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Abstract

We present a method to minimize locally Lipschitz functions. At first, a
local quadratic model is developed to approximate a locally Lipschitz func-
tion. This model is constructed by using the ϵ-subdifferential. We minimize
this local model and compute a search direction. It is shown that this direc-

tion is descent. We generalize the Wolfe conditions for finding an adequate
step length along this direction. Next, the method is equipped with a quasi-
Newton approach to update the local model and its globally convergence
is proposed. Finally, the proposed algorithm is implemented in MATLAB

environment on some standard nonsmooth optimization test problems and
compared with some algorithms in the literature.
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1 Introduction

In this paper, we consider the following unconstrained nonsmooth optimiza-
tion problem:

min
x∈Rn

f(x) (1)

where f : Rn → R is a locally Lipschitz continuous function. There ex-
ist several methods for solving this problem, for example, the subgradient
method [25], the bundle methods [7,10,19,24], algorithms based on smoothing
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techniques [22], the derivative free methods [3], the bundle and quasi-Newton
combining methods [13,15,17], the gradient sampling method [5,12], the lim-
ited memory gradient bundle method [11], and the trust region method [2,23].

In the most smooth optimization problems, the objective function is ap-
proximated by a quadratic model as follows:

Q(xk + d) = f(xk) +∇f(xk)T d+
dTBkd

2
, (2)

where ∇f(xk) and Bk are the gradient and Hessian of f at xk; see [21]. In
fact, the objective function is locally approximated at xk. In quasi-Newton
methods, the quadratic model (2) is minimized and its solution is a descent
direction at xk. Afterward a line search method is applied along this direc-
tion. This process is repeated until the optimal solution is achieved. Also,
in trust region methods, the model (2) is minimized on a given region, called
trust region, and a search direction is obtained. If this direction does not
decrease the objective function adequately, then the trust region is updated.

In the nonsmooth optimization same as the smooth one, the objective
function is approximated. Han et al. [9], presented a quadratic model to
approximate the locally Lipschitz function f as follows:

Q(xk + d) = f(xk) + ϕ(xk, d) +
dTBkd

2
, (3)

where ϕ : Rn ×Rn → R is a given iteration function and Bk is a given n× n
symmetric matrix. The iteration function ϕ must have some properties to
guarantee the convergence of produced minimization algorithm.

The presented iteration function in [9] is not practical. So, in this paper,
we propose a practical iteration function and solve the following problem:

min
d∈Rn

Qk(xk + d) = f(xk) + ϕ(xk, d) +
dTBkd

2
. (4)

Suppose that dk is the solution of (4). We show that dk is a descent direction
and develop a line search method to reduce objective function along this
direction.

In this paper, we propose a computable quadratic model to approximate
the locally Lipschitz function and develop a minimization algorithm based
on this model. In Section 2, some preliminary concepts of the nonsmooth
analysis are reviewed. In Section 3, an iteration function is introduced for
the locally Lipschitz objective function. After that, a descent algorithm is
proposed. In Section 4, the global convergence of the presented algorithm
is proved. The line search algorithm is described in Section 5. Numerical
results are given in Section 6.
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2 Preliminaries

In this section, we state the basic concepts and definitions of nonsmooth
analysis from [4]. The Clarke generalized directional derivative of the locally
Lipschitz function f at the point x in the direction d is defined by

f◦(x, d) := lim sup
y→x,t↓0

f(y + td)− f(x)

t
.

The Clarke generalized gradient of f at x is the set ∂f(x) defined by

∂f(x) = {ξ ∈ Rn|f◦(x; d) ≥ ξT d for all d ∈ Rn}.

Each vector ξ ∈ ∂f(x) is called a subgradient of f at x. For ϵ > 0, The Clarke
generalized ϵ-directional derivative of f at x in the direction d is defined by

f◦ϵ (x, d) := lim sup
y→x,t↓0

f(y + td)− f(x) + ϵ

t
,

and the Goldstein ϵ-subdifferential of f at the point x is the set

∂ϵf(x) := cl conv{∂f(y), ∥x− y∥2 ≤ ϵ},

where conv and cl are used to denote the convex hull and the closure, respec-
tively. Each element ξ ∈ ∂ϵf(x) is called an ϵ-subgradient of the function f
at x; see [4]. It can be seen that f◦ϵ (x, d) = supξ∈∂ϵf(x) ξ

T d. Let L be the
Lipschitz constant of f in a neighborhood of x. Then, we have

∥v∥2 ≤ L, for all v ∈ ∂f(x).

Throughout the paper, the used norm is the Euclidean norm. If f is dif-
ferentiable at x, then ∇f(x) ∈ ∂f(x). Furthermore, if f is continuously
differentiable at x, then

∂f(x) = {∇f(x)}.

If 0 ∈ ∂ϵf(x), then x is called as an ϵ-stationary point.

3 Generalized quasi-Newton method

In this section, we develop a computable iteration function and suppose that
Bk is positive definite and has bounded norm, m ≤ ∥Bk∥ ≤ M . Since B−1

k

is positive definite, then we consider its Cholesky decomposition as follows:

B−1
k = LTL,
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where L is an upper triangular matrix with real and positive diagonal entries,
and LT denotes the transpose of L. To define the iteration function, we
consider the following problem:

vk = arg min
ξ∈∂ϵf(xk)

∥Lξ∥2, (5)

where ϵ is a small enough positive scalar, and define ϕ(xk, d) = vTk d. There-
fore the problem (4) is rewritten as follows:

min
d∈Rn

qk(d) = vTk d+
dTBkd

2
. (6)

By this modification, −B−1
k vk is the unique solution of (6). Let dk =

− B−1
k vk

∥B−1
k vk∥2

be a search direction. The line search is applied along this di-

rection and the step length αk is returned. The next iteration is computed
as follows:

xk+1 = xk + αkdk.

At the point xk+1, either Bk is updated by one of the quasi-Newton methods
or is set the identity matrix for all k. Now, we are ready to express the
generalized quasi-Newton algorithm for solving the problem (1):

Algorithm 1 Generalized quasi-Newton algorithm

Step 0 (Initialization): Let B1 = In×n, ϵ > 0, c1 ∈ (0, 1), x1 ∈ Rn, k =
1.

Step 1 (Creating an iteration function): Set L as an upper triangular
matrix of Cholesky decomposition for the matrix B−1

k . Solve (5) at the
point xk and denote its solution by vk.

Step 2 (Stopping condition): If ∥vk∥2 = 0, then stop, else set dk =

− B−1
k vk

∥B−1
k vk∥

and compute qk = qk(dk).

Step 3 (Line search method): Apply the line search algorithm and find
the step length αk ∈ [ϵ, 1] such that

αk = max
{
α | f(xk + αdk)− f(xk) ≤ c1αv

T
k dk

}
.

Set xk+1 = xk + αkdk.

Step 4 (Updating): If it is necessary, then update Bk, set k = k + 1 and
go to step 1.
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As mentioned before, we can set Bk = I for all k in Step 4, which means
that the matrix B−1

k is a fixed and identity matrix. Therefore, Algorithm
1 is converted to the steepest descent method for minimizing the locally
Lipschitz function [18]. If Bk is updated by the BFGS formula (see [21]), then
Algorithm 1 is a generalization of the quasi-Newton method for minimizing
the locally Lipschitz continuous function. In Section 5, we describe a line
search algorithm how to find a step length along the search direction such
that the Wolfe conditions are satisfied.

The following lemma shows that the optimal value of (6) is nonpositive.
Also it ensures that if the optimal value of (6) is nonzero, then the corre-
sponding solution provides a descent direction for the function f at the point
xk. Else xk is the optimal solution.

Lemma 1. Let f : Rn → R be a locally Lipschitz function and let c1 ∈ (0, 1).
Suppose that vk is the solution of problem (5) at xk such that vk ̸= 0. If

dk = − B−1
k vk

∥B−1
k vk∥2

, then

(a) vTk dk ≤ 0 and qk ≤ 0.

(b) if vTk dk > 0, then there exists a scalar ᾱ > 0 such that for all α ∈ [0, ᾱ],
we have

f(xk + αdk)− f(xk) ≤ c1αv
T
k dk.

Proof. Part (a) is clear. To prove part (b), at the contrary, we suppose there
exists a positive sequence {αi} such that αi → 0 and we have

f(xk + αidk)− f(xk) > c1αiv
T
k dk.

Both sides of the above inequality are divided by αi, then, with passing to
the lim supi→∞, we deduce

f◦ϵ (xk, dk) ≥ f◦(xk, dk) ≥ lim sup
i→∞

f(xk + αidk)− f(xk)

αi
≥ c1v

T
k dk.

Since dk = − B−1
k vk

∥B−1
k vk∥2

, then vTk dk = − vT
k B−1

k vk

∥B−1
k vk∥2

= − ∥Lvk∥2
2

∥B−1
k vk∥2

. Thus we have

f◦ϵ (xk, dk) ≥ −c1
∥Lvk∥2

∥B−1
k vk∥2

. (7)

On the other hand, we have

f◦ϵ (xk, dk) = max
ξ∈∂ϵf(xk)

ξT dk = max
ξ∈∂ϵf(xk)

−ξTB−1
k vk

∥B−1
k vk∥2

,

=
−1

∥B−1
k vk∥2

min
ξ∈∂ϵf(xk)

ξTLTLvk =
−1

∥B−1
k vk∥2

min
ξ∈∂ϵf(xk)

(Lξ)TLvk.
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According to (5), we have ∥Lvk∥2 ≤ ∥Lξ∥2, for all ξ ∈ ∂ϵf(x), and since the
set ∂ϵf(xk) is a convex compact set, referring to [20, Lemma 5.2.6.], reader
can easily find out

f◦ϵ (xk, dk) = − ∥Lvk∥22
∥B−1

k vk∥2
. (8)

By (7) and (8), we have

− ∥Lvk∥22
∥B−1

k vk∥2
= f◦ϵ (xk, dk ≥ −c1

∥Lvk∥22
∥B−1

k vk∥2
.

Since c1 ∈ (0, 1), the above equation is false. Thus, part (b) is proved.

The following lemma shows that the step length αk = ϵ is satisfied the
Arimijo condition along dk for all k.

Lemma 2. Let f : Rn → R be a locally Lipschitz continuous function and
let c1 ∈ (0, 1). Then the step length ϵ satisfies the Armijo condition along dk
at xk.

Proof. Since f is a locally Lipschitz continuous function, then according to
the mean-value theorem in [20], there exists η ∈ (0, 1) such that z = xk+ηϵdk
and

f(xk + ϵdk)− f(xk) ∈ ∂f(z)T (ϵdk).

So, there exists u ∈ ∂f(z) such that

f(xk + ϵdk)− f(xk) = ϵuT dk = −
ϵuTB−1

k vk

∥B−1
k vk∥2

= −ϵ(Lu)
T (Lvk)

∥B−1
k vk∥2

. (9)

Since vk ∈ ∂ϵf(xk) is the solution of problem (5), and ∂ϵf(xk) is a convex
compact set, then by [20, Lemma 5.2.6], we have

(Lu)T (Lvk) ≥ ∥Lvk∥22. (10)

So, by (9) and (10), we have

f(xk + ϵdk)− f(xk) ≤ − ϵ∥Lvk∥22
∥B−1

k vk∥2
= −

ϵvTk B
−1
k vk

∥B−1
k vk∥2

= ϵvTk dk.

Since vTk dk < 0 and c1 ∈ (0, 1), then

f(xk + ϵdk)− f(xk) ≤ c1ϵv
T
k dk.

Thus the proof is completed.
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4 Optimality condition and global convergence

In this section, we provide the necessary optimality condition and prove the
global convergence of Algorithm 1. If ∥vk∥2 = 0 at some iteration k, then
0 ∈ ∂ϵf(xk). This shows that xk is an ϵ-stationary point. Now, we show
that if Algorithm 1 dose not terminate after finite many iterations, then each
accumulation point of the sequence {xk} is an ϵ-stationary point of f . To
prove this, we first prove the following lemma.

Lemma 3. Suppose that the level set L := {x : f(x) ≤ f(x1)} is bounded, and
there exist positive constants M and m such that m∥d∥22 ≤ dTBkd ≤M∥d∥22,
for all k and d ∈ Rn. If Algorithm 1 does not terminate after finite many
iterations, then

lim
k→∞

∥vk∥ = 0.

Proof. Suppose that Algorithm 1 does not terminate after finite many itera-
tions. Since ∥vk∥ ≠ 0 for each k, then by Lemma 1, we have

f(xk + αkdk)− f(xk) ≤ c1αkv
T
k dk. (11)

Since {f(xk)} is a strictly decreasing and bounded below sequence, then it
converges and we have

f(xk + αkdk)− f(xk) → 0.

So by (11), we have
0 ≤ c1 lim

k→∞
αkv

T
k dk.

By Lemma 1, we know vTk dk = − vT
k B−1

k vk

∥B−1
k vk∥2

≤ 0, so

0 ≤ c1 lim
k→∞

αkv
T
k dk = −c1 lim

k→∞

αkv
T
k B

−1
k vk

∥B−1
k vk∥2

≤ 0.

On the other hand, by Lemma 2, αk ≥ ϵ Thus

lim
k→∞

vTk B
−1
k vk

∥B−1
k vk∥2

= 0. (12)

Let 0 < λk1 ≤ λk2 ≤ · · · ≤ λkn be the eigenvalues of B−1
k . Since B−1

k is a
positive definite matrix, then we have λk1 ≥ m and λkn ≤M . Therefore

m

M
∥vk∥2 ≤ λk1

λkn
∥vk∥2 ≤

vTk B
−1
k vk

∥B−1
k vk∥2

≤ λkn
λk1

∥vk∥ ≤ M

m
∥vk∥2. (13)

Then, by (12) and (13), we conclude ∥vk∥2 → 0.
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In the following theorem, we show that each accumulation point of the
sequence {xk} is an ϵ-stationary point.

Theorem 1. Suppose that the level set L := {x : f(x) ≤ f(x1)} is bounded
and that f : Rn → R is a locally Lipschitz function on L. If x∗ is an
accumulation point of the sequence {xk}, then x∗ is an ϵ-stationary point of
f .

Proof. Since {xk} ⊂ L, then the sequence {xk} is bounded and it has a
convergent subsequence. Let {xki} be a subsequence of the sequence {xk}
convergent to x∗. We have vki ∈ ∂ϵf(xki) and by Lemma 3, vki → 0. On
the other hand, ∂ϵf(·) is upper semicontinuous. Thus 0 ∈ ∂ϵf(x

∗) and this
shows that x∗ is an ϵ-stationary point of f .

5 Line search algorithm

In this section, we present a line search algorithm to update the matrix Bk

by the BFGS method. To do this, we need two subgradients ξk ∈ ∂f(xk) and
ξk+1 ∈ ∂f(xk+1), such that the curvature condition is satisfied, that is,

ξTk+1dk ≥ c2ξ
T
k dk,

where c2 ∈ (c1, 1). To find ξk+1, we use the line search strategy same as
[21,26]. The step length α must satisfy the Wolfe conditions at xk along dk.
The Wolfe conditions are the Armijo and curvature conditions, as

f(xk + αdk)− f(xk) ≤ c1αf
◦
ϵ (xk, dk), (Armijo condition)

∃ξk+1 ∈ ∂f(xk + αdk), s.t. ξ
T
k+1dk ≥ c2f

◦
ϵ (xk, dk). (curvature condition)

In this paper, we present an algorithm to find a step length, which satisfies the
Armijo condition. Now we present the following algorithm. This algorithm
finds an interval including a step length satisfies the Wolfe conditions at the
point xk along dk. Algorithm 2 is started with α0 = ϵ, because the step
length ϵ satisfies the Armijo condition. The following proposition shows that
Algorithm 2 terminates after finite many iterations.

Proposition 1. If f◦ϵ (xk, dk) < 0 and f is bounded below at xk along dk,
then Algorithm 2 terminates after finite many iterations.

Proof. Since ϕ(α) = f(xk + αdk) is bounded below and the line l(α) =
f(xk) + c1αf

◦
ϵ (xk, dk) is unbounded below, then there exists α such that

ϕ(α) > l(α) for all α > α. Thus Algorithm 2 terminates when α1 > α.

Either Algorithm 2 finds a step length that it satisfies the Wolfe conditions
or it returns an interval. We prove that there exists a step length in this
interval, which satisfies the Wolfe conditions.
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Algorithm 2 Line search algorithm

set α1 = 1, α0 = ϵ;
repeat
if f (xk + α1dk) − f (xk) > c1α1f ◦

ϵ (xk, dk) then
α∗=wolfe(α0, α1)
return α∗

else if ∃ξ ∈ ∂f (xk + α1dk) s.t. ξT dk ≥ c2f ◦
ϵ (xk, dk) then

∗α = α1

return α∗

end if
α0 = α1;
α1 = 2α1

until 

Proposition 2. In Algorithm 2, suppose that f (xk + α1dk) − f (xk) >
c1α1f ◦

ϵ (xk, dk). Then the interval (α0, α1) contains step lengths satisfying 
the Wolfe conditions.

Proof. Let ψ(α) = f(xk + αdk) − f(xk) − c2αf
◦
ϵ (xk, dk). It is obvious that

ψ(α0) ≤ ψ(α1). Since the curvature condition is not satisfied at α0, we have

ξT dk < c2f
◦f(xk, dk), ∀ξ ∈ ∂f(xk + α0dk).

Thus 0 ̸∈ ∂ϕ(α0). Therefore α0 is not the local minimizer of ψ on [α0, α1].
So the minimum point of ψ must be in (α0, α1). Suppose that α∗ ∈ (α0, α1)
is the minimizer of ψ. Thus 0 ∈ ∂ϕ(α∗). Since

∂ϕ(α∗) ⊂ ∂f(xk + α∗dk)
T dk + c2f

◦
ϵ (xk, dk),

there exists ξ ∈ ∂f(xk + α∗dk) such that ξT dk − c2f
◦
ϵ (xk, dk) = 0. On the

other hand, ψ(α0) ≥ ψ(α∗) and α0 satisfies the Armijo condition. Thus
α∗ satisfies the Armijo condition. Therefore, α∗ is satisfied in the Wolfe
conditions.

Now we present an algorithm to find a step length, which satisfies the
Wolfe conditions on [α0, α1]. The following proposition indicates the conver-
gence of Algorithm 3.

Proposition 3. If Algorithm 3 does not terminate after finite many itera-
tions, then it converges to α∗ such that 0 ∈ ∂f(xk+α

∗dk)
T dk− c2f◦ϵ (xk, dk).

Proof. Let ψ be the function defined in Proposition 2. Since ψ(ai) < ψ(bi)
and 0 ̸∈ ∂f(xk + aidk)

T dk − c2f
◦
ϵ (xk, dk), then 0 ̸∈ ∂ψ(ai). Thus, ψ takes its

minimum on (ai, bi). Suppose ri is the minimum of ψ on (ai, bi). So, we have
0 ∈ ∂ψ(ri). On the other hand, {ai} and {bi} are monotone and bounded
sequences. Therefore, these sequences are convergent. Also, we have
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Algorithm 3 Wolfe Algorithm

i = 1
ai = α1

bi = α0
ai+biti = 2

repeat
if f (xk + tidk) − f (xk) ≥ c1tif ◦

ϵ (xk, dk) then
a = t and b = bi+1 i i+1 i

else if ∃ξ ∈ ∂f (xk + tidk) such that ξT dk ≥ c2f ◦
ϵ (xk, dk) then

return ti
else
b = t and a = ai+1 i i+1 i.

end if
ai+biti = 2

i = i + 1
until 

lim ai − bi = 0,
i→∞

thus
lim
i→∞

ai = lim
i→∞

bi = lim
i→∞

ri = α∗.

Since ∂ψ(·) is upper semicontinuous and 0 ∈ ∂ψ(ri), then 0 ∈ ∂ψ(α∗). This
shows that 0 ∈ ∂f(xk + α∗dk)

T dk − c2f
◦
ϵ (xk, dk).

Now, we go back to problem (5). Solving this problem is impractical,
because the structural of the set ∂ϵf(x) is unclear. So the set ∂ϵf(x) is
approximated and problem (5) is approximately solved. In [1], the generalized
h-increasing point algorithm is proposed for computing an approximation
solution of problem (5). Here, we summarize the generalized h-increasing
point algorithm. Let Wl be a finite subset of ∂ϵf(xk). The convex hull of Wl

is considered as an approximation of ∂ϵf(xk). We solve the following problem
instead of (5):

min
v∈convWk

vTBkv,

and consider wk as its solution. Let gk = − wk

∥wk∥ . If the inequality

f(xk + ϵgk)− f(xk) ≤ −c1ϵ∥wk∥, (14)

is satisfied, then convWk is an acceptable approximation of ∂ϵf(xk). In this
case, we consider gk and −∥wk∥ as an approximation of dk and f◦ϵ (xk, dk).
Else a new element from ∂ϵf(xk), such as vl, must be added into Wk such
that vl ̸∈ convWk. To find such an element, we apply the generalized h-
increasing point algorithm in [1]. In [1], it is proved that this procedure is
terminated after finite many iterations. Either the direction gk is returned
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such that (14) is satisfied or we have

∥wk∥ ≤ δ, (15)

where δ is a predefined threshold. If (14) is satisfied, then the Armijo con-
dition is satisfied along direction gk at xk with step length ϵ. Also when
(15) holds, we can assume that xk is an ϵ-stationary point. Finding such a
direction is given in Algorithm 3.1 in [1].

6 Numerical experiments

In the numerical experiments, as computing dk by (5) is impractical, we use
Algorithm 3.1 in [1] and approximate it with gk. In this case, f◦ϵ (xk, dk)
is approximated with −∥wk∥. We set parameters as follows: ϵ = 10−6,
δ = 10−6, c1 = 10−4, and c2 = 0.9. In Algorithms 2 and 3, the curvature
condition is checked just by one subgradient from ∂ϵf(xk + tdk), say ξ, that
is, the following condition is checked:

ξT dk ≥ c2f
◦
ϵ (xk, dk).

In this section, we used some test problems in [8, 14] and report the com-
putational and numerical results of Algorithm 1 denoted by ”NQSN”. Also
Algorithm 1 is compared with some algorithms existing in the literatures.
Some of the selected algorithms are implemented in MATLAB environment
and other ones in Fortran. The measurement of algorithm efficiency is the
number of function evaluations. To have a better comparison of the imple-
mented algorithms, the performance profile of Dolan and More in [6] is used.

Two classes of test functions are applied. The first class is taken from [8]
and the second one is the TEST29 in [14]. The test problems are introduced
in Table 1. We compare the smooth BFGS method [21], the variable metric
bundle method (PVAR) [16,17], a method presented in [18] (MY), the limited-
memory BFGS method (LBFGS) [21], the limited memory bundle method
(LMBM) [8], and the gradient sampling method (GS) with the presented
method.

Each algorithm is terminated after 10000 iterations. In the performance
profile, an algorithm solves a problem successfully when

|fmin − f∗|
1 + |f∗|

≤ thr,

where thr ∈ (0, 1) is a predefined threshold and fmin and f∗ are the optimal
value and achieved optimal value, respectively. In this paper, we set thr equal
to 10−4.
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Table 1: Test problems and their optimal value for n = 1000.

First class of problems Second class of problems

No. problem optimal value No. problem optimal value

1 MAXQ 0 11 problem 2 from TEST29 0
2 MAXHILB 0 12 problem 5 from TEST29 0

3 LQ -1.412799e+003 13 problem 6 from TEST29 0
4 CB3I 1998 14 problem 11 from TEST29 1.203128e+004
5 CB3II 1998 15 problem 13 from TEST29 5.661313e+002
6 NACTFACES 0 16 problem 17from TEST29 0

7 Brown 2 0 17 problem 19 from TEST29 0
8 Mifflin 2 -7.065034e+002 18 problem 20 from TEST29 0
9 Crescent I 0 19 problem 22 from TEST29 0

10 Crescent II 0 20 problem 24 from TEST29 0

Let n be the size of the test problem. The algorithms are tested with 3
sizes of test problems, the small size n = 10, middle size n = 100, and large
scale n = 1000. Since the GS algorithm is very time consuming for large
scale problems, then we do not run this algorithm for large scale problems.
In Figures 1 and 2, we report the results for the first and second class of test
problems as the performance profile, respectively.

Figure 1 shows that the first class of the test problems is simpler than the
second one. The proposed algorithm is more efficient than other algorithms
for middle and large scale problems and is the only algorithm can solve all
these problems. Also, the number of function evaluations of NQSN method
is less than other methods. In the second class of test problems, for small size
problems, the GS method is more efficient than other ones. But the BFGS
and NQSN have similar results. But in the middle size, the MY method can
just solve all problems. Performance profiles show that the NQSN method
solves problems with significantly less number of function evaluations. For
large scale test problems, just MY and NQSN can solve 6 problems. While
the number of function evaluations in the NQSN method is very less than
the number of function evaluations in MY method. The results show that
the NQSN method is more efficient than other algorithms for large scale
problems. Also, this algorithm solves problems with less number of function
evaluations.
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(a). Numerical results for n = 10.

(b). Numerical results for n = 100.

(c). Numerical results for n = 1000.

Figure 1: The performance profiles of the first class of test problems
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(a). Numerical results for n = 10.

(b). Numerical results for n = 100.

(c). Numerical results for n = 1000.

Figure 2: The performance profiles of the second class of test problems
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7 Conclusion

In this paper, the generalized quasi-Newton algorithm is presented for mini-
mizing locally Lipschitz functions. Same as the iterative optimization meth-
ods, first we introduced a descent direction for the locally Lipschitz function
in each iteration. Then, we computed an adequate step length along this
direction satisfies the generalized Wolfe conditions. After that, we showed
that the generalized quasi-Newton algorithm is convergent. The presented
algorithm was applied to some standard test functions and compared with
the MY method, the smooth BFGS method, the gradient sampling method,
the limited-memory BFGS method and the limited memory bundle method.
In future work, we will develop this algorithm for minimizing locally Lipschitz
functions with nonlinear constraints.
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mooth optimization: Theory, practice and software, Springer Publishing
Company, Incorporated, 2014.

5. Burke, J.V. and Overton, M.L. A robust gradient sampling algorithm for
nonsmooth, nonconvex optimization, SIAM J. Optim. 15 (2005), 571–779.

6. Dolan, E.D. and More, J.J. Benchmarking optimization software with per-
formance profiles, Math. Program. 91 (2002), 201–213.



G
al
le
y
P
ro
of

138 Z. Akbari

7. Frangioni, A. Generalized bundle methods, SIAM J. Optim. 113 (2003),
117–156.

8. Haarala, N. and Miettinen, K. and Mäkelä, M.M. Globally convergent
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