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Abstract

In this article, we develop an efficient numerical method for one-dimensional
time-delayed singularly perturbed parabolic problems. The proposed nu-
merical approach comprises an upwind difference scheme with modified
graded mesh in the spatial direction and a backward Euler scheme on uni-
form mesh in the temporal direction. In order to capture the local behavior
of the solutions, stability and error estimations are obtained with respect to
the maximum norm. The proposed numerical method converges uniformly
with first-order up to logarithm in the spatial variable and also first-order in
the temporal variable. Finally, the outcomes of the numerical experiments
are included for two test problems to validate the theoretical findings.
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1 Introduction

Singularly perturbed problems are widely applicable in different fields of sci-
ence and engineering. In particular, singularly perturbed convection-diffusion
parabolic equations, which contain a small parameter and a delay term, are
effective in the simulation of reservoirs subsurface oil extraction, convective
heat transfer problems with high péclet numbers, fluid flows, mathematical
biology, and so on. Problems with delay have also appeared in the study of
tumor growth, neural networks, and also in problems related to the respira-
tory system. The dynamics of the delay differential equations may become
complicated due to time delay as it alters the stability equilibrium of the
system. In epidemiology, to denote the incubation time or the host infection
time, delay can be used. From the statistical study of ecological data, it is
revealed that delay effects are seen in many species’ population dynamics.
An example of a delay partial differential equation (DPDE) that is used in a
furnace to process metal sheets is as follows:

∂ŵ(s, τ)

∂τ
− ε

∂2ŵ(s, τ)

∂s2

= v(f(ŵ(s, τ − ξ)))
∂ŵ(s, τ)

∂s
+ c[g(ŵ(s, τ − ξ))− ŵ(s, τ)].

For detailed literature on the above delay model, the reader can refer to [32].
DPDEs are closer to real-world phenomena as the solution does not only
depend on the solution at a current stage but also at an earlier stage. The
highest order derivative of the singularly perturbed delay differential equa-
tions (SPPDEs) is multiplied with a small parameter ε, with at least one
term included with negative/positive shifts. There are a lot of manuscripts
available in the literature dealing with DPDEs. For instance, see [14, 29, 22].
It is challenging to solve the SPPDEs analytically. Additionally, the pres-
ence of a small parameter ε leads to a sudden change in solution, resulting
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79 Efficient numerical methods on modified graded mesh ...

in boundary and interior layers. Moreover, due to the requirements of an
unexpectedly large number of mesh points on uniform mesh, a classical nu-
merical method is not practical to accurately capture the layer in the so-
lution. In this sense, the scheme mentioned above fails. So, a singularly
perturbed DPDE numerical solution requires special treatment, which leads
to the development of a uniform convergent method. Various articles dis-
cuss the numerical as well as the analytical aspects of singularly perturbed
differential equations via finite difference and finite element methods. For
example, see [2, 7, 19, 28, 24, 4, 23, 25]. However, only a few articles are
available on partial differential equations with delay arguments in which an-
alytical and numerical solutions are discussed. Ansari, Bakr, and Shishkin
[1] used a finite difference method (FDM). Their method is implicit in time
and centered in space on a piecewise uniform mesh. They achieved an order
of convergence O(( N−1 lnN)2 +M−1) for the singularly perturbed delay
parabolic reaction-diffusion problem. Gowrisankar and Natesan [10] solved
SPPDEs of a convection-diffusion type by virtue of the FDM. In this ar-
ticle, the spatial domain through the adaptive mesh and temporal variable
using implicit Euler has been discretized, and the method converges with or-
der O((N−1 lnN) +∆t). Gowrisankar and Natesan [21] established uniform
convergence for a singularly perturbed convection-diffusion problem with a
convergence of order O(∆t + N−1+q̄), where 0 < q̄ < 1. Kumar and Ku-
mari [15] constructed an ε-uniform convergent FDM for the reaction-diffusion
initial-boundary value problem with a delay in the temporal direction. The
authors have confirmed the order of convergence for a fully discretized scheme
is O(∆t+N−2 ln3N) utilizing extended cubic B-spline on the layer-adapted
mesh. Kumar et al. [16] have explored uniform convergence of time-delayed
parabolic partial differential equations (PDEs) on graded mesh generation
algorithms based on entropy function. Das, Govindarao, and Mohapatra
[3] proposed a weighted monotone numerical scheme comprised of Crank-
Nicolson in time and a weighted monotone hybrid scheme for spatial deriva-
tives on Shishkin mesh, which is parameter uniform converges with order
O((N−1 lnN)2 + (∆t)2). Gartland [8] studied boundary value problems on
the graded mesh in which the scheme converges of order O(hk), where k
times as many points are available inside the layer as outside. The con-
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vergence of order two in both the spatial and temporal variables has been
established by Gupta, Kadalbajoo, and Dubey [11]. The difference scheme
on the Bakhvalov–Shishkin mesh is used in [12] to explore the first-order con-
vergence. Indeed in all these works, authors have described delay/nondelay
problems on layer-adapted mesh only. There are various numerical meth-
ods used in different branches of science and engineering; for reference, see
[26, 27, 5, 30, 31, 6, 33]. Any work related to the convergence of difference
schemes on the modified graded mesh has not been noticed yet. Therefore, we
are now in a position to establish a different scheme on the modified graded
mesh. Motivated by the work of [1, 10, 4, 23], we proposed an upwind FDM
on a modified graded mesh for a time-delayed convection-diffusion parabolic
problem. We also establish that the method is almost first-order convergence
without a logarithmic factor in the mesh parameter N .

Many articles discuss convection-diffusion problems involving bound-
ary layers with layer adaptive meshes like Shishkin, Bekhvalov, and adap-
tive meshes. Gowrisankar and Natesan [10] solved SPPDEs of convection-
diffusion type by the FDM on piecewise uniform mesh, which converges
uniformly with an order O((N−1 lnN) + ∆t). Kumar et al. [17] analyzed
convection-diffusion problems on the adaptive mesh via equidistribution of
monitor function and obtained first-order convergence. Generating adaptive
meshes for the parabolic problems requires the iterative process to obtain the
grid at each time level. So, it requires high computation in comparison to
other meshes discussed above. It is clear from the numerical findings that
the modified graded mesh proposed in this work provides the equivalent rate
of convergence as the adaptive meshes with negligible computation in com-
parison with the adaptive algorithm. Also, the modified graded mesh helps
improve the accuracy and efficiency of the method.

The description of the problem is as follows: Let ℵ = Λ × (0, T ], where
Λ = (0, 1) and Υ = Υl ∪ Υb ∪ Υr, in which Υr and Υl are, respectively, the
right and left side of the rectangular domain ℵ and Υb = [0, 1]× [−ξ, 0]. The
following problem on ℵ = Λ× (0, T ) is examined in this paper:

Lτ
s ŵ(s, τ) = −d̂(s, τ)ŵ(s, τ − ξ) + g(s, τ), for all (s, τ) ∈ ℵ, (1)

ŵ(s, τ) = Ψl(τ), (s, τ) ∈ {0} ×Υl = {(0, τ), 0 < τ ≤ T},
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ŵ(s, τ) = Ψr(τ), ŵ(s, τ) ∈ {1} ×Υr = {(1, τ), 0 < τ ≤ T},

ŵ(s, τ) = Ψb(s, τ), (s, τ) ∈ Υb = [0, 1]× [−ξ, 0],

where

Lτ
s ŵ(s, τ) :=

( ∂

∂τ
− ε

∂2

∂s2
+ â(s, τ)

∂

∂s
+ b̂(s, τ)

)
ŵ(s, τ). (2)

The above-considered singular perturbation parameter is ε ∈ (0, 1]. Addition-
ally, ξ ≥ 0, a delay parameter, satisfies the equation T = qξ for some positive
integer q. Here, the above considered functions â(s, τ), b̂(s, τ), d̂(s, τ), g(s, τ),
Ψb, Ψr, Ψl, and Ψb are sufficiently smooth, bounded and also fulfill the fol-
lowing conditions:

â(s, τ) ≥ δ > 0, b̂(s, τ) ≥ 0, and d̂(s, τ) ≥ β > 0.

The reduced problem corresponding to (1) is

∂ŵ0(s,τ)
∂τ + â(s, τ)∂ŵ0(s,τ)

∂s + b̂(s, τ)ŵ0(s, τ)

= −d̂(x, τ)ŵ0(s, τ − ξ) + g(s, τ), for all (s, τ) ∈ ℵ,

ŵ0(s, τ) = Ψb(s, τ), (s, τ) ∈ Υb = [0, 1]× [−ξ, 0],

ŵ0(s, τ) = Ψr(s), (s, τ) ∈ Υr.

(3)
By considering s to be constant, the solution to the reduced problem (3) is
vertical lines, which ensures that the boundary layer that arises will be of the
parabolic type. The compatibility condition for the initial functions Ψb(s, τ)

are also satisfied at the corner points (0, 0), (1, 0), (0,−ξ), and (1,−ξ),

Ψb(0, 0) = Ψl(0),

Ψb(1, 0) = Ψr(0),

dΨl(0)

dτ
− ε

∂2Ψb(0, 0)

∂s2
+ â(0, 0)

∂Ψb(0, 0)

∂s
+ b̂(0, 0)Ψb(0, 0)

= −d̂(0, 0)Ψb(0,−ξ) + g(0, 0),

dΨr(0)

dτ
− ε

∂2Ψb(1, 0)

∂s2
+ â(1, 0)

∂Ψb(1, 0)

∂s
+ b̂(1, 0)Ψb(1, 0)

= −d̂(1, 0)Ψb(1,−ξ) + g(1, 0).
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Notation: Assume that C is used as a generic constant throughout the
paper. Also, C is independent of the perturbation parameter ε and the mesh
point N . We use discrete maximum norm to study convergence, which is
defined as

∥ŵ∥Λ = max
s∈Λ

|ŵ(s)|.

The Paper is presented as follows. Continuous solutions and their derivatives
are covered in Section 2. The constructed numerical method is presented
in Section 3. Section 4 studies the error analysis of the proposed method.
Numerical examples and results support the theoretical findings in Section
5. The paper ends with a conclusion presented in Section 6.

2 Bounds for continuous solution and its derivatives

This section discusses the bounds for the solution and its partial derivatives
across the prescribed domain. Furthermore, for the proof of ε-uniform con-
vergence in a later section, we split the analytical solution ŵ of (1). Also,
it establishes strong bounds on the layer and smooth component, which we
obtain by splitting the analytical solution. The operator Lτ

s defined in (2)
satisfies the following maximum principle.

Lemma 1 (Maximum principle). [15] Assume that ξ(s, τ) ≥ 0 holds true for
all values of (s, τ) ∈ Υ. If Lτ

sξ(s, τ) ≥ 0 for all (s, τ) ∈ ℵ, then ξ(s, τ) ≥ 0 for
all (s, τ) ∈ ℵ.

Proof. Suppose (s∗, τ∗) ∈ ℵ such that

ξ(s∗, τ∗) = min ξ(s, τ),

and assume ξ(s∗, τ∗) < 0. Also, we have ∂ξ(s∗,τ∗)
∂s = 0, ∂ξ(s∗,τ∗)

∂τ = 0, and
∂2ξ(s∗,τ∗)

∂τ2 ≥ 0. Then
Lτ
sξ(s

∗, τ∗) < 0,

which is contrary to our supposition. It follows that ξ(s∗, τ∗) ≥ 0 and so
ξ(s, τ) ≥ 0 for all (s, τ) ∈ ℵ.

Lemma 2 (Uniform stability bounds). [13, 1] For the specified function η in
the defined domain of the differential operator Lτ

s in (2), we have
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∥η∥ ≤ (1 + αT )max{∥Lτ
sη∥, ∥ηl∥, ∥ηr∥, ∥ηb∥},

and for any solution ŵ(s, τ) of (1), we have

∥ŵ(s, τ)∥ ≤ (1 + αT )max{∥g∥, ∥Ψl∥, ∥Ψr∥, ∥Ψb∥},

where α = max{0, 1− δ}.

Proof. We define barrier function as

ψ±(s, τ) = (1 + αT )max{∥g∥, ∥Ψl(τ)∥, ∥Ψr(τ)∥, ∥Ψb(τ)∥} ± ŵ(s, τ),

for all (s, τ) ∈ ℵ.

Then, at initial condition

ψ±(s, 0) = (1 + αT )max{∥g∥, ∥Ψl(0)∥, ∥Ψr(0)∥, ∥Ψb(0)∥} ± ŵ(s, 0),

we obtain
ψ±(s, 0) ≥ 0, for all (s, τ) ∈ Υb.

At boundary points, we have

ψ±(0, τ) = (1 + αT )max{∥g∥, ∥Ψl(τ)∥, ∥Ψr(τ)∥, ∥Ψb(τ)∥} ± ŵ(0, τ),

which gives
ψ±(0, τ) ≥ 0, for all (s, τ) ∈ Υl.

Similarly, we have

ψ±(1, τ) ≥ 0, for all (s, τ) ∈ Υr.

The differential operator Lτ
s satisfies

Lτ
sψ

±(s, τ) = (±ŵτ (s, τ)− ε(±ŵss(s, τ)) + â(s, τ)(±ŵs(s, τ)),

+ b̂(s, τ)((1 + αT )max{∥g∥, ∥Ψl(τ)∥, ∥Ψr(τ)∥, ∥Ψb(τ)∥} ± ŵ(s, τ)))

= (±ŵτ (s, τ)∓ε(ŵss(s, τ))±â(s, τ)ŵs(s, τ)±b̂(s, τ)ŵ(s, τ),

+ b̂(s, τ)((1 + αT )max{∥g∥, ∥Ψl(τ)∥, ∥Ψr(τ)∥, ∥Ψb(τ)∥} ± ŵ(s, τ)))

= Lτ
s ŵ(s, τ) + b̂(s, τ)((1 + αT )max ∥g∥, ∥Ψl(τ)∥, ∥Ψr(τ)∥, ∥Ψb(τ)∥)

≥ 0.

Thus, the maximum principle asserts that
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ψ±(s, τ) ≥ 0, for all (s, τ) ∈ ℵ.

Finally, we get

∥ŵ(s, τ)∥ ≤ (1 + αT )max{∥g∥, ∥Ψl∥, ∥Ψr∥, ∥Ψb∥}.

Theorem 1. Let the data â ∈ C(2+γ,1+γ/2)(Λ), b̂, d̂, g ∈ C(2+γ,1+γ/2) (ℵ),
Ψl ∈ C2+γ/2([0, T ]), Ψr ∈ C2+γ/2([0, T ]), Ψb ∈ C(4+γ,2+γ/2)(Υb), γ ∈ (0, 1),
meet the necessary compatibility requirement on the corner. Consequently,
(1) has a unique solution ŵ and ŵ ∈ C(4+γ,2+γ/2) (ℵ). Additionally, bounds
on derivatives of solution ŵ(s, τ) is satisfied for all nonnegative integers i and
j, where 0 ≤ i+ 2j ≤ 4, ∥∥∥ ∂i+jŵ

∂si∂τ j

∥∥∥ ≤ Cε−i.

Proof. The proof of existence and uniqueness can be found in [18]. To estab-
lish the derivative bound, the variable s is replaced to εϑ = s and follows the
approach given in [1].

In the above Theorem 1, we establish the bound for exact solution ŵ(s, τ),
which is not sufficient to establish the ε-uniform convergence of the method.
In order to get strong bounds on the derivatives of the exact solution ŵ, we
decompose the above ŵ into smooth and layer component,

ŵ(s, τ) = v̂(s, τ) + w(s, τ), (s, τ) ∈ ℵ̄,

where the following differential equations are satisfied by the smooth compo-
nent, v̂(s, τ),

Lτ
s v̂(s, τ) = −d̂(s, τ)v̂(s, τ − ξ) + g(s, τ), (s, τ) ∈ ℵ,

with initial condition

v̂(s, τ) = ŵ(s, τ), (s, τ) ∈ Υb,

and the boundary condition

v̂(0, τ) = ŵ(0, τ), v̂(1, τ) = ŵ(1, τ), 0 ≤ τ ≤ T.
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The smooth component v̂(s, τ) is further decomposed as

v̂(s, τ) = v̂0(s, τ) + εv̂1(s, τ), (s, τ) ∈ ℵ̄,

where v̂0(s, τ) is the solution of reduced problem

∂v̂0(s, τ)

∂τ
+ â(s, τ)

∂v̂0(s, τ)

∂s
+ b̂(s, τ)v̂0(s, τ)

= −d̂(s, τ)v̂0(s, τ − ξ) + g(s, τ), for all (s, τ) ∈ ℵ,

v̂0(s, τ) = Ψb(s, τ), (s, τ) ∈ Υb,

and v̂1(s, τ) satisfies the following problem,

∂v̂1(s, τ)

∂τ
+ â(s, τ)

∂v̂1(s, τ)

∂s
+ b̂(s, τ)v̂1(s, τ)

= −d̂(s, τ)v̂1(s, τ − ξ) +
∂2v̂0(s, τ)

∂s2
, (s, τ) ∈ ℵ,

v̂1(s, τ) = 0, (s, τ) ∈ Υb.

Furthermore, v̂ satisfies

Lτ
s v̂(s, τ) = −d̂(s, τ)v̂(s, τ − τ) + g(s, τ), (s, τ) ∈ ℵ,

v̂(s, τ) = ŵ(s, τ), (s, τ) ∈ Υb,

v̂(0, τ) = v̂0(0, τ), v̂(1, τ) = v̂0(1, τ) + εv̂1(1, τ), τ ∈ [0, T ],

and the singular components w satisfies

Lτ
sw(s, τ) = −d̂w(s, τ − ξ), (s, τ) ∈ ℵ,

w(s, τ) = 0, (s, τ) ∈ Υb,

w(0, τ) = 0, w(1, τ) = ŵ(1, τ)− v̂(1, τ), τ ∈ [0, T ],

and the estimation of singular and the smooth component are discussed in
Theorem 2 given below.

Theorem 2. Assume that â ∈ C(4+γ,2+γ/2)(Λ̄), b̂, d̂, g ∈ C(4+γ,2+γ/2) (ℵ̄),Ψl ∈
C3+γ/2([0, T ]),Ψr ∈ C3+γ/2([0, T ]),Ψb ∈ C(6+γ,3+γ/2)(Υb), γ ∈ (0, 1), fulfill
the necessary compatibility condition on the corner. Then, for all nonnega-
tive integers i, j such that 0 ≤ i + 2j ≤ 4, we have the following bounds for
the smooth v̂ and the layer part w in the decomposition of solution ŵ is
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∂si∂τ j

∥∥∥ ≤ C(1 + ε1−i),

and ∥∥∥ ∂i+jw

∂si∂τ j

∥∥∥ ≤ Cε−ie−γs/ε.

Proof. For the proof of theorem, one may refer [20].

3 Grid construction and numerical discretization

In this section, grids are developed to discretize the problem in both spatial
and temporal directions. Later, we use a backward Euler in the temporal di-
rection and an upwind method on the spatial derivative for the discretization
of the problem (1).

3.1 Temporal discretization

To establish the convergence of (1) at each instance, we use the uniform time
grid.

ΩM = {τk = k∆τ, k = 0, 1, . . . , M, ∆τM = T}.

Here M represents the grid points in the temporal direction.

3.2 Spatial discretization

We generate a modified graded mesh, ΛN
s in the interval [0, 1] as follows:

µ0 = 0,

µj = 2ε j
N , 1 ≤ j ≤ N

2 ,

µj+1 = µj(1 + ρh), N
2 ≤ j ≤ N − 2,

µN = 1,

(4)

where the parameter h satisfies the following nonlinear equation:

Iran. J. Numer. Anal. Optim., Vol. 14, No. 1, 2024, pp 77–106
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ln(1/ε) = (N/2) ln(1 + ρh). (5)

The above selection of the parameter h ensures that there are N/2 grid
points in the interval [ε, 1], which are distributed gradely in the interval
[ε, 1]. Numerical verification stimulates that in comparison to (µN−2, µN−1),
the interval (µN−1, 1) is not too small. In the subinterval [0, ε], we distribute
N/2 points with uniform step length 2ε/N , while in the subinterval [ε, 1],
we first find h for some fix N by means of the nonlinear equation (5), and
corresponding to that h, we distribute N/2 points in [ε, 1].
The mesh length is denoted by hj = µj − µj−1 for j = 1, 2, . . . , N .

Figure 1: Modified graded mesh for N = 32 and ε = 10−1.

Remark 1. The mesh size in piecewise uniform and the modified graded
region is given by

hj =

 2ε/N for j = 1, 2, . . . , N/2,

ρhµj−1 for j = N/2 + 1, N/2 + 2, . . . , N.

Lemma 3. The mesh defined in (4) satisfies the following estimates:

|hj+1 − hj | ≤

 0 for j = 1, 2, . . . , N/2,

Ch for j = N/2 + 1, N/2 + 2, . . . , N.

Proof. Initially, we consider j = 1, 2, . . . , N/2. As the mesh is uniform in
this portion, so nothing to prove.
For j = N/2 + 1, N/2 + 2, . . . , N . We have

|hj+1 − hj | = |ρhµj − ρhµj−1|

= ρh|µj − µj−1|

= ρ2h2µj−1

≤ Ch.

Here, we have taken 0 < ρ, h < 1.
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Lemma 4. For the modified graded mesh defined in (4), the parameter h
satisfies the following bound,

h ≤ CN−1 ln(1/ε).

Proof. Let K1 denote the number of partitioned points in (4) such that µj ≤
ε, for j = 1, 2, . . . , N/2. Clearly, K1 ≤ C/h. Let K2 be the number of
points in the partition (4) such that µj > ε. Let µN/2+1 be the smallest
point such that µj > ε. We have to estimate the bound for K2. Assuming
ρh ≤ 1, we have

K2 =

N∑
N/2+1

1 =

N∑
N/2+1

(µj+1 − µj)
−1

∫ µj+1

µj

dµ

=

N∑
N/2+1

(hj+1)
−1

∫ µj+1

µj

dµ

=

N∑
N/2+1

(hρµj)
−1

∫ µj+1

µj

dµ

≤
N∑

N/2+1

(2/ρhµj+1)
−1

∫ µj+1

µj

dµ,

because µj+1 < 2µj . For any µ ∈ [µj , µj+1], we have

K2 ≤
N∑

N/2+1

2(ρh)−1

∫ µj+1

µj

1

µ
dµ

≤ 2(ρh)−1

∫ 1

ε

1

µ
dµ

≤ 2(ρh)−1 ln(1/ε).

Recalling N = K1 +K2, we have

N ≤ C/ρh+ 2(ρh)−1 ln(1/ε)

N ≤ 1/h(ρC + 2ρ ln(1/ε))

N ≤ 1/h(C ln(1/ε)).

Finally, we get
h ≤ CN−1 ln(1/ε),
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where N represents grid points in the s-direction.

Now, we systematically discretize our domain. For this, a non-uniform
grid ΛN

s on Λ with N mesh points is obtained by distributing N/2 points
uniformly in the layer part and N/2 points nonuniformly outside the layer
part. Here, we consider an equidistant grid ΩM and Ωl with uniform step-
length ∆τ on [0, T ] and [−ξ, 0] with M and l grid points, respectively. Then,
the discretized domain will define as

ℵN = ΛN
s × ΩM , ΥN

b = ΛN
s × Ωl,

and the boundary points ΥN of ℵN are ΥN = ℵ̄N ∩ Υ. Additionally, ΥN
l

= ℵN ∩ Υl and ΥN
r = ℵN ∩ Υr define the left and right boundary points,

respectively. Also, ℵN
i = ΛN

s × Ωl
i,τ , where Ωl

i,τ is the set of uniform mesh
in [(i − 1)ξ, iξ]. Now, we discretize our problem with the above-discretized
mesh. We apply an upwind difference method and backward Euler for spatial
and temporal derivatives. Then

(D−
τ − ε

D+
s −D−

s

ĥj
+ â(j, k + 1) D+

s )Sj,k+1

+b̂j,k+1Sj,k+1 = −d̂(j, k + 1)Sj,k−l + gj,k+1,

S0,k+1 = Ψl(τk+1),

SN,k+1 = Ψr(τk+1),

Sj,−p = Ψb(sj ,−τp), j = 1, 2, . . . , N − 1, p = 0, 1, . . . , l.

(6)

By arranging (6), we will get a tri-diagonal system

(αj,k+1)Sj−1,k+1 + (βj,k+1)Sj,k+1 + (γj,k+1)Sj+1,k+1 = hj,k, (7)

where

αj,k+1 =
−ε∆τ
hj ĥj

,

βj,k+1 = 1 +
ε∆τ

hj+1ĥj
+
ε∆τ

hj ĥj
− â(j, k + 1)∆τ

hj+1
+ b̂j,k+1∆τ,

γj,k+1 =
−ε∆τ
hj+1ĥj

+
a(j, k + 1)∆τ

hj+1
,

hj,k = −d̂(j, k + 1)Sj,k−l∆τ + gj,k+1∆τ + Sj,k,
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ĥj =
hj+1 + hj

2
,

and the step length ∆τ satisfies l∆τ = ξ, and also τp = p∆τ, p ≥ −l, and l
is a positive integer and the mesh function ṽ(sj , τk) = ṽj,k is defined by

D+
s ṽj,k =

ṽj+1,k − ṽj,k
hj+1

, D−
s ṽj,k =

ṽj,k − ṽj−1,k

hj
,

D−
τ ṽj,k =

ṽj,k − ṽj,k−1

hj+1
,

and
δ2s ṽj,k =

(D+
s −D−

s )ṽj,k

ĥj
.

3.3 Numerical algorithm

The following algorithm provides the grid construction and the corresponding
numerical solution:

Step 1. Given the number of mesh points in the temporal and the spatial direc-
tion, M and N , respectively, take uniform mesh points in the temporal
direction, {τk}Mk=0.

Step 2. For the finer part in the spatial direction (i.e., [0, ε]), we have the uni-
form mesh {µj}N/2

j=0 .

Step 3. For the coarser part (i.e., [ε, 1]), the graded mesh parameter h is ob-
tained by solving the nonlinear equation (5) by the bisection method.

Step 4. Using the graded mesh parameter h, obtain the graded mesh in the
interval [ε, 1] from (4).

Step 5. Set k = 1.

Step 6. For the value of k, solve the tridiagonal system (7) to obtain the solution
for the time level t = k.

Step 7. k = k + 1 goto Step 6.

Step 8. If k =M , then stop and mark Sj,k, as the required solution.
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4 Error analysis

Lemma 5 (Discrete maximum principle). [9] Assume that the mesh function
ξ(sj , τk) satisfies ξ(sj , τk) ≥ 0 on ΥN . If Lτ,N

s ξ(sj , τk) ≥ 0 on (sj , τk) ∈ ℵN ,
then ξ(sj , τk) ≥ 0 on ℵN .

Lemma 6. For any solution S(sj , τk) of (6), we have

∥S(sj , τk)∥ ≤ (1 + αT )max(∥Lτ,N
s ∥|, ∥Ψ∥ΥN ). (8)

Proof. By constructing the barrier function, we have

Ŝ±(sj , τk) = (1 + αT )max(∥Lτ,N
s ∥|, ∥Ψ∥ΥN ) ± S(sj , τk). (9)

We can obtain (8) by applying (5) on (9).

Theorem 3. Let ŵ and S be the solution of continuous problem (1) and
discretized problem (6), respectively. Furthermore, the both solutions meet
the corners compatibility requirements. Then, the error estimate is given by

max |(ŵ − S)(sj , τk)| ≤ C[∆τ +N−1 ln(1/ε)], (sj , τk) ∈ ℵN . (10)

Here, constant C is free from N , ∆τ , and ε.

Proof. The proof is similar to the proof given in [10, 1]. We derive it by using
our mesh briefed in sections 3.1 and 3.2 and (5).
To prove the theorem for different time levels, we first divide the domain ℵ
into ℵ = ℵ1 ∪ ℵ2, where ℵ1 = Λ× [0, ξ] and ℵ2 = Λ× [ξ, 2ξ]. The discretized
domain ℵN = ℵN

1 × ℵN
2 , where ℵN

1 = ΛN
s × Ωl and ℵN

2 = ΛN
s × ΩM .

First, for τ ∈ [0, ξ], the right-hand side of (1) becomes −d̂(s, τ)ŵ(s, τ − ξ) +

g(s, τ), which is free from ε. Thus the results in [10] is applicable, and we
obtain

max |(ŵ − S)(sj , τk)| ≤ C[∆τ +N−1 ln(1/ε)]. (11)

For τ ≥ ξ, the term ŵ(s, τ − ξ) is not free from ε. So, we are required to
examine the estimates between the numerical solution S and the analytical
solution ŵ over the interval [ξ, 2ξ]. The following SPPDEs is considered:( ∂

∂τ
− ε

∂2

∂s2
+ â(s, τ)

∂

∂s
+ b̂(s, τ)

)
ŵ(s, τ)
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= −d̂(s, τ)ŵ(s, τ − ξ) + g(s, τ), (s, τ) ∈ ℵN
2 , (12)

ŵ(s, τ) = ŵ(s, τl), s ∈ (0, 1),

ŵ(0, t) = Ψ0(τ), ŵ(1, τ) = Ψ1(τ), τ ∈ [ξ, 2ξ].

To determine the numerical solution, we discretize (12) by using upwind finite
difference for spatial derivatives and the backward-Euler for time derivative,

Lτ
sS(sj , τk) ≡ D−

τ Sj,k − εδ2sSj,k + âj,kD
−
s Sj, k + b̂j,kSj,k

= −d̂j,kSj,k−l + g(sj , τk), (sj , τk) ∈ ℵN
2 , (13)

S(sj , τk) = S1(sj , τk), (sj , τk) ∈ ℵN ,

S(0, τk) = Ψ0(τk),

S(1, τk) = Ψ1(τk), τk ∈ Ωl
2,τ ,

where S1(sj , τk) is the approximate solution obtained over the interval ℵN
1 .

Now, we divide the solution ŵ of (1) into its regular and singular components
as ŵ = ŷ + ẑ, and furthermore, ŷ = y0 + εy1, where y0 is the solution to the
reduced problem,( ∂

∂τ
+ â(s, τ)

∂

∂s
+ b̂(s, τ)

)
y0(s, τ)

= −d̂y0(s, τ − ξ) + g(s, τ), (s, τ) ∈ (0, 1)× (ξ, 2ξ),

y0(s, τ) = ŵ(s, τ), (s, τ) ∈ (0, 1)× [0, ξ],

y0(0, τ) = ŵ(0, τ), τ ∈ [ξ, 2ξ],

and

Lτ
sy1(s, τ) = −d̂(s, τ)y1(s, τ − ξ) +

∂2y0(s, τ)

∂s2
,

y1(s, τ) = 0, (s, τ) ∈ (0, 1)× [0, ξ],

y1(0, τ) = y1(1, τ) = 0, τ ∈ [ξ, 2ξ].

Furthermore, ŷ satisfies

Lτ
s ŷ(s, τ) = −d̂(s, τ)ŷ(s, τ − ξ) + g(s, τ), (s, τ) ∈ (0, 1)× [ξ, ξ],

ŷ(s, τ) = ŵ(s, τ), (s, τ) ∈ (0, 1)× [0, ξ],

ŷ(0, τ) = y0(0, τ), ŷ(1, τ) = y0(1, τ), τ ∈ [ξ, 2ξ].
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The singular components z satisfies

Lτ
s ẑ(s, τ − ξ) = −d̂ẑ(s, τ − ξ), (s, τ) ∈ (0, 1)× (ξ, 2ξ),

ẑ(s, τ) = 0, (s, τ) ∈ (0, 1)× [0, ξ],

ẑ(1, τ) = 0, ẑ(0, τ) = Ψl(τ)− y0(0, τ), τ ∈ [ξ, 2ξ].

Now, we decompose the numerical solution S of (13) into S = Y +Z. Here, Z
represents the singular component of the decomposition, and Y , the regular
component, is the solution to the following non-homogeneous problem:

Lτ,N
s Y = −d̂Y (sj , τk−l) + g(sj , τk), (sj , τk) ∈ ℵN

2 ,

Y (sj , τk) = S1(sj , τk), (sj , τk) ∈ (0, 1)× (0, ξ),

Y (0, τk) = ŷ(0, τk), Y (1, τk) = ŷ(1, τk), τk ∈ Ωl
2,τ ,

and the singular component Z must satisfy

Lτ,N
s Z = −d̂Z(sj , τk−l), (sj , τk) ∈ ℵN

2 ,

Z(sj , τk) = 0, (sj , τk) ∈ ℵN
1 ,

Z(1, τk) = 0, Z(0, τk) = Ψl(τk)− ŷ(0, τk), τk ∈ Ωl
2,τ .

Therefore, the error can be written in the form

S − ŵ = (Y − ŷ) + (Z − ẑ).

Now, we will establish the bounds for the smooth and the layer components.
To establish the bound for the smooth component, we use the classical argu-
ment. The smooth error component can be expressed as

Lτ,N
s (Y − ŷ) = −d̂Y (sj , τk−l) + g(sj , τk)− Lτ,N

s ŷ

= −d̂Y (sj , τk−l) + Lτ
s ŷ + d̂ŷ(sj , τk−l)− Lτ,N

s ŷ

= d̂(ŷ(sj , τk−l)− Y (sj , τk−l)) + Lτ,N
s ŷ.

Thus we obtain

Lτ,N
s (Y − ŷ) = d̂(ŷ(sj , τk−l)− Y (sj , τk−l))− ε(

∂2

∂s2
− δ2s)ŷ

+ (
∂

∂τ
− δτ )ŷ + â(sj , τk)(

∂

∂s
− δ−s )ŷ.
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When absolute values are taken on both sides and used with (10), the above
inequality becomes

|Lτ,N
s (Y − ŷ)| ≤ C(∆τ +N−1 ln(1/ε)) + ε|( ∂

2

∂s2
− δ2s)ŷ|

+ |( ∂
∂s

− δ−s )ŷ|+ |( ∂
∂τ

− δτ )ŷ|.

Using the Taylor series expansion, we have

|Lτ,N
s (Y − ŷ)| ≤ C(∆τ +N−1 ln(1/ε)) + ε

12
(sj+1 − sj−1)

2
∥∥∥∂4ŷ
∂s4

∥∥∥
+ (sj − sj−1)

∥∥∥∂2ŷ
∂s2

∥∥∥+
(τk − τk−1)

2

∥∥∥∂2ŷ
∂τ2

∥∥∥.
On using the estimates of derivatives, bounds of mesh length, and discrete
maximum principle, we have

|(Y − ŷ)(sj , τk)| ≤ C[∆τ +N−1 ln(1/ε)]. (14)

Like continuous z, Z is discretized for estimating the singular component.
Thus

Lτ,N
s Z = −d̂Z(sj , τk−l), (sj , τk) ∈ ℵN

2 ,

Z(sj , τk) = 0, (sj , τk) ∈ ℵN
2 ,

Z(1, τk) = 0, Z(0, τk) = Ψl(τk)− ŷ(0, τk), τk ∈ Ωl
2,τ .

The singular component error can be expressed as

Lτ,N
s (Z − ẑ) = Lτ,N

s Z − Lτ,N
s ẑ

= −d̂Z(si, τn−l)− Lτ,N
s ẑ

= (Lτ
s − Lτ,N

s )ẑ

= −ε( ∂
2

∂s2
− δ2s)ẑ + (

∂

∂τ
− δτ )ẑ.

Then, the classical estimates gives

|Lτ,N
s (Z − ẑ)(sj , τk)| ≤ C[∆τ +N−1 ln(1/ε)].

The discrete maximum principle is satisfied by the operator Lτ,N
s and also,

due to the uniform boundedness of the inverse operator, the above inequality
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reduces to
|(Z − ẑ)(sj , τk)| ≤ C[∆τ +N−1 ln(1/ε)]. (15)

Combining (14) and (15) completes the proof on [ξ, 2ξ]. In the similar fashion,
we estimate the error in the successive interval in time by using induction.

5 The numerical result with examples

This section consists of two test examples with boundary layers to illustrate
the numerical method discussed above. Using tables and graphs, we present
the findings of numerical methods. All the results are performed by taking
ρ = 0.9. Numerical results confirm our theoretical findings.

Example 1. Consider the following problem:

ŵτ (s, τ)− εŵss(s, τ)− ŵs(s, τ)

= ŵ(s, τ − 1) + g(s, τ), (s, τ) ∈ (0, 1)× (0, 2],

ŵ(s, 0) = ŵ0(s, τ), (s, τ) ∈ (0, 1)× [−1, 0],

ŵ(0, τ) = τ, ŵ(1, τ) = 0, τ ∈ [0, 2].

Using the exact solution, ŵ(s, τ) = e−s/ε−e−1/ε

1−e−1/ε τ + 2τs cos((πs)/2), we will
obtain ŵ0(s, τ) and g(s, τ). Additionally, the maximum point-wise error for
each ε is defined by

eN,∆τ
ε = max |(ŵ − S)(sj , τk)| (sj , τk) ∈ ℵN ,

where ŵ and S are exact and approximate solution, respectively. The order
of convergence is computed by

pN,∆τ
ε =

log(eN,∆τ/e2N,∆τ/2)

log 2 .

For Example 1, the computed maximum pointwise error in the layer region
is shown in Table 1, and the associated convergence order is in Table 2.
Additionally, in the smooth region, Table 3 shows the maximum pointwise
error, and Table 4 presents the related order of convergence. The plots for
the numerical solution of Example 1 for the parameters N = 128, ε = 10−2
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and ε = 10−8 are shown in Figures 2a and 2b. At s = 0, the figure shows
the existence of a boundary layer. Error plot of Example 1 for N = 128,
ε = 10−2, and ε = 10−8 is presented in Figure 3a and 3b, respectively.
Figure 6a is a plot of Example 1 on the log-log scale for maximum pointwise
error. From Table 5 and Figure 6a, it is clear that the applied scheme is
first-order uniformly convergent.

Table 1: Maximum error on the modified graded mesh in the layer region for Example
1

Number of intervals N/∆τ

ε 128/ 1
10 256/ 1

20 512/ 1
40 1024/ 1

80 2048/ 1
160 4096/ 1

320

10−2 2.2150E-01 1.0252E-01 4.8929E-02 2.3896E-02 1.1828E-02 5.8921E-03

10−4 5.0063E-01 2.3021E-01 1.0696E-01 5.1049E-02 2.4870E-02 1.2266E-02

10−6 7.6497E-01 3.6319E-01 1.6700E-01 7.8479E-02 3.7821E-02 1.8535E-02

10−8 9.9761E-01 4.9961E-01 2.3016E-01 1.0699E-01 5.1072E-02 2.4881E-02

Table 2: Convergence rate for Example 1 using a modified graded mesh in the layer
region

Number of Intervals N/∆τ

ε 128/ 1
10 256/ 1

20 512/ 1
40 1024/ 1

80 2048/ 1
160

10−2 1.1158 1.0731 1.0373 1.0158 1.0053

10−4 1.1057 1.1067 1.0703 1.0394 1.0207

10−6 1.0447 1.1156 1.0919 1.0556 1.0302

10−8 0.9509 1.1049 1.1060 1.0697 1.0391
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Table 3: Maximum error on the modified graded mesh in the smooth region for Example
1

Number of Intervals N/∆τ

ε 128/ 1
10 256/ 1

20 512/ 1
40 1024/ 1

80 2048/ 1
160 4096/ 1

320

10−2 2.2150E-01 1.0252E-01 4.8929E-02 2.3896E-02 1.1828E-02 5.8921E-03

10−4 5.0063E-01 2.3021E-01 1.0696E-01 5.1049E-02 2.4870E-02 1.2266E-02

10−6 7.6497E-01 3.6319E-01 1.6700E-01 7.8479E-02 3.7821E-02 1.8535E-02

10−8 9.9761E-01 4.9961E-01 2.3016E-01 1.0699E-01 5.1072E-02 2.4881E-02

Table 4: Convergence rate for Example 1 using a modified graded mesh in the smooth
region

Number of Intervals N/∆τ

ε 128/ 1
10 256/ 1

20 512/ 1
40 1024/ 1

80 2048/ 1
160

10−2 1.1113 1.0672 1.0339 1.0146 1.0053

10−4 1.1208 1.1058 1.0671 1.0374 1.0198

10−6 1.0747 1.1209 1.0894 1.0531 1.0289

10−8 0.9977 1.1182 1.1051 1.0669 1.0375
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(b) N = 128, ε= 10−8

Figure 2: Solution profile for Example 1 for various values of N and ε
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Table 5: Maximum error and rate of convergence on a modified graded mesh for Example
1

Number of Intervals N/∆τ

ε 128/ 1
10 256/ 1

20 512/ 1
40 1024/ 1

80 2048/ 1
160 4096/ 1

320

10−2 2.2150E-01 1.0252E-01 4.8929E-02 2.3896E-02 1.1828E-02 5.8921E-03

1.1113 1.0672 1.0339 1.0146 1.0053

10−4 5.0063E-01 2.3021E-01 1.0696E-01 5.1049E-02 2.4870E-02 1.2266E-02

1.1208 1.1058 1.0671 1.0374 1.0198

10−6 7.6497E-01 3.6319E-01 1.6700E-01 7.8479E-02 3.7821E-02 1.8535E-02

1.0747 1.1209 1.0894 1.0531 1.0289

10−8 9.9761E-01 4.9961E-01 2.3016E-01 1.0699E-01 5.1072E-02 2.4881E-02

0.9977 1.1182 1.1051 1.0669 1.0375
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Figure 3: Error profile for Example 1 for various values of N and ε

Example 2. Consider the following problem:

ŵτ (s, τ)− εŵss(s, τ)− 20ŵs(s, τ)

= ŵ(s, τ − 1) + 10τ2 exp(−τ)s(1− s), (s, τ) ∈ (0, 1)× (0, 2],

ŵ(s, τ) = 0, (s, τ) ∈ (0, 1)× [−1, 0],

ŵ(0, τ) = 0, ŵ(1, τ) = 0, τ ∈ [0, 2].

In Example 2, we do not have an exact solution. To determine the max-
imum pointwise error and to establish an order of convergence, we employ
the double mesh principle to the computed solution. For this, we consider
2M and 2N mesh interval in the temporal and spatial directions to deter-
mine the numerical solution S̃(sj , τk) on the mesh ℵ̄2N = Λ̄2N

s × Ω̄2M , for
j = 1, 2, . . . , N . Additionally, the jth mesh point of ΛN

s and the 2jth mesh
point of Λ̄2N

s are identical. Furthermore, for each ε, the maximum pointwise
error is defined by

EN,∆τ
ε = max |(S − S̃)(sj , τk)|, (sj , τk) ∈ ℵN ,

and the order of convergence is given by

p̂N,∆τ
ε =

log(eN,∆τ/e2N,∆τ/2)

log 2 .
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In Example 2, the computed maximum pointwise error is shown in Table
6, and the associated convergence order is in Table 7. The plots for the
numerical solution of Example 2 for the parameters N = 128, ε = 10−2 and
ε = 10−8 are shown in Figure 4a and Figure 4b. The boundary layer at
s = 0 can be seen in these figures. Error plot of Example 2 for N = 128,
ε = 10−2 and ε = 10−8 is presented in Figure 5a and Figure 5b respectively.
Figure 6b is a plot of Example 2 on the log-log scale for maximum pointwise
error. Table 7 and Figure 6b show that the employed scheme is first-order
uniformly convergent.

Table 6: Maximum errors for Example 2 on modified graded mesh

Number of Intervals N/∆τ

ε 128/ 1
10 256/ 1

20 512/ 1
40 1024/ 1

80 2048/ 1
160 4096/ 1

320

10−2 1.4063E-03 6.3978E-04 2.9302E-04 1.3810E-04 6.6717E-05 3.2746E-05

10−4 2.8608E-03 1.4120E-03 6.4327E-04 2.9485E-04 1.3905E-04 6.7192E-05

10−6 3.8686E-03 2.1730E-03 1.0218E-03 4.6404E-04 2.1513E-04 1.0258E-04

10−8 4.3736E-03 2.8588E-03 1.4119E-03 6.4336E-04 2.9491E-04 1.3906E-04

Table 7: Rate of convergence for Example 2 on a modified graded mesh

Number of Intervals N/∆τ

ε 128/ 1
10 256/ 1

20 512/ 1
40 1024/ 1

80 2048/ 1
160

10−2 1.1362 1.1266 1.0853 1.0496 1.0267

10−4 1.0187 1.1343 1.1254 1.0844 1.0493

10−6 0.8321 1.0885 1.1389 1.1090 1.0685

10−8 0.6134 1.0178 1.1340 1.1253 1.0846

6 Conclusions

This article explored the upwind difference scheme on a modified graded
mesh. Optimal error bounds were established in the maximum norm. The
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(a) N = 128, ε= 10−2 (b) N = 128, ε= 10−8

Figure 4: Solution profile for Example 2 for various values of N and ε
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Figure 5: Error profile for Example 2 for various values of N and ε

method was proven to converge with first order up to logarithm. It can
be observed from the numerical simulation that this logarithm term ln(1/ε)
is not significant. Analytical estimations were carried out to gain uniform
convergence results of computed solutions in the article. Two test problems
were included to check the efficiency of the numerical method. Tables have
been used to present the maximum pointwise error and order of convergence.
Finally, numerical experiments confirmed the theoretical findings.
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