression tasks [30]. Also, when dealing with datasets containing
a large number of features, the computational cost can become prohibitively
high. In such cases, it is efficient to derive hyperplane classifiers using the
dual problem formulation [10]. Therefore, studying label noise using dual
models might be another interesting future research direction.
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