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Abstract

In this paper, we address a new problem in the context of project pay-
ment scheduling when project activities are allowed to be crashed with the
purpose of maximizing the contractors net present value (NPV). We assume

that the contractor is paid at some pre-specified points of time according
to the volume of work performed. Upon completion of activities, the cost
of their execution is paid. Two different approaches are used to determine
the volume of work performed at so called review points. In the first ap-

proach, only completed activities are considered. In the second approach,
any portions of the activities that are executed are considered. To increase
the volume of work performed at the review points, the contractor may de-

cide to crash some activities and as such may possibly increase his NPV. As
activity crashing costs the contractor money, a compromise needs to be made.
Two mathematical models are developed to study each approach and hence
help the contractor to make the best decision. These models offer a means of

investigating whether it is advisable to crash some activities and are there-
fore of practical importance. It is shown that the contractor may increase his
NPV, even when he pays for the activity crashing costs. The performance of
the mathematical models is illustrated using a numerical example.
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1 Introduction and Background

The Critical path method (CPM) is essentially a time-oriented technique
based on network structure which is mainly used to schedule project ac-
tivities under resource availability or scarce resources. Time cost trade-off
problem (TCTP) in which the compression of the project schedule is sought
in order to achieve an improved outcome in terms of project duration, cost,
and projected revenues is one of the earliest applications of the CPM in
which cost factors are considered. The objective of the TCTP is to com-
press the project to the optimum duration which minimizes the total project
costs. Other project cost monitoring are mainly focused on reporting the to-
tal amount of project costs and no consideration is given to the time value of
money [13]. Considering that large scale projects usually have long life cycles,
net present value (NPV) is suggested as a criterion for the financial control
of projects. Russell introduced the concept of cash flow in a project [15]. He
assumed that the project is represented in activity-on-arrow (AOA) format
and that the payments, i.e. outward cash flows and the receipts, i.e. inward
cash flows occur at some or all of the project network’s nodes. Considering
the inward and outward cash flows the problem is to schedule the network’s
events in a manner that the present value of cash flows is maximized. In
order to maximize the NPV of the projects cash flows, Russell developed a
mathematical model with a nonlinear objective function and a set of linear
constraints [15].The model’s objective function was then linearized by the
Taylor’s series expansion around a feasible solution. The dual of the lin-
earized model which possess the characteristics of the minimum cost network
flow can be rapidly solved in small networks and can be efficiently solved in
larger networks. The final solution is then obtained iteratively. In addition,
Russell came to some interesting conclusions: the critical path may not be
very cost significant but that there exists a cost-critical tree of activities to
each of which a marginal cost of lengthening the duration can be ascribed .

In 1972, Grinold considered a deadline for the project and transformed
the non-linear model of Russell into an equivalent linear model. The linear
model that has the structure of a weighted distribution problem was then
solved using an efficient procedure [7]. In 1982, Talbot developed a mixed
integer programming model for the project cash flow problem under the lim-
itation of resources [18]. In 1990, Elmaghraby et al. developed a procedure
to solve the cash flow problem with fixed amounts of inward and outward
flows [6]. They showed that it is beneficial to advance the events that corre-
spond to positive flows and delay the events that relate to negative flows as
much as possible (see e.g. the review papers [11] and [19]).

In the majority of the articles, the flows are assumed to be of constant
and known values. The contractor knows the costs of performing the project
activities and therefore can negotiate the amount and time of the client’s
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payments in order to maximize his returns. As payments are usually done
according to the volume of the work performed (progress payment), schedul-
ing of activities find significant importance. The problem of determining the
amount as well as the timing of payments to maximize NPV is called the
payment scheduling problem (PSP). It was first studied from the contractor’s
view point by Dayanand et al. [2]. Kazaz et al. considered the problem for
projects with unlimited resources and developed a mixed integer program-
ming model to maximize NPV. They showed that Bender’s decomposition
can reduce the running time of the model significantly [13]. Sepil et al. stud-
ied the performance of a number of heuristics to solve the PSP under resource
limitation [16].

In continuation of their previous research, Dayanand et al. developed a
0-1 programming model together with a number of heuristics. Dayanand et
al. altered Russell, Grinold and Talbot’s models by adding some new con-
straints and claimed that their models can be used for both the contractor’s
and client’s view points subject to some modifications [3]. Ulusoy et al. con-
sidered the PSP from the simultaneous view points of the contractor and the
client. They developed a two loop genetic algorithm to study the problem.
The outer loop represents the client and the inner loop represents the contrac-
tor. In the outer loop and under the assumptions of fixed schedules as well as
the timing of payments, the client changes the amount of payments. Fixing
the amount of payment, the inner loop is executed such that by rescheduling
the activities, the contractor’s NPV is maximized. The two loops negotiate
their solutions until they come to a ”fair” solution that is accepted by both
parties [20]. Four types of payment scheduling models: lump sum payment at
the terminal event-LSP, payments at event occurrences-PEO, the equal time
intervals-ETI and progress payment-PP were distinguished by Ulusoy et al.
They used the two loops genetic algorithm developed in [20] to study the PSP
under resource limitations and in respect of each of the payment scheduling
models [21]. Dayanand et al. developed a two stage search heuristic to solve
PSP. They utilized a simulated annealing model in the first stage to find a set
of payments. To improve the solution, they tuned the solution in the second
stage by rescheduling activities [4]. Dayanand et al. modeled the PSP from
the client’s view point and developed a number of mixed integer program-
ming models to study the problem [5]. Vanhoucke et al. considered the PSP
under unlimited resources and developed a branch and bound procedure to
study and analyze it [22].

Szmereskovsky developed a branch-and-bound procedure for a novel PSP
model where the client selects the payment schedule and the contractor pro-
tects his interests by selecting the activity schedule. However, the contractor
rejects the payment schedule if his NPV does not exceed a given thresh-
old [17]. The multi-mode resource constrained project scheduling problem
with discounted cash flow under the four payment scheduling models pro-
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posed by Ulusoy et al., was studied by Mika et al. who considered only
positive cash flows and employed a simulated annealing as well as a genetic
algorithm to solve the problem [14].

Discrete time cost trade-off problem (DTCTP) involves the selection of
a set of execution modes in order to achieve a certain objective. Although
DTCTP has been combined with the maximum NPV project scheduling prob-
lem (see e.g. [23]), its influence on project payment scheduling has not been
studied extensively [9]. The resulting problem is called themulti-mode project
payment scheduling problem (MPSP) where the objective is to assign activity
modes and progress payments so as to maximize the NPV under the con-
straint of project deadline. He et al. analyzed the effect of the bonus-penalty
structure on payment scheduling and found that this structure can enhance
the flexibility of payment scheduling greatly [8]. In 2009, He et al. developed
two heuristics, i.e. simulated annealing and tabu search to study the MPSP
and compared their performance on a data set constructed randomly [9].

Kavlak et al. investigated client-contractor bargaining in project schedul-
ing with limited resources using activity-on-node (AON) networks. They con-
sidered two different payment models. In the first model, contractor receives
payments at predetermined regular time intervals. In the second model, he
receives only one payment at activity completions. They developed a simu-
lated annealing and a genetic algorithm as solution procedures. The client
and the contractors desire to seek a compromise are reflected in an objec-
tive function [12]. He et al. defined a new problem called the multi-mode
capital-constrained project payment scheduling problem (MCCPSP) as the
combination of the capital-constrained project scheduling problem and the
MPSP. They studied the MCCPSP where the objective is to assign activity
modes and payments concurrently so as to maximize the NPV of the con-
tractor under the constraint of capital availability [10].

In this paper, we consider the PSP with unlimited resources, and address
the question of activity compression from the contractor’s view point. Our
assumptions are as follows: (i) a deadline is specified for the project; (ii)
the negative cash flows occur at the completion of activities; (iii) the pay-
ments are done at review points; (iv) the amount of each payment is based
on the volume of work completed; (v) any extra costs for compression of
activities are paid by the contractor. Two approaches are considered for the
determination of the volume of finished work: (i) only finished activities are
considered; (ii) any part of work completed by the review point is accounted
for. Considering that by increasing the volume of work at each review point,
the contractor can increase the amount of payments due to him and as such
increase his NPV, an interesting question arises about the suitability of com-
pressing some activities so that more activities can be performed within the
current review points. From now on, we call this problem crash max NPV PP
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problem and develop some mathematical models to study it.

The rest of the paper is organized as follows. In Section 2, we present
two models for the problem to account for the two approaches proposed to
determine the volume of finished work. In Section 3, we tailor the models of
Section 2 for the problem. In Section 4, we discuss the results and determine
the most significant parameters. Some conclusions are drawn in Section 5.

2 max NPV PP Problem

To study max NPV PP Problem, we assume that the project with activities
is represented in AON format. Finish to start precedence with zero lag gov-
erns the relations between activities. The following notations are used in our
analysis:

di : Duration of activity i (1 ≤ i ≤ n)
ci : Cost of performing activity i (1 ≤ i ≤ n)
si : Starting time for activity i (1 ≤ i ≤ n)
fi : Completion time for activity i (1 ≤ i ≤ n)
Efi : Earliest finish time for activity i (1 ≤ i ≤ n)
Lfi : Latest finish time for activity i (1 ≤ i ≤ n)
α : Discount rate
D : Project deadline
ct : Discount factor for time t, ct = e−αt, t = 0, 1, ..., D
T : A constant period of time , mT ≥ D, (m− 1)T < D
Pt : Payment amount at review point t, t = T, 2T, ...,mT
ωit : Percentage of activity i completed in the interval (t− T, t],

t = T, 2T, ...,mT
Wit : Percentage of activity i completed in the interval (0, t],

t = T, 2T, ...,mT

The negative and positive cash flows with respect to activity i is ci and
(1 + γi) ci respectively. Let {T, 2T, ...,mT} denotes the set of review points
(if mT > D then mT = D). The amount of payment is based on two different
approaches. We use example of Fig.1 to illustrate the differences between the
two approaches. There are three activities in Fig.1 whose durations, costs
and marginal profits are 20, 600 and 20 respectively. we assume that it is
required to determine the amount of payments at T = 30 and 2T = 60. We
have:
Approach 1 -In Approach 1 we only consider the cost of those activities
that are finished in the time interval (t − T, t]. With reference to Fig.1,
PT = 0, because no activity is completed in the interval (0, T ]. How-
ever, in the interval (T, 2T ] all the three activities are completed, therefore
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Figure 1: Schedule of three activities.

P2T = (1 + γ1) c1 + (1 + γ2) c2 + (1 + γ3) c3 = 2160.

Approach 2 -In this approach the cost of performing any section of the ac-
tivities in the time interval (t−T, t] is considered. Up to the point T , only 25%
of activity 2 is completed. So ω2,T = 5/20 and PT = (1 + γ2) ω2,T c2 = 180.
In the interval (T, 2T ] we have: ω1,2T = ω3,2T = 1 and ω2,2T = 15/20. There-
fore, P2T = (1+γ1) ω1,2T c1+(1+γ2) ω2,2T c2+(1+γ3) ω3,2T c3 = 1980. As
it can be seen, the total amount of payments in the two review points is 2160.
In fact, the total amount of payments can be obtained from

∑n
i=1(1+ γi) ci.

However, the discounted amount of payments at rate α at time t is given
by Pte

−αt. In the next section we present two models for the max NPV PP

according to the given approaches. Model max NPV PP with respect to Ap-
proach 1 is called max NPV PP

1 and with respect to Approach 2 is called
max NPV PP

2 .

2.1 Models

We develop our models based on the aforementioned assumptions. Note that
the contractor’s estimate of the amount due to him is based on the marginal
profit, the costs of performing the activities and the approach adopted for
determining the volume of the work performed. In order to illustrate the
features of the proposed models we use the example project given in Appendix
A.

2.1.1 Model max NPV PP
1

For each activity i and time t, variable δit indicates whether activity i has
occurred before time period t, namely δit = 1 if fi ≤ t and 0 otherwise. Thus,
δiD = 1 for i = 1, 2, ..., n.
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Max
∑

t=T,2T,...,mT

Pt e
−αt −

n∑
i=1

ci e
−αfi (1)

s.to.

f1 = 0 (2)

fj − dj ≥ fi (i, j) ∈ A (3)

fi ≤ t+ (1− δit)D i = 1, 2, ..., n; t = 0, 1, ..., D (4)

fi ≥ t− δitD i = 1, 2, ..., n; t = 0, 1, ..., D (5)

t∑
s=T

Pt ≤
n∑

i=1

(1 + γi)δit ci t = T, 2T, ...,mT (6)

fi ≥ 0 i = 1, 2, ..., n (7)

Pt ≥ 0 t = T, 2T, ...,mT (8)

δit ∈ {0, 1} i = 1, 2, ..., n; t = 0, 1, ..., D (9)

The objective function in (1) maximizes the NPV. Constraint (2) enforces the
project to start at time 0. The set of constraints in (3) ensure the precedence
relations between the activities while constraints (4) and (5) display the re-
lations between fi , δit and t with respect to activity i and determine the
values of δit. Constraint (6) ensures that the payment at each review point
t is not more than the volume of work performed. Model max NPV PP

1 as
described by (1) to (9) is a mixed integer program with a nonlinear objec-
tive function and a set of linear constraints. The objective can be linearized
as follows. Let xit = 1 denotes the completion of activity i at time t, and
xit = 0 denotes otherwise. The completion time for an activity can be ex-
pressed as fi =

∑Lfi
t=Efi

t xit. Similarly, the variable δit can be expressed as

δit =
∑t

s=0 xis.

Since xifi = 1 and xit = 0 for t ̸= fi then
∑Lfi

t=Efi
ctxit = cfi . Now the

second part of (1) becomes

n∑
i=1

ci e
−αfi =

n∑
i=1

ci cfi =

n∑
i=1

ci

Lfi∑
t=Efi

ctxit

which if substituted in model max NPV PP
1 , produces a linear programming

model (10-16) that we call linear max NPV PP
1 .
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Max
∑

t=T,2T,...,mT

Pt ct −
n∑

i=1

ci

Lfi∑
t=Efi

ct xit (10)

s.to.

x1,0 = 0 (11)

Lfi∑
t=Efi

xit = 1 i = 1, 2, ..., n (12)

Lfj∑
t=Efj

(t− dj)xjt ≥
Lfi∑

t=Efi

txit, (i, j) ∈ A (13)

t∑
s=T

Pt ≤
n∑

i=1

(1 + γi)ci

t∑
s=0

xis t = T, 2T, ...,mT (14)

Pt ≥ 0 t = T, 2T, ...,mT (15)

xit ∈ {0, 1} i = 1, 2, ..., n; t = 0, 1, ..., D (16)

Constraint (12) ensures that there is only one finish time for each activity
as no activity preemption is allowed. Set of constraints in (13) ensure the
precedence relations between the activities. Using model (10-16), the example
project is solved by GAMS and BONMIN as the solver [1]. The optimal
schedule with the NPV of 2611.977 is shown in Fig.2. As it can be seen
activities have been scheduled so that the maximum amount is paid at review
points, and also they are scheduled as late as possible to delay the accruement
of costs. For instance, in the time interval (0,30], activity 2 and after that,
activities 3, 4, 5 and 6 have been scheduled as late as possible. In addition, if
activity 2 was to finish on day 8, the NPV would have decreased to 2523.324.
This is because the increase in payments due to activities 7 and 8 being
finished on day 30 does not compensate the costs of performing the activities
that now had to be paid earlier.

2.1.2 Model max NPV PP
2

In this model any parts of the activities that are completed are considered
for the analysis of payments. To calculate Wit, the fraction of activity i
completed at review point t, three situations might occur (see Fig.3) which
should be considered. The amount of Wit is calculated as follows:

Wit = δit + (1− δit) max{0, t− (fi − di)

di
} (17)

0 ≤Wit ≤ 1 i = 1, 2, ..., n; t = T, 2T, ...,mT (18)

Using Wit, we rewrite the constraint about the payments as follows:
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Figure 2: The linear max NPV PP
1 model - the optimal payment schedule.

Figure 3: Portions of work completed in the interval (0, t].

t∑
s=T

Ps ≤
n∑

i=1

(1 + γi) Witci t = T, 2T, ...,mT (19)

By adding (17) and (18) to model max NPV PP
1 and replacing constraint

(6) with (19) we obtain model max NPV PP
2 . This is also a mixed inte-

ger nonlinear programming model. Using model max NPV PP
2 the example

project was solved by GAMS with DICOPT as the solver. The acceptable
schedule with the NPV of 2980.275 is the same as Fig.2. However the NPV
has increased. This is because at review point 30 part of activity 12 which is
partially completed has also been accounted for.
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3 crash max NPV PP Problem

In most projects, it is possible to compress the duration of all or some of
the activities by allocating extra resources. Obviously, allocation of extra
resources costs more. In spite of the fact that the contractor pays this extra
cost, his motivation for crashing activities in the crash max NPV PP problem
as described previously is the possible benefit that can be gained by the earlier
payment of increased volume of work performed. The activity i’s duration
after compression, d′i, can be varied between its normal duration, di, and its
crashed duration, d′′i , i.e. d′′i ≤ d′i ≤ di. The cost of activity i, if performed
at crashed duration is c′′i . Therefore the resource utilization rate of activity i
is c′i = (c′′i − ci)/(di−d′′i ). The discounted cash flow for activity i is therefore
(ci + c′i(di − d′i)) e−αfi . Recall that costs are accrued at the completion of
activities and payments are done at review points. In the next section we
present our models.

3.1 crash max NPV PP Model based on Approach 1

The following model is based on the linear max NPV PP
1 developed in the

previous section.

Max
∑

t=T,2T,...,mT

Pt ct −
n∑

i=1

(ci + c′i(di − d′i))
D∑
t=0

ct xit (20)

s.to.

x1,0 = 0 (21)

D∑
t=0

xit = 1 i = 1, 2, ..., n (22)

D∑
t=0

(t− d′j)xjt ≥
D∑
t=0

t xit (i, j) ∈ A (23)

t∑
s=T

Ps ≤
n∑

i=1

(1 + γi)ci

t∑
s=0

xis t = T, 2T, ...,mT (24)

d′i ≤ di i = 1, 2, ..., n (25)

d′i ≥ d′′i i = 1, 2, ..., n (26)

Pt ≥ 0 t = T, 2T, ...,mT (27)

xit ∈ {0, 1} i = 1, 2, ..., n; t = 0, 1, ..., D (28)

Constraints (25) and (26) ensure that activity’s compressed duration is within
its corresponding bounds. We now linearize the objective function in (20).
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To that end, we replace d′ixit with the new variable, Fit. This is a standard
subsititution requring additional constraints to link xit, d′i and Fit. The
values of Fit are determined by the following additional constraints.

Fit − xit di ≤ 0 i = 1, 2, ..., n; t = 0, 1, ..., D (29)

Fit − d′i ≤ 0 i = 1, 2, ..., n; t = 0, 1, ..., D (30)

Fit ≥ d′i − (1− xit)di i = 1, 2, ..., n; t = 0, 1, ..., D (31)

Fit ≥ 0 i = 1, 2, ..., n; t = 0, 1, ..., D (32)

Now the second part of (20) becomes
n∑

i=1

D∑
t=0

((ci + c′idi)xit − c′iFit)ct (33)

The resulting model is a mixed integer linear program which we call linear
crash max NPV PP

1 . The optimum solution for the example problem using
the above model is shown in Fig.4. Note that the project NPV has increased
to 3036.982 when compared with the case where no crashing of activities was
allowed. This shows that even when the contractor pays for the extra cost
of activity crashing, it can increase his NPV. As can be seen, activities 5, 6,
7, and 8 have been compressed resulting in a larger volume of work being
performed up to review point of 30. Activity 11 which has been crashed by
2 days has caused activities 9 and 10 to end 2 days later and as a result their
corresponding costs accrued in later time.

Figure 4: The linear crash max NPV PP
1 model - the optimal payment sched-

ule.
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3.2 crash max NPV PP Model based on Approach 2

The following model is based on the max NPV PP
2 .

Max
∑

t=T,2T,...,mT

Pt e
−αt −

n∑
i=1

(ci + c′i(di − d′i)) e
−αfi (34)

s.to.

f1 = 0 (35)

fj − d′j ≥ fi (i, j) ∈ A (36)

fi ≤ t+ (1− δit)D i = 1, 2, ..., n; t = 0, 1, ..., D (37)

fi ≥ t− δitD i = 1, 2, ..., n; t = 0, 1, ..., D (38)

Wit = δit + (1− δit) max{0, t− (fi − d′i)

d′i
} (39)

i = 1, 2, ..., n; t = T, 2T, ...,mT

t∑
s=T

Ps ≤
n∑

i=1

(1 + γi)Wit ci t = T, 2T, ...,mT (40)

d′i ≤ di i = 1, 2, ..., n (41)

d′i ≥ d′′i i = 1, 2, ..., n (42)

0 ≤Wit ≤ 1 i = 1, 2, ..., n; t = T, 2T, ...,mT (43)

fi ≥ 0 i = 1, 2, ..., n (44)

Pt ≥ 0 t = T, 2T, ...,mT (45)

δit ∈ {0, 1} i = 1, 2, ..., n; t = 0, 1, ..., D (46)

The resulting model is a mixed integer non-linear program which we call
crash max NPV PP

2 . An acceptable solution for the example problem using
above model is the same as Fig.4. However the project’s NPV has increased
to 3405.28. This is because at a review point 30 part of activity 12 which is
partially completed has also been accounted for.

4 Discussion of Results

The results obtained by our proposed four models with respect to the project
example are given in Table 1. In this example, payments are done at the end
of the review points 30 and 50. Since the time and the total amount of
payments are known, increasing the amount of payments in review points
nearer to the beginning of the project will increase the contractors profit.
Therefore, in the example project the compression of activities is used to
increase the amount of payments at review point 30. As expected, the amount
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of payment at review point 30 when some activities are crashed has increased
from 16250 to 19500 under Approach 1 and from 18478.57 to 21728.57 under
Approach 2. The schedule obtained by the max NPV PP model and the

Table 1: Models and results.

Model Amount of Payments NPV
linear max NPV PP

1 PT = 16250 2611.944
P2T = 14950

linear crash max NPV PP
1 PT = 19500 3036.982

P2T = 11700
max NPV PP

2 PT = 18478.57 2980.275
P2T = 12721.43

crash max NPV PP
2 PT = 21728.57 3405.280

P2T = 9471.43

crash max NPV PP model is shown in Fig.5. Observe that in both generated
schedules, the activities are scheduled as near to the review points as possible.
This is done so that the costs are incurred as near as possible to the locations
where payments are due. In addition, the payment of costs has also been
delayed as much as possible. For instance, in crash max NPV PP model,
activities 9 and 10 can start at time instance of 30. Note that, this does
not affect volume of the work performed up to this point of time. Should
these activities start at time instance 30, the payment of their costs that is
now advanced will affect the NPV adversely. Therefore, the model has not
scheduled them to start at time 30. The activities in crash max NPV PP

model are compressed such that: (i) the volume of work performed up to
the time instant 30 is increased as much as possible; and (ii) activities in
the interval (30, 50] are scheduled as near as possible to the review point
50. Although compression of activity 11 has no effect on the volume of work
performed, but it allows activities 9 and 10 to be completed 2 days later and as
such delay the payment of their costs by the same amount. This will improve
the NPV. Note that, the cost of compressing activity 11 is compensated by
the profit yielded by delaying the payments of activities 9 and 10 costs. It
is obvious that the crashing costs, the marginal profit and the discount rate
are significant parameters that affect the decision regarding the compression
of project activities to increase the contractor’s NPV. For example, high
compression costs and low marginal profit may convince the contractor not
to proceed with activity crashing. In fact, the contractor pays for the cost
of crashing some of the activities by the profit yielded from increasing the
volume of work up to each review point and also by delaying some other
activities. Therefore, if crashing of activities does not yield any profit for the
contractor, he has no motivation to proceed with activity crashing. In the
example project, if we consider the profit margin as 15% and the crashing
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Figure 5: Comparison of normal and compressed schedules.

costs of activities as 0, 2700, 1800, 1200, 5800, 4000, 1400, 2400, 4500, 1500,
1800, 5900 and 0, no activity will be crashed.

5 Conclusions

In this paper, we addressed the problem of project payment scheduling when
a project deadline is specified and activities are allowed to be compressed
with the purpose of maximizing the contractor’s net present value (NPV).
The cost of activity compression is paid by the contractor. We assumed that
the payments are made to the contractor based on the volume of work per-
formed, at some pre-specified points of time. We also assumed that the costs
of activities are incurred at the completion of activities. We developed four
mathematical models based on two different approaches to account for the
volume of work performed. In the first approach, only those activities that
by the review time have been completed were considered as the volume of
work performed. In the second approach, we considered any section of activ-
ities that were completed by the review time. Through a small illustrative
example, it was shown that the contractor may in fact increase his profit by
crashing activities.
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Appendix A

A project with 11 activities is considered. All the relevant information is
given in Table 2. The earliest time that the project can be delivered is 42,
whereas the deadline is 50. Marginal profit with respect to each activity is
30%, the discount rate is 1.5% and the review period is considered to be 30.
Therefore, review points are at T = 30, 2T = 50.

Table 2: The example project.

Activity Predecessor(s) Normal Crashed Normal Crashed
Duration Duration Cost Cost

1 − 0 0 0 0
2 1 5 1 2000 2700
3 2 2 2 1800 1800
4 2 3 3 1200 1200

5 2, 4 8 5 5000 5150
6 4, 5 7 2 2500 3000
7 3, 5 3 1 1000 1100
8 4, 6 4 1 1500 1600

9 7 10 1 3000 4000
10 7,8 11 5 1000 1500
11 9,10 5 2 1000 1150

12 1 35 20 4000 5500
13 11,12 0 0 0 0
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پروژه پیشرفت براساس پرداخت� زمانبندی مسئله در پروژه فشرده�سازی

ساری زینب و طارقیان رضا حامد ، نژاد مرتضوی مرضیه

کاربردي رياضي گروه رياضي، علوم دانشکده مشهد، فردوسی دانشگاه

١٣٩۵ آذر ١٣ مقاله پذیرش ،١٣٩۴ آبان ١٨ شده اصلاح مقاله دریافت ،١٣٩۴ اردیبهشت ٩ مقاله دریافت

دیدگاه این در می�شود. مطرح پروژه پرداخت زمانبندی زمینه در جدیدی دیدگاه مقاله، این در : چکیده
فرض هستند. فشرده�سازی به مجاز پیمانکار جاری ارزش خالص کردن بیشینه برای پروژه فعالیت�های
ازای به می�شود، گفته بازبینی نقاط آن به که مشخص زمانی دوره�های پايان در پیمانکار به پرداخت� می�شود
کار حجم تعیین برای متفاوت رویکرد دو دهند. رخ فعاليت�ها اتمام زمان در هزينه�ها و شده انجام کار حجم
شده تکمیل کامل طور به بازبینی نقطه در که فعالیت�هایی اول رویکرد در می�شود. استفاده بازبینی نقاط در
گرفته نظر در نیز شده�اند، اجرا که فعالیت�هایی از بخش هر دوم رویکرد در می�شوند. گرفته نظر در باشند،
فعالیت�ها از برخی بگیرد تصمیم پیمانکار است ممکن بازبینی، نقاط در کار حجم افزایش برای می�شوند.
توسط فشرده�سازی هزینه�های که است حالی در این کند. فشرده خود جاری ارزش خالص افزایش برای را
كه حالتی در يكی رياضی ريزی برنامه� مدل دو رويكردها، از يك هر براساس می�شود. پرداخت پیمانکار
باشند، داشته فشرده�سازی امكان فعاليت�ها كه حالتی در ديگری و �شوند زمانبندی عادی زمان در فعاليت�ها
پروژه فعاليت�های فشرده�سازی درباره پیمانکار بهتر تصمیم�گیری برای ابزاری مدل�ها این می�شود. ارائه
فعالیت�ها فشرده�سازی با را خود جاری ارزش مقدارخالص می�تواند پیمانکار که می�شود داده نشان هستند.
بر مدل�ها از يك هر پايان در کند. پرداخت پیمانکار خود را فشرده�سازی هزینه�های اگر حتی دهد افزايش

است. شده تحليل و تجزيه حاصل نتايج و پياده�سازی مثال يك روی

خالص پروژه؛ فشرده�سازی پروژه؛ پیشرفت براساس پرداخت پرداخت�ها؛ زمانبند�ی : کلیدی کلمات
پیمانکار. جاری ارزش




