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Abstract

Shifted Legendre orthonormal polynomials (SLOPs) are used to approxi-
mate the numerical solutions of fractional optimal control problems. To
do so, first, the operational matrix of the Caputo fractional derivative,
the SLOPs, and Lagrange multipliers are used to convert such problems
into algebraic equations. Also, the method is proposed for solving multidi-
mensional problems, and its convergence is proved. This method is tested
on some nonlinear examples. The results indicate that the technique can
efficiently solve multidimensional problems.

AMS subject classifications (2020): 49M25; 49J30; 34A08.

Keywords: Shifted Legendre orthonormal polynomials (SLOPs); Fractional
optimal control problem (FOCP); Caputo fractional derivative

1 Introduction

For the first time, fractional calculus was introduced in the 17th century. Li-
ouville, Grünwald, Letnikov, Riemann, and Caputo substantially contributed
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to the development of its theoretical foundations [6]. They worked on mass
and heat transfer problems using the terms semi-derivative and semi-integral.
The first book on fractional calculus was written by Oldham and Spanier
[27]. Further details on fractional calculus and some of its applications can
be found in [11, 12, 21, 22].

In recent years, the applications of fractional calculus in engineering and
sciences, including mathematics, fluid dynamics, and physics, have attracted
considerable attentions. Fractional calculus is used to extend the usual no-
tions of derivative and integral to ones with real orders and is based on the
concepts of fractional derivative in the sense of Caputo and fractional integral
in the sense of Riemann–Liouville [22, 27].

When we use a term involving fractional-order derivative(s) in differen-
tial equations of optimal control problems, we obtain fractional optimal con-
trol problems (FOCPs). Many scientific studies confirm the applications of
FOCPs in mathematics, mechanics, medicine, and engineering [13, 23]. For
example, such problems have been used to obtain numerical solutions of
the fractional models of some diseases, such as the fractional-order tumor-
immune model, HIV epidemic, and the glucose-insulin system [2, 15, 24].

Orthonormal polynomials have been applied in various linear and non-
linear problems, because they can be used to convert these problems into
easy-to-solve algebraic equations. They have many useful properties that fa-
cilitate the solution of mathematical problems and provide a way for solving,
expanding, and interpreting solutions in some types of differential equations
[1, 5, 10, 12].

In this article, we use the SLOPs as the basis functions of the method
proposed to solve fractional differential equations. The common approach
adopted in the past studies was to solve the one-dimensional problem. More-
over, most of the studies like [5, 4, 10], just obtained the error bound of the
operational matrix in fractional derivatives. Hence, none of them proved the
convergence of the method under consideration.

Therefore, we aim to develop the method for multidimensional problems
in this paper. Moreover, we prove the convergence of the method. The
outputs reveal that the method is efficient for multidimensional problems.

We organized the paper as follows. In Section 2, we present the important
properties of shifted Legendre polynomials, some preliminary definitions from
fractional calculus, and the operational matrix of fractional derivatives. In
Section 3, we explain the method and the necessary conditions for the FOCPs.
Section 4 discusses the convergence of the proposed technique. In Section 5,
we compare our results with those of the previous researches for nonlinear and
multidimensional examples. Finally, in Section 6, we present the conclusion.
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2 Shifted Legendre orthonormal polynomials

Definition 1. [5] For a function ξ(t), the Riemann–Liouville fractional in-
tegral of order α ≥ 0 is defined by

Iαξ(t) =

{
1

Γ(α)

∫ t

0
(t− z)α−1ξ(z) dz, α > 0, t > 0,

ξ(t), α = 0,
(1)

where
Γ(α) =

∫ ∞

0

zα−1e−zdz,

denotes the gamma function.

Definition 2. [5] For a function ξ(t), the Caputo fractional derivative of
order α is defined by

Dαξ(t) =
1

Γ(n− α)

∫ t

0

(t− z)n−α−1 d
n

dzn
ξ(z) dz, n− 1 < α ⩽ n, t > 0,

(2)

where n is an integer.

Some properties of these operators can be written as

Dα c = 0, c is a constant, (3)

Iα (Dα ξ(t)) = ξ(t)−
n−1∑
k=0

ξ(k)(0)
tk

k!
, (4)

Dα tδ =
Γ(δ + 1)

Γ(δ + 1− α)
tδ−α, (5)

and

Dα (β ξ(t) + γ τ(t)) = β Dα ξ(t) + γ Dα τ(t), (6)

where δ, β, and γ are scalar coefficients.

Definition 3. [3] The Legendre polynomial of degree i, pi(z), is defined on
the interval [−1, 1] by the recurrence relation

pi+1(z) =
2i+ 1

i+ 1
z pi(z)−

i

i+ 1
pi−1(z), i ⩾ 1, (7)

where
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p0(z) = 1, p1(z) = z. (8)

We obtain the shifted Legendre polynomials p∗i (t) on [0, 1] if we use the
change of variable z = 2t− 1:

p∗i+1(t) =
2i+ 1

i+ 1
(2t− 1) p∗i (t)−

i

i+ 1
p∗i−1(t), i ⩾ 1, (9)

p∗0(t) = 1, p∗1(t) = 2t− 1. (10)

These polynomials are orthogonal, in the sense that

⟨p∗j (t), p∗i (t)⟩ =
∫ 1

0

p∗j (t) p
∗
i (t) dt =

{
1

2i+1 , j = i,

0, j ̸= i.
(11)

As shown in [3], if we introduce the SLOPs p̂i(t) ≡
√
2i+ 1 p∗i (t), then∫ 1

0

p̂i(t) p̂j(t)dt =

{
1, j = i,
0, j ̸= i,

(12)

and

p̂i(t) =
√
2i+ 1

i∑
k=0

(−1)i+k (i+ k)!

(i− k)! (k!)2
tk. (13)

Assume that ζ is any element of L2[0, 1] and

ρM = span{p̂0(t), p̂1(t), . . . , p̂M (t)}. (14)

Now, for any h ∈ ρM , we can write h ≃
∑M

i=0 di p̂i(t), where the coefficients
di are determined as follows:

di =

∫ 1

0

h(t) p̂i(t) dt, i = 0, 1, . . . ,M. (15)

We call ζρ ∈ ρM the best approximation of ζ out of ρM whenever

for all h ∈ ρM : ∥ζ − ζρ∥2 ⩽ ∥ζ − h∥2. (16)

Since ζρ ∈ ρM , there exist coefficients ci, i = 0, 1, . . . ,M, such that

ζρ(t) ≃
M∑
i=0

ci p̂i(t). (17)

So, the matrix form of ζρ(t) is
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ζρ(t) ≃ FT △M (t), (18)

where

F =


c0
c1
...
cM

 , △M (t) =


p̂0(t)
p̂1(t)
...

p̂M (t)

 . (19)

Theorem 1. For the SLOPs vector △M (t), the fractional derivative of order
α, in the sense of Caputo, is defined as follows:

Dα △M (t) = D(α) △M (t). (20)

Herein, D(α) denotes the (M+1)×(M+1) operational matrix of the fractional
derivative, given by

D(α) =



0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0
Wα(n, 0) Wα(n, 1) Wα(n, 2) · · · Wα(n,M)

...
...

...
...

...
Wα(M, 0) Wα(M, 1) Wα(M, 2) · · · Wα(M,M)


,

where

Wα(k, j) (21)

=
√

(2j + 1) (2k + 1)

k∑
i=n

j∑
l=0

(−1)k+j+i+l (k + i)! (l + j)!

(k − i)! i! Γ(i− α+ 1) (j − l)! (l!)2 (i+ l − α+ 1)
,

and rows 0 to n-1 are zero.

Proof. See [3].

3 The numerical method

To solve the following problem, we use the operational matrix of fractional
derivatives, the SLOPs and Lagrange multipliers.

min J =

∫ t1

t0

f
(
t, x(t), u(t)

)
dt, (22)

Dα x(t) = ϕ
(
t, x(t), u(t)

)
, n− 1 < α ⩽ n, t ∈ [t0, t1], (23)
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D(k) x(t0) = xk, k = 0, 1, . . . , n− 1. (24)

Here, ϕ
(
t, x(t), u(t)

)
= g

(
t, x(t)

)
+b(t)u(t), and S is the feasible solution set.

Also, u(t) and x(t) denote the control and state variables, respectively, u(t) is
continuous, x(t) is continuously differentiable, g

(
t, x(t)

)
, f

(
t, x(t), u(t)

)
, and

b(t) are smooth functions, b(t) is invertible, f
(
t, x(t), u(t)

)
and ϕ

(
t, x(t), u(t)

)
are convex functions, S is a convex set, and f

(
t, x(t), u(t)

)
is integrable on

I = [t0, t1]. Moreover, f
(
t, x(t), u(t)

)
and g

(
t, x(t)

)
satisfy the Lipschitz

property. In fact,

∥f
(
t, x1(t), u1(t)

)
− f

(
t, x2(t), u2(t)

)
∥ ≤ L(∥x1(t)− x2(t)∥+ ∥u1(t)− u2(t)∥),

(25)

and

∥g
(
t, x1(t)

)
− g

(
t, x2(t)

)
)∥ ≤ K(∥x1(t)− x2(t)∥), (26)

where L and K are positive constants. Approximate x(t) by the SLOPs p̂i(t)
as

xM (t) = CT △M (t), (27)

where CT is an unknown scalar coefficient vector given by

CT =
(
c0 c1 · · · cM

)
. (28)

We defined p̂i(t) and △M (t) in (10) and (19), respectively. By (27), we can
rewrite the dynamic constraint (23) as

CT D(α) △M (t) = g
(
t, CT △M (t)

)
+ b(t)u(t). (29)

So, we obtain

u(t) =
1

b(t)

(
CT D(α) △M (t)− g

(
t, CT △M (t)

))
. (30)

Then, we can rewrite the initial conditions (24) in the form

CT D(k) △M (t0)− xk = 0, k = 0, 1, . . . , n− 1. (31)

Due to (27), (30) and (31), the performance index J can be approximated
by

JM [CT ] =

∫ t1

t0

f̂
(
t, xM (t), DαxM (t))dt+

n−1∑
k=0

(
CT D(k) △M (t0)− xk

)
λk,

(32)
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where

f̂
(
t, xM (t), DαxM (t)) = f

(
t, CT △M (t),

1

b(t)

(
CT D(α) △M (t)− g(t, CT △M (t))

))
, (33)

and λk denotes the Lagrange multiplier, which should be determined [11].
The necessary conditions for the optimality of (22) are subject to the

dynamic constraints (23) and (24) in the form

∂JM
∂ci

= 0, i = 0, 1, . . . ,M,
∂JM
∂λk

= 0, k = 0, 1, . . . , n− 1. (34)

We can use any standard iterative method to solve the aforementioned system
for ci, i = 0, 1, . . . ,M , and λk, k = 0, 1, . . . , n−1. As a result, we obtain x(t)
and u(t) as given in (27) and (30), respectively [3].

4 Convergence analysis

The use of SLOPs operates as a proof of convergence in three steps. In the
first step, we show that the usage is indeed justifiable. In the second step,
we show that the functional derivative of a shifted Legendre polynomial is a
proper approximation for the same derivative. In the third step, we indicate
the difference between the target function for any optimized solution and the
value of the target function of the shifted Legendre approximation, tends to
zero as the number of the shifted Legendre orthonormal basis increases. We
complete these steps by the hypotheses, Lemmas 1 and 2. To find an upper
bound for the operational matrix errors in fractional derivatives and to prove
the convergence, we use the following theorems.

Theorem 2. Let H be a Hilbert space, and let Y be a finite-dimensional
subspace of H. Also, assume that {y1, y2, . . . , yM} is any basis for Y . Given
any x in H, let y0 denotes the unique best approximation of x out of Y .
Then,

∥x− y0∥22 =
G(x, y1, y2, . . . , yM )

G(y1, y2, . . . , yM )
, (35)

where

G(x, y1, y2, · · · , yM ) =

∣∣∣∣∣∣∣∣∣
⟨x, x⟩ ⟨x, y1⟩ · · · ⟨x, yM ⟩
⟨y1, x⟩ ⟨y1, y1⟩ · · · ⟨y1, yM ⟩

...
...

...
...

⟨yM , x⟩ ⟨yM , y1⟩ · · · ⟨yM , yM ⟩

∣∣∣∣∣∣∣∣∣ , (36)

and
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G(y1, y2, · · · , yM ) =

∣∣∣∣∣∣∣
⟨y1, y1⟩ · · · ⟨y1, yM ⟩

...
...

...
⟨yM , y1⟩ · · · ⟨yM , yM ⟩

∣∣∣∣∣∣∣ . (37)

Proof. See [5].

We show that the upper bound of operational matrix errors in fractional
derivatives D(α) can be obtained as

εαD := D(α) △M (t)− D̂α △M (t), (38)

where D̂α is an approximation of the operator D(α) and

εαD =


εαD,0

εαD,1
...

εαD,M

 . (39)

As mentioned in [18], for each element of εαD, an upper bound for the error
related to D(α) can be written as follows:

∥εαD,k∥2 ⩽
√
2k + 1

k∑
i=1

∣∣∣ (k+i)!
(k−i)! i! Γ(i−α+1)

∣∣∣×(
G(ti−1, p̂0(t), ..., p̂M (t))

G(p̂0(t),...,p̂M (t))

) 1
2

,

0 ⩽ k ⩽M. (40)

By Theorem 2 and (40), we conclude that εαD tends to zero as the number of
the shifted Legendre orthonormal basis increases [5].

Lemma 1. Let x(t) be a continuously differentiable function, and let xM (t)
denote the approximation of x(t) by the SLOPs. Then,

∥x(t)− xM (t)∥ → 0 as M → ∞. (41)

Proof. See [15].

Lemma 2. For x(t) and xM (t) as in Lemma 1, when M → ∞,

∥Dα x(t)−Dα xM (t)∥ → 0, (42)

|Dk xM (t0)− xk| = 0, k = 0, 1, . . . , n− 1, (43)

∥ẋ(t)− ẋm(t)∥ → 0. (44)

Proof. See [5].
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We define J1 [CT ] as follows:

J1 [CT ] =

∫ t1

t0

f
(
t, x(t),

1

b(t)

(
D(α) x(t)− g

(
t, x(t)

))
dt

+

n−1∑
k=0

(
D(k) x(t0)− xk

)
λk. (45)

Theorem 3. Consider problems (22)–(24), and let x∗(t) be an optimal so-
lution of min J1 [CT ]. Then,∣∣JM [CT ]− J1 [CT ]

∣∣ → 0 as M → ∞. (46)

Proof. Using (27) and (30) we obtain
∣∣JM [CT ]− J1 [CT ]

∣∣ =∣∣ ∫ t1

t0

f
(
t, CT △M (t),

1

b(t)

(
CT D(α) △M (t)− g(t, CT △M (t))

))
dt

+

n−1∑
k=0

(
CT D(k) △M (t0)− xk

)
λk

−
∫ t1

t0

f(t, x∗(t),
1

b(t)
(D(α) x

∗(t)− g(t, x∗(t)))
)
dt

−
n−1∑
k=0

(
D(k) x

∗(t0)− xk

)
λk

∣∣.
According to (24), (31), and Lemmas 1 and 2, we know that

n−1∑
k=0

(
CT D(k) △M (t0)− xk

)
λk = 0

and that
∑n−1

k=0

(
D(k) x

∗(t0)− xk
)
λk = 0. So,∣∣JM [CT ]− J1 [CT ]

∣∣
=

∣∣ ∫ t1

t0

(
f
(
t, CT △M (t),

1

b(t)

(
CT D(α) △M (t)− g(t, CT △M (t))

))
− f

(
t, x(t),

1

b(t)
(D(α) x(t)− g(t, x(t)))

))
dt
∣∣

We know that f satisfies the Lipschitz condition. Therefore,∣∣JM [CT ]− J1 [CT ]
∣∣

≤
∫ t1

t0

(
L (∥CT △M (t)− x(t)∥)

+ ∥ 1

b(t)

(
CT D(α) △M (t)− g

(
t, CT △M (t)

)
−D(α) x(t) + g(t, x(t))

)
∥
)
dt.
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By the Schwartz inequality and separating integrals, we obtain∣∣JM [CT ]− J1 [CT ]
∣∣

≤ L

∫ t1

t0

(∥CT △M (t)− x(t))∥
)
dt

+
1

|b(t)|

∫ t1

t0

(
(∥CT D(α) △M (t)−D(α) x(t)∥) dt

+
1

|b(t)|

∫ t1

t0

(
∥g(t, x(t))− g(t, CT △M (t))∥

))
dt.

We write the upper bounds of integrals and note that g satisfies the Lipschitz
condition. Then,∣∣JM [CT ]− J1 [CT ]

∣∣ ≤ L(t1 − t0)
(
∥CT △M (t)− x(t)∥

+
(t1 − t0)

|b(t)|
(
∥CT D(α) △M (t)−D(α) x(t)

)
∥

+
K (t1 − t0)

|b(t)|
∥x(t)− CT △M (t)∥.

If M → ∞, then Lemma 1 shows that the first and third terms tend to
zero. Also, the second term tends to zero by Lemma 2. Consequently,
JM [CT ] → J1[CT ].

Through Theorem 3, we observed that the difference between the value
of the target function for any optimized solution of min J1 [CT ] and that
of the target function for the approximate value of Legendre tends to zero
as M → ∞. Having (27)–(32) in mind, min J1 [CT ] is equivalent to (22).
Hence, the difference between the value of target function (22) and that of
the Legendre approximate target function tends to zero.

5 Numerical experiments

In this section, we prove the accuracy of the proposed technique by providing
some examples and then comparing our achievements with the numerical
results obtained in other papers by the computer with Intel Core i7 CPU up
to 3.5 GHz, RAM 12GB, and the codes written with Wolfram Mathematica
11.

Example 1. Consider the problem

min J =

∫ 1

0

(
(x(t)− t2)2 + (u(t) + t4 − 20 t

9
10

9Γ( 9
10 )

)2
)
dt, (47)

subject to dynamic constraints
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D1.1 x(t) = t2 x(t) + u(t), (48)

x(0) = ẋ(0) = 0. (49)

Due to (48), we obtain u(t) and rewrite (47) as

u(t) = D1.1 x(t)− t2x(t),

min J =

∫ 1

0

(
(CT △M (t)− t2)2

+ (D1.1 CT △M (t)− t2 CT △M (t) + t4 − 20 t
9
10

9Γ( 9
10 )

)2
)
dt

+
(
CT D(0) △M (t0)− x(0)

)
λ0 +

(
CT D(1) △M (t0)− ẋ(0)

)
λ1.

The functional J is minimized by x∗(t) = t2 and u∗(t) = 20 t
9
10

9 Γ( 9
10 )

− t4, with
minimum equal to zero. Table 2 presents the approximate values of J , which
are obtained by the proposed method and the methods utilized in [21, 3],
with different values of M . As the results indicate, our approach is better
than the ones used in [21, 3].

Table 1: Approximations of J with different values of M

M The method The method used in [21] The method used in [3]
4 1.66202× 10−6 6.07530× 10−6 4.76932× 10−6

6 2.44576× 10−7 5.91532× 10−7 5.37825× 10−7

8 5.90947× 10−8 1.21966× 10−7 1.06099× 10−7

9 3.26447× 10−8 7.03371× 10−8 5.44304× 10−8

Table 3 presents the absolute values of errors for the control and state vari-
ables for various values of t. Also, in Figure 6, the approximate and exact
values of the control and state variables are plotted for M = 6.
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Table 2: Absolute errors of x(t) and u(t) at M = 6

t |x∗(t)− x(t)| |u∗(t)− u(t)|
0.1 1.60241× 10−7 1.72334× 10−5

0.2 2.35607× 10−7 4.57424× 10−4

0.3 9.96796× 10−8 2.85637× 10−4

0.4 6.68032× 10−8 2.89849× 10−4

0.5 7.86075× 10−8 1.79588× 10−4

0.6 9.06389× 10−8 2.80773× 10−4

0.7 2.84397× 10−7 1.15197× 10−4

0.8 2.78471× 10−7 2.69036× 10−4

0.9 3.55721× 10−8 2.73064× 10−4

Figure 1: Approximate and exact values of the control and state variables
for M = 6

Example 2. Consider the two-dimensional problem

min J =

∫ 1

0

(
(x1(t)− t2)2 + (x2(t)− t3)2

+ (u1(t)− t4 +
Γ(4)

6 Γ(2.9)
t1.9 − Γ(3)

3 Γ(1.9)
t0.9)2

+ (u2(t)− t5 +
Γ(4)

2 Γ(2.9)
t1.9)2

)
dt, (50)

subject to dynamic constraints

D1.1 x1(t) = 3u1(t)− 3 t2x1(t) + t2 x2(t)− u2(t), (51)

D1.1 x2(t) = −2u2(t) + (2 t2 − 1)x2(t) + t x1(t), (52)

x1(0) = ẋ1(0) = 0, (53)

and
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x2(0) = ẋ2(0) = 0. (54)

By (51) and (52), we obtain u1(t) and u2(t) as follows:[
u1(t)
u2(t)

]
=

[
1
3 − 1

6
0 − 1

2

] ( [D1.1 x1(t)
D1.1 x2(t)

]
−

[
−3 t2x1(t) + t2 x2(t)

(2 t2 − 1)x2(t) + t x1(t)

] )
.

We define
x1(t) = CT

1 △M (t), CT
1 =

(
c10 c11 · · · c1M

)
,

x2(t) = CT
2 △M (t), CT

2 =
(
c20 c21 · · · c2M

)
,

and rewrite (50) as

min J =

∫ 1

0

(
(CT

1 △M (t)− t2)2 + (CT
2 △M (t)− t3)2

+
(1
3
(D1.1 CT

1 △M (t) + 3 t2 (CT
1 △M (t))− t2 (CT

2 △M (t)))

− 1

6
(D1.1 CT

2 △M (t)− (2 t2 − 1) (CT
2 △M (t))− t (CT

1 △M (t)))− t4

+
Γ(4)

6 Γ(2.9)
t1.9 − Γ(3)

3 Γ(1.9)
t0.9

)2
+
(
− 1

2
(D1.1 CT

2 △M (t)

− (2 t2 − 1) (CT
2 △M (t))− t (CT

1 △M (t)))− t5 +
Γ(4)

6 Γ(2.9)
t1.9

)2)
dt

+
(
CT

1 D(0) △M (t0)− x1(0)
)
λ0 +

(
CT

1 D(1) △M (t0)− ẋ1(0)
)
λ1

+
(
CT

2 D(0) △M (t0)− x2(0)
)
λ0 +

(
CT

2 D(1) △M (t0)− ẋ2(0)
)
λ1.

The functions x∗1(t) = t2, x∗2(t) = t3 and u∗1(t) = t4 − Γ(4)
6 Γ(2.9) t

1.9 +
Γ(3)

3 Γ(1.9) t
0.9, u∗2(t) = t5 − Γ(4)

6 Γ(2.9) t
1.9 minimize the functional J , and the mini-

mum value is zero. In Table 4, we present the approximate values of J with
different values of M .

Table 3: Approximate values of J with different values of M

M J
4 2.39801× 10−7

6 3.03043× 10−8

8 6.97336× 10−9

9 6.97321× 10−9

Table 4 presents the absolute values of errors for the state and control vari-
ables for various values of t.
Also, in Figures 2 and 3, the approximate and exact values of the state and
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Table 4: Absolute errors of x1(t), x2(t), u1(t), and u2(t) at M = 6

t |x∗1(t)− x1(t)| |x∗2(t)− x2(t)| |u∗1(t)− u1(t)| |u∗2(t)− u2(t)|
0.1 7.19262× 10−7 1.74666× 10−7 6.4603× 10−6 9.51622× 10−6

0.2 1.0357× 10−6 2.48769× 10−7 1.60228× 10−4 2.89678× 10−5

0.3 3.70976× 10−7 7.82014× 10−8 1.03983× 10−4 1.19302× 10−5

0.4 4.54804× 10−7 1.37132× 10−7 1.05124× 10−4 1.82481× 10−5

0.5 5.92208× 10−7 1.84041× 10−7 6.48507× 10−5 8.03613× 10−6

0.6 9.51419× 10−8 1.81842× 10−8 1.04023× 10−4 1.65065× 10−5

0.7 9.14941× 10−7 2.02377× 10−7 3.7991× 10−5 6.07151× 10−6

0.8 8.57316× 10−7 2.32216× 10−7 9.89654× 10−5 1.59221× 10−5

0.9 2.67307× 10−7 2.16467× 10−9 9.10531× 10−5 1.77034× 10−5

control variables are plotted at M = 6.

Figure 2: Approximate and exact values of the state variable at M = 6

Figure 3: Approximate and exact values of the control variable at M = 6

We can apply this method to another category of problems. In fact, if in
problems (22)–(24), we replace (23) by

φDα x(t) + ψ ẋ(t) = g
(
t, x(t)

)
+b(t)u(t), (55)

n− 1 < α ⩽ n, b(t) ̸= 0, t ∈ [t0, t1],

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 513–532



Using shifted Legendre orthonormal polynomials for solving fractional ... 527

then the method still converges according to (44), where φ and ψ are scalar
coefficients. Let us present one example of this form.

Example 3. Recall from [28] the problem

min J =

∫ 1

0

(
u(t)− x(t))2 dt, (56)

subject to dynamic constraints

ẋ(t) + Dαx(t) = u(t)− x(t) +
6 tα+2

Γ(α+ 3)
+ t3, (57)

and

x(0) = 0. (58)

By (57), we can find u(t):

u(t) = ẋ(t) + Dαx(t) + x(t)− 6 tα+2

Γ(α+ 3)
− t3,

min J =

∫ 1

0

(
CT △̇M (t) + Dα(CT △M (t))− 6 tα+2

Γ(α+ 3)
− t3

)2
dt

+
(
CT D(0) △M (t0)− x(0)

)
λ0.

The functions x∗(t) = 6 tα+3

Γ(α+4) and u∗(t) = 6 tα+3

Γ(α+4) minimize the functional
J , and the minimum value is zero. In Table 5, we present the approximate
values of J with different values of M .

Table 5: Approximate values of J at α = 0.9 with different values of M

M J
4 2.32302× 10−7

6 2.32786× 10−10

8 2.98816× 10−12

Table 6 presents the absolute values of errors for the control and state vari-
ables for various values of t.
Also, in Figure 3, the approximate and exact values of the control and state
variables are plotted for M = 6. Tables 3 and 8 present the maximum errors
of u(t) and x(t) with different values of M .
Also, in Figure 5, the control and state variables are plotted for M = 5 and
different values of α.
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Table 6: Absolute errors of x(t) and u(t) at M = 6

t |x∗(t)− x(t)| |u∗(t)− u(t)|
0.1 3.22688× 10−7 2.3951× 10−5

0.2 4.89573× 10−7 1.18457× 10−5

0.3 5.31838× 10−7 1.52362× 10−5

0.4 6.51328× 10−7 5.73914× 10−6

0.5 1.48297× 10−7 1.58438× 10−5

0.6 6.3336× 10−7 2.83551× 10−5

0.7 1.34478× 10−7 1.45402× 10−5

0.8 5.49314× 10−7 7.44278× 10−6

0.9 1.0371× 10−7 1.81787× 10−5

Figure 4: Approximate and exact values of the state and control variables at
M = 6

Table 7: Maximum errors of x(t) and u(t) at M = 3.

M = 3 Maximum errors of x(t) Maximum errors of u(t)
The method 2.36519× 10−3 2.30757× 10−2

Algorithm 1 in [28] 8.8025× 10−3 8.8025× 10−3

Algorithm 2 in [28] 5.1966× 10−3 4.3260× 10−2

Table 8: Maximum errors of x(t) and u(t) at M = 5.

M = 5 Maximum errors of x(t) Maximum errors of u(t)
Our method 2.21121× 10−5 4.7773× 10−4

Algorithm 1 in [28] 1.0903× 10−4 1.0903× 10−4

Algorithm 2 in [28] 4.5321× 10−5 6.3134× 10−4
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Figure 5: Control and state variables for M = 5 and different values of α

6 Conclusion

In this paper, we applied a numerical method to solve a class of fractional
optimal control problems. We used the SLOPs and the operational matrix of
fractional derivatives. Then, we used the Newton iterative technique to solve
these problems. We obtained the error bound of the operational matrix in
fractional derivatives and proved the convergence of the method. We focused
on multidimensional problems, which have never been solved by this tech-
nique. To show the efficiency of the method for multidimensional problems,
we provided some nonlinear examples. Comparison of our results with those
obtained by other techniques in previous studies revealed the accuracy of the
proposed technique for nonlinear and multidimensional problems.
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