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On convergence and stability
conditions of homotopy perturbation
method for an inverse heat conduction

problem

Q. Jannati and A. Zakeri∗

Abstract

In this paper, we investigate the application of the Homotopy Pertur-
bation Method (HPM) for solving a one-dimensional nonlinear inverse heat

conduction problem. In this problem the thermal conductivity term is a lin-
ear function with respect to unknown heat temperature in bounded interval.
Furthermore, the temperature histories are unknown at the end point of the
interval. This problem is ill-posed. So, using the finite difference scheme and

discretizing the time interval, the partial differential equation is reduced into
a System of Nonlinear Ordinary Differential Equations (SNODE’s). Then,
using HPM, the approximated solution of the obtained Ordinary Differen-

tial Equation (ODE) system is determined. In the sequel, the stability and
convergence conditions of the proposed method are investigated. Finally, an
upper bound of the error is provided.

Keywords: Homotopy perturbation method; Diffusion equation; Disceretiz-
ing method; Inverse problem.

1 Introduction

Inverse heat conduction problems are used to describe many important phe-
nomena in physics, chemistry, mechanics, etc. There has been a great amount
of investigation to solving inverse heat conduction problems in one and multi
dimensional spaces. Many effective methods have been provided. However,
lots of inverse heat transfer problems, which arise in natural phenomena,
such as radiational heat transfer, modelling of case hardening, gravimetry,
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and etc., have nonlinear forms and so they are not solvable with analytical
methods, but unfortunately, most of presented methods are useful just for
solving linear forms.

Usually these problems are ill-posed in the sense of Hadamard. There-
fore, the regularization method is a successive technique for solving ill-posed
problems and it may be applied to entire class of problems which arise from
physical observations.

Beck et al. have investigated an inverse problem in one-dimensional space
with two general procedures, function specification and regularization meth-
ods, and a method of combining these, trial function method, and have im-
plemented all of these methods in a sequential manner [3]. Lesnic et al.
in [15] and [19] have considered a special case of distributed (identification)
parameter problems in one-dimensional spaces. They have shown that for
a one-dimensional quasi-heterogeneous material with square-root harmonic
conductivity, a single measurement of the conductivity and the flux on the
boundary is sufficient to determine uniquely the unknown physical parame-
ters and the solution function. Alivanov considered the solution of inverse
problems by analytical approaches [2]. Qu and Dou [20], Lewandowski [18],
and Jia et al. [16], have studied the nonlinear diffusion equation and provided
some numerical techniques. Shidfar and Zakeri in [21] - [23] have investigated
the existence and uniqueness of a solution for a two-dimensional nonlinear
inverse diffusion problem. Also, Zakeri et al. have begun their research by
a Cauchy inverse problem and found a solution by HMP method [26] and
in continuation they have gone on by an inverse heat conduction problem
and solved it by the HPM again [27]. Also, they have applied an approach
which contained a difference method and the HPM together, and solved the
problem with a reliable accuracy [28].

In continuation of above researches our intend is investigation of suffi-
ciently condition for HPM for solving inverse heat conduction problems.

In next section, the HPM is introduced shortly and in Section 3, an ap-
proximated solution for the inverse heat conduction problem is obtained via
HPM . Then, the stability and convergence of the above mentioned method
are studied in Section 3 and Section 4, respectively . Some numerical results
are illustrated by some tables and figures in Section 6. Finally conclusions
and some suggestions for more research are given in last section.

2 Basic concepts of HPM

In this section we introduce the basic concepts of the HPM , according to [26],
in brief.

Consider the following nonlinear equation

A(u)− f(r) = 0, r ∈ Ω, (1)
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with the boundary conditions

B(u, ∂u/∂n) = 0, r ∈ Γ,

where A is a general differential operator, B is a boundary operator, f(r)
is a known analytic function and Γ is the boundary of the domain Ω. The
operator A can be generally divided into two parts L and N , where they are
the linear and nonlinear parts of A, respectively. So, Eq. (1) converts into
the following form

L(u) +N(u)− f(r) = 0. (2)

In [10], He constructed a homotopy H : Ω× [0, 1] −→ R which satisfies:

H(v, p) = (1− p)[L(v)− L(v0)] + p[A(v)− f(r)] = 0, (3)

or

H(v, p) = L(v)− L(v0) + pL(v0) + p[N(v)− f(r)] = 0, (4)

where r ∈ Ω, and p ∈ [0, 1] is called the homotopy parameter, and v0, is an
initial approximation for the solution of Eq. (1) which satisfies the boundary
conditions. Consequently{

H(v, 0) = L(v)− L(v0) = 0,

H(v, 1) = A(v)− f(r) = 0.

Now, when p varies from 0 to 1, the homotopy H(v, p), changes from
L(v)− L(v0) to A(v)− f(r).

Applying the perturbation technique due to the fact that 0 ≤ p ≤ 1 is
considered as a small parameter, we can assume that the solution of Eq. (3)
or Eq.(4) can be expressed as a series in the form

v = v0 + pv1 + p2v2 + . . . .

When p −→ 1, Eq.(3) or Eq.(4) corresponds to Eq.(2) and so v becomes the
approximate solution of Eq. (2) i.e;

u = lim
p→1

v = v0 + v1 + v2 + . . . . (5)

The series (7) is convergent for most cases and the rate of convergence de-
pends on A(v) [11,12].

In the next section, a nonlinear inverse heat conduction problem is consid-
ered. We discretize the time interval by means of backward finite difference
method and apply the HPM. Then, the approximate solution of the problem
is yield.
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3 Solution of nonlinear inverse heat conduction problem
by HPM

Let T > 0, and consider the nonlinear parabolic partial differential equation

ut − (D(u)ux)x = Φ(x, t), (x, t) ∈ Ω = (0, 1)× (0, T ), (6)

with initial condition

u(x, 0) = s(x), x ∈ [0, 1], (7)

and boundary conditions

u(0, t) = f(t), t ∈ [0, T ], (8)

u(1, t) = h(t), t ∈ [0, T ], (9)

where D(u) = a(t)u + b(t) > 0, and a, b, s and f are known functions
such that, b(t) is far from zero in [0, T ].

If h is given, then the problem (6)-(9) is a direct problem which is
solvable by means of common numerical and approximation approaches for
solving PDEs, such as finite difference method [7], finite element method
[7], radial basis functions [4], homotopy perturbation method [13], Adomian
decomposition method [1] and so on.

Now, suppose that h is unknown. Then the problem (6)-(9) becomes an
inverse problem. Consequently, an overspecified condition, such as

ux(0, t) = g(t), t ∈ [0, T ], (10)

where g is a known function, is used.

For positive integer n, let △t = 1
k = T

n , tj = j △ t, j ∈ Jn = {1, 2, ..., n}.
Put u0(x) = u(x, 0) = s(x), aj = a(tj), bj = b(tj), Φj(x) = Φ(x, tj), for
any j ∈ Jn, such that they are given fixed nodes. Similarly, we consider the
uj(x), as the approximated value of u(x, tj), j ∈ Jn.

Using the backward finite difference scheme for the term ut in the form

ut(x) ≃ k( uj(x)− uj−1(x) ), j ∈ Jn,

and substituting in Eq. (6), a system of second order ordinary differential
equations with respect to x is obtained. We have

k(uj(x)− uj−1(x))−
d

dx
{(a(tj)uj(x) + b(tj))

d

dx
uj(x)} = Φj(x), 1 ≤ j ≤ n,

or

d2

dx2
uj(x) − { k

b(tj)
(uj(x)− uj−1(x)) −

a(tj)

b(tj)
(
d

dx
(uj(x)

d

dx
uj(x) ) ) }
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=
−1

b(tj)
Φj(x). (11)

For simplicity, define u(x) = (u1(x), u2(x), . . . , un(x))
T . Then we can

write Eq. (6) as follows

Au = Lxu−Nu = Ψ(x, t),

where Ψ(x, t) = (−Φ1(x)
b(t1)

, . . . , −Φn(x)
b(tn)

)T . Moreover, Lx and N are the linear

and nonlinear parts of the operator A, respectively, and are as follows:

Lx =
d2

dx2
,

Nu = −M2
d

dx
(D(u,u)) +M1u+m,

where

m = ( −k
b(t1)

s(x), 0, . . . , 0)T
n×1

, M1 = k


1

b(t1)
0

−1
b(t2)

1
b(t2)

. . .
. . .

0 −1
b(tn)

1
b(tn)

 ,

M2 = diag ( a(t1)
b(t1)

, a(t2)b(t2)
, . . . , a(tn)

b(tn)
),

and

D(u(x),v(x)) = (u1(x)
d
dxv1(x), u2(x)

d
dxv2(x), . . . , un(x)

d
dxvn(x))

T .

After twice integration of Eq. (6) with respect to x, and applying the condi-
tions (7)- (9), we obtain

u(x)− xg− f−
∫ x

0

∫ x

0

Nu (x) dxdx =

∫ x

0

∫ x

0

Ψ(x)dxdx,

where g = ( g(t1), . . . , g(tn) )
T , and f = ( f(t1), . . . , f(tn) )

T .

Now, using HPM and [8,26], we choose a convex homotopy such that

H (v(x), p) = v(x)− h(x)− p

∫ x

0

∫ x

0

Nv(x) dxdx = 0, (12)

and

F(u(x)) = u(x)− h(x) = 0,

where
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h(x) = xg+ f+

∫ x

0

∫ x

0

Ψ(x) dxdx,

and v(x) = ( v(x, t1), . . . v(x, tn) )
T
. Furthermore, Eq. (12) gives

v(x) = h(x) + p

∫ x

0

∫ x

0

Nv(x) dxdx. (13)

Combining Eq.s (11) and (16), we obtain the following results

v(x) = xg+ f+
∫ x

0

∫ x

0
Ψ(x) dxdx +

p

∫ x

0

∫ x

0

{M1 ( v(x)− us(x) )−M2
d

dx
D(u(x),u(x))}dxdx, (14)

where us(x) = (s(x), u1(x), . . . , un−1(x))
T . Thus, it is concluded that

v0(x) = h(x) = xg+f+

∫ x

0

∫ x

0

Ψ(x)dxdx = (v0(x, t1), · · · , v0(x, tn))T , (15)

and

v1(x) =

∫ x

0

∫ x

0

{
M1 (v0(x)− us(x))−M2

d

dx
D(v0(x),v0(x))

}
dxdx

= (v1(x, t1), · · · , v1(x, tn))T . (16)

The above relations are obtained by equating the terms with identical powers
of p in Eq. (19). The approximate solution is

u(x) ≃ v0(x) + v1(x) = v(x). (17)

4 Convergence and stability analysis

In this section, we use continuity of u(x, t) on the compact domain Ω,
and prove that v(x) ≃ v0(x) + v1(x) depends continuously on the data.
Therefore, adding a perturbation term to a, b, f, g and Φ, an upper bound
for errors of their solutions are found. In each case, we show that as the
perturbation term tends to zero, the solutions errors vanish.

Lemma 1. Let M(t) =
∫ 1

0
|Φ(x, t)|dx > 0 is a bounded function such that

M(t) ≤M for any 0 ≤ t ≤ T, and v̂0(x) correspond to v0(x), where b(t)
is perturbed by δb(t) in Equation (6). Then we have

|v̂0(x, tj)− v0(x, tj)| =
|δb(tj)|

|b(tj)(b(tj) + δb(tj))|
M, 0 ≤ j ≤ n, x ∈ [0, 1],



On convergence and stability conditions of homotopy perturbation ... 81

consequently, if |δb(t)| → 0, then |v̂0(x, t) − v0(x, t)| → 0, for any t =
tj , j = 1, · · · , n, and 0 ≤ x ≤ 1.

Proof. Using the Equation (15), we have

v0(x, tj) = f(tj) + xg(tj)−
1

b(tj)

∫ x

0

∫ x

0

Φj(x)dxdx. (18)

If b(tj) is perturbed by δb(tj), then

v̂0(x, tj) = f(tj) + xg(tj)−
1

b(tj) + δb(tj)

∫ x

0

∫ x

0

Φj(x)dxdx. (19)

Now from Equations (18) and (19), we obtain

v0(x, tj)− v̂0(x, tj) =
−δb(tj)

b(tj)(b(tj) + δb(tj))

∫ x

0

∫ x

0

Φj(x)dxdx,

consequently

|v0(x, tj)− v̂0(x, tj)| ≤
|δb(tj)|

|b(tj)(b(tj) + δb(tj))|
M, for any 0 ≤ j ≤ n,

and this completes the proof.

Lemma 2. Let M(t) and M are as defined in lemma 1, and v̂1(x, tj)
is the value of v1(x, tj) for any t = tj , j = 1, · · · , n, when b(tj) is
perturbed by b(tj) + δb(tj) as in problem Equation (6), such that δb(t0) = 0.
If |δb(tj)| → 0, then |v̂1(x, tj) − v1(x, tj)| → 0, for any 0 ≤ x ≤ 1, and
1 ≤ j ≤ n.

Proof. Similar to detailed proof presented for lemma 1, assume

v1(x, tj) =

∫ x

0

∫ x

0

{ k

b(tj)
(v0(x, tj)− uj−1(x))

− a(tj)

b(tj)
(
d

dx
{v0(x, tj)

d

dx
v0(x, tj)})}dxdx.

Suppose that b(tj) is replaced by b(tj) + δb(tj), for any j = 1, · · · , n.
Then we have

v̂1(x, tj) =

∫ x

0

∫ x

0

{k v̂0(x, tj)− ûj−1(x)

b(tj) + δb(tj)

− a(tj)

b(tj) + δb(tj)
(
d

dx
{v̂0(x, tj)

d

dx
v̂0(x, tj)})}dxdx,

or
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|v̂1(x, tj)− v1(x, tj)| ≤ k

∫ 1

0

∫ 1

0

{ |v̂0(x, tj)− v0(x, tj)|
|b(tj) + δb(tj)|

+
|ûj−1(x)− uj−1(x)|

|b(tj) + δb(tj)|

+
|δb(tj)|C

|b(tj)(b(tj) + δb(tj))|
}dxdx

+
|a(tj)||δb(tj)|

|b(tj)(b(tj) + δb(tj))|
(

M

|b(tj)(b(tj) + δb(tj))|

× max
x∈[0,l],

j=1,··· , n.

{|v̂0(x, tj)|, |v0(x, tj)|}

+
|v20(x, tj)|+ |f(tj)2|+ |f(tj)g(tj)|

2|b(tj)|
),

when C ∈ R is an upper bound for |v0(x, tj)− uj−1(x)|. Therefore, for fixed
k, from lemma 1, it is derived,

lim
|δb(tj)|−→0

|v̂1(x, tj)− v1(x, tj)| −→ 0,

for 0 ≤ x ≤ 1, and 1 ≤ j ≤ n.

Remark 1. By an induction, it is shown that, when |δb(tj)| −→ 0, the
second term of the integral in the above inequality vanishes.

Theorem 1. Suppose that v(x, tj), v0(x, tj), v̂0(x, tj), v1(x, tj), v̂1(x, tj),
M , M(t), b(tj) and δb(tj), are the same as defined in lemmas 1 and 2. Then
v(x, tj) = v0(x, tj) + v1(x, tj) depends continuously on the data.

Proof. Obviously, by considering lemmas 1 and 2, the statement of Theorem
1 is proved.

Theorem 2. Suppose that δa(tj) is the perturbation term that perturbs a(tj)
to a(tj) + δa(tj), and v0, v1, v̂0, v̂1, M, M(t), b(tj) and δb(tj) satisfy
assumptions of Theorem 1. Then v(x, tj) depends continuously on the data.

Proof. The first part of v(x, t) is independent of a(t). Then, using Theorem
1, there is nothing to prove for v0(x, tj), 1 ≤ j ≤ n. Now we just prove that
v1(x, tj) depends continuously on the data. We have

v̂1(x, tj) =

∫ x

0

∫ x

0

{k
v̂0(x, tj)− ûj−1(x)

b(tj) + δb(tj)
−

a(tj) + δa(tj)

b(tj) + δb(tj)
(
d

dx
{v̂0(x, tj)

d

dx
v̂0(x, tj)})}dxdx,

then, it is concluded that

|v̂1(x, tj)− v1(x, tj)| ≤ k

∫ 1

0

∫ 1

0

{ |v̂0(x, tj)− v0(x, tj)|
|b(tj) + δb(tj)|

+
|ûj−1(x)− uj−1(x)|

|b(tj) + δb(tj)|

+
|δb(tj)|

|b(tj)(b(tj) + δb(tj))|
}dxdx

+
|a(tj)||δb(tj)|

|b(tj)(b(tj) + δb(tj))|
(

M

|b(tj)(b(tj) + δb(tj))|
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× max
x∈[0,1],

j=1,··· , n.

{|v̂0(x, tj)|, |v0(x, tj)|}

+
|v20(x, tj)|+ |f(tj)2|+ |f(tj)g(tj)|

2|b(tj)|
)

+ |δa(tj)|
|v̂20(x, tj)|

2
.

Similarly, it is shown that, the approximate solution v(x) in (17), depends
continuously on the data, when f(t), g(t) and Φ(x, t) are perturbed by small
perturbation terms in their domains. So, we give the following theorem.

Theorem 3. Let f(t), g(t) and Φ(x, t) be the same as defined in Equation
(6). If

f(t) 7−→ f(t) + δf(t),
g(t) 7−→ g(t) + δg(t),

Φ(x, t) 7−→ Φ(x, t) + δΦ(x, t),

and v 7−→ v + δv, then |δv(x, t)| 7−→ 0, when

max
0≤x≤l
0≤t≤T

{|δf(t)|+ |δg(t)|+ |δΦ(x, t)|} −→ 0.

Furthermore, we have

|v̂(x, tj)− v(x, tj)| ≤ |δf(tj)|+ |δg(tj)| +
∥δΦ(x, tj)∥
2|b(tj)|

+
|k|

|b(tj)|

∫ 1

0

∫ 1

0

{|v̂0(x, tj)− v0(x, tj)|+ |ûj−1 − uj−1|}dxdx

+
|a(tj)|
2|b(tj)|

|v̂20(x, tj)− v20(x, tj)|.

Proof. We have

v̂0(x, tj) = f(tj) + δf(tj) + xg(tj) + xδg(tj)−
1

b(tj)

∫ x

0

∫ x

0

(Φ(x, tj) + δΦ(x, tj))dxdx,

and so

|v̂0(x, tj)− v0(x, tj)| ≤ |δf(tj)|+ |δg(tj)|+
∥δΦ(x, tj)∥
2|b(tj)|

. (20)

So, |v̂0(x, t)− v0(x, t)| −→ 0, when

max
0≤x≤1
0≤t≤T

{|δf(t)|+ |δg(t)|+ |δΦ(x, t)|} −→ 0.
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Similarly, putting

v̂1(x, tj) =

∫ x

0

∫ x

0

{
k

b(tj)
(v̂0(x, tj)− ûj−1(x))−

a(tj)

b(tj)

d

dx
(v̂0(x, tj)

d

dx
v̂0(x, tj))

}
dxdx;

which via lemma 2 and Equation (20), simplifies to the form

|v̂1(x, tj)− v1(x, tj)| ≤
|k|

|b(tj)|

∫ 1

0

∫ 1

0

{|v̂0(x, tj)− v0(x, tj)|+ |ûj−1 − uj−1|} dxdx

+
|a(tj)|
2|b(tj)|

|v̂20(x, tj)− v20(x, tj)|. (21)

Now, |v̂1(x, t)− v1(x, t)| −→ 0, whenever

max
0≤x≤l
0≤t≤T

{|δf(t)|+ |δg(t)|+ |δΦ(x, t)|} −→ 0.

By adding the two sides of Equations (20) and (21), we obtain

|v̂(x, tj) − v(x, tj)| ≤ |δf(tj)|+ |δg(tj)| +
∥δΦ(x, tj)∥
2|b(tj)|

+
|k|

|b(tj)|

∫ 1

0

∫ 1

0

{|v̂0(x, tj)− v0(x, tj)|+ |ûj−1 − uj−1|}dxdx

+
|a(tj)|
2|b(tj)|

|v̂20(x, tj)− v20(x, tj)|.

Finally,|v̂(x, t)− v(x, t)| −→ 0, whenever

max
0≤x≤1
0≤t≤T

{|δf(t)|+ |δg(t)|+ |δΦ(x, t)|} −→ 0.

In the next section, a necessary condition for convergence of the approx-
imate solution, when the step size ∆t, tends to zero is obtainsd.

5 Convergence conditions for the problem (6)-(9)

In this section, we apply the error term of finite difference method in the
relations (15), (16) and (17) and then convergence condition of the solution
will be investigated. So, first, we give the following theorem.

Theorem 4. Let |∆t b(t)| > 1 for any 0 ≤ t ≤ T. If |∆t| −→ 0, then
uj(x) −→ u(x, t), for any 0 ≤ j ≤ n, 0 ≤ x ≤ 1.

Proof. Using Taylor’s series expansion, we have
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vj(x) ≃ v(x, tj) + δΦ,

where δΦ = ∆t
∂u(x,θj)

∂t , and tj < θj < tj+1.
So, from (18) we obtain

v0(x, tj) = f(tj) + xg(tj)−
1

b(tj)

∫ x

0

∫ x

0

Φj(x)dxdx,

or

v0j = f(tj) + xg(tj)−
1

b(tj)

∫ x

0

∫ x

0

Φj(x)dxdx+ δΦj .

Clearly, if δΦj −→ 0, then v0j −→ v0(x, tj).

Again, by (2 ) we have

v1(x, tj) =

∫ x

0

∫ x

0

k

b(tj)
(v0(x, tj)− uj−1(x))−

a(tj)

b(tj)
(
d

dx
{v0(x, tj)

d

dx
v0(x, tj)})dxdx.

thus

v1j =

∫ x

0

∫ x

0

k

b(tj)
{(v0j − δΦj)− (uj−1(x)− δΦj−1)}

− a(tj)

b(tj)
(
d

dx
{(v0j − δΦj)

d

dx
(v0j − δΦj)})dxdx

+ δΦj ,

and

v1j = v1(x, tj)−
k

b(tj)

∫ x

0

∫ x

0

(δΦj − δΦj−1)dxdx

+
a(tj)

b(tj)
{
δΦ2

j

2
−
∫ x

0

v0j
d

dx
δΦjdx−

∫ x

0

δΦj
d

dx
v0jdx}.

That means if δΦj −→ 0, then v1j −→ v1(x, tj), and vj −→ v(x, tj).

6 Numerical results

In this section, we give a numerical example.
Let

ut −
∂

∂x
{(1

6
e−tu+ (t+ 5) e−t)

∂u

∂x
} = −7

3
t− 9, (x, t) ∈ [0, 1]× [0, 1],

u(x, 0) = x2, 0 ≤ x ≤ 1,
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u(0, t) = t, 0 ≤ t ≤ 1,
ux(0, t) = 0, 0 ≤ t ≤ 1. (22)

Obviously
Φ(x, t) = − 7

3 t− 9, a(t) = 1
6 e

−t, b(t) = (t+ 5) e−t.
The exact solution is u(x, t) = x2et+ t. We obtain the approximate solution
by applying equations (15), (16) and (17), at x = 0.1, 0.2, . . . , 1, where t =
0.25, 0.5, 0.75, 1, and we assume that △t = 0.25. Consequently the solution
will be constructed in the form

v0j (x) = h(x, tj) = tj − 1
(tj+5)e−tj

(−7
3 t− 9)x

2

2 ,

v1j (x) =
∫ x

0

∫ x

0

{
4etj

(tj+5) (v0j (x)− u(x, tj−1))−
1
6

(tj+5)
d
dx

(
v0j (x)

d
dxv0j (x)

)}
dxdx,

for j = 1, 2, 3, 4.
The exact solution, approximate solution and relative error for the above
problem are given in Tables 2− 5 and 6− 9 at t = tj = j△t, j = 1, 2, 3, 4.
To illustrate stability, according to Table 1, we enter some noise terms into
data functions in Eq. (22).
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Figure 1: Approximate (· · · ) and exact solution of u(x, tj) in t = 0.25 and t = 0.5.
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Figure 2: Approximate (· · · ) and exact solution of u(x, tj) in t = 0.75 and t = 1.

Table 1: Perturbation terms in problem (22)

j aj bj fj gj Φj

1 -0.006486161986 -0.001002685512 0.001219370604 -0.001002685512 0.001219370604

2 0.01848017099 -0.0008600955762 -0.0002264198307 -0.0008600955762 -0.0002264198307

3 -0.005506853028 0.002919491298 -0.0004964518833 0.002919491298 -0.0004964518833

4 -0.006487155975 -0.001056710212 -0.0004964988898 -0.001056710212 -0.0004964988898

Table 2: Exact and approximate solution of uj(x) at tj = 0.25 with and without pertur-

bation terms in a and b

x exact solution approximate solution relative error perturbed solution relative error

0.1 0.2628402542 0.2628483725 3.08× 10−5 0.2628562616 6.09× 10−5

0.2 0.3013610167 0.3013841491 7.67× 10−5 0.3014170267 1.85× 10−4

0.3 0.3655622875 0.3655793088 4.65× 10−5 0.3656582382 2.62× 10−4

0.4 0.4554440667 0.4553871491 1.24× 10−4 0.4555397988 2.10× 10−4

0.5 0.5710063542 0.5707422861 4.62× 10−4 0.5710055740 1.36× 10−6

0.6 0.7122491501 0.7115606556 9.66× 10−4 0.7119833904 3.37× 10−4

0.7 0.8791724543 0.8777395127 1.62× 10−3 0.8783850345 8.95× 10−4

0.8 1.071776267 1.069157431 2.44× 10−3 1.070106259 1.55× 10−3

0.9 1.290060588 1.285674303 3.40× 10−3 1.287026770 2.35× 10−3

1 1.534025417 1.527131339 4.49× 10−3 1.529010242 3.26× 10−3
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Table 3: Exact and approximate solution of uj(x) at tj = 0.5 with and without pertur-

bation terms in a and b

x exact solution approximate solution relative error perturbed solution relative error

0.1 0.5164872127 0.5165050073 3.44× 10−5 0.5164663253 4.04× 10−5

0.2 0.5659488508 0.5660064728 1.01× 10−4 0.5658439475 1.85× 10−4

0.3 0.6483849144 0.6484638498 1.21× 10−4 0.6480689075 4.87× 10−4

0.4 0.7637954034 0.7638099282 1.90× 10−5 0.7630349271 9.95× 10−4

0.5 0.9121803178 0.9119513987 2.50× 10−4 0.9105938906 1.73× 10−3

0.6 1.093539658 1.092769640 7.04× 10−4 1.090556514 2.72× 10−3

0.7 1.307873423 1.306121720 1.33× 10−3 1.302693219 3.96× 10−3

0.8 1.555181613 1.551841629 1.09× 10−3 1.546735182 5.43× 10−3

0.9 1.835464230 1.829741743 3.11× 10−3 1.822375591 7.13× 10−3

1 2.148721271 2.139614496 4.23× 10−3 2.129271087 9.05× 10−3

Table 4: Exact and approximate solution of uj(x) at tj = 0.75 with and without pertur-

bation terms in a and b

x exact solution approximate solution relative error perturbed solution relative error

0.1 0.7711700002 0.7711983689 3.36× 10−5 0.7712065247 4.73× 10−5

0.2 0.8346800007 0.8347737522 1.12× 10−4 0.8348115589 1.57× 10−4

0.3 0.9405300015 0.9406671824 1.45× 10−4 0.9407717933 2.57× 10−4

0.4 1.088720003 1.088781041 5.60× 10−5 1.089016095 2.71× 10−4

0.5 1.279250004 1.278980053 2.11× 10−4 1.279447063 1.54× 10−4

0.6 1.512120006 1.511092655 6.79× 10−4 1.511943216 1.16× 10−4

0.7 1.787330008 1.784912741 1.35× 10−3 1.786361766 5.41× 10−4

0.8 2.104880011 2.100201772 2.22× 10−3 2.102541999 1.11× 10−3

0.9 2.464770014 2.456691211 3.27× 10−3 2.460309231 1.80× 10−3

1 2.867000017 2.854085288 4.50× 10−3 2.859479316 2.62× 10−3
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Table 5: Exact and approximate solution of uj(x) at tj = 1 with and without perturba-

tion terms in a and b

x exact solution approximate solution relative error perturbed solution relative error

0.1 1.027182818 1.027222369 3.85× 10−5 1.027311557 1.25× 10−4

0.2 1.108731273 1.108860738 1.16× 10−4 1.109229081 4.48× 10−4

0.3 1.244645364 1.244829262 1.47× 10−4 1.245701389 8.48× 10−4

0.4 1.434925092 1.434986046 2.42× 10−5 1.436644053 1.19× 10−3

0.5 1.679570457 1.679134916 2.59× 10−4 1.681940678 1.41× 10−3

0.6 1.978581458 1.977027872 7.85× 10−4 1.981444677 1.44× 10−3

0.7 2.331958096 2.328368191 1.53× 10−3 2.334981455 1.29× 10−3

0.8 2.739700370 2.732814161 2.51× 10−3 2.742351004 9.67× 10−4

0.9 3.201808281 3.189983398 3.69× 10−3 3.203330804 4.75× 10−4

1 3.718281828 3.699457703 5.06× 10−3 3.717678990 1.62× 10−4

Table 6: Exact and approximate solution of uj(x) at tj = 0.25 with and without pertur-

bation terms in f, g and Φ

x exact solution approximate solution relative error perturbed solution relative error

0.1 0.2628402542 0.2628483725 3.08× 10−5 0.2630645568 8.53× 10−4

0.2 0.3013610167 0.3013841491 7.67× 10−5 0.3015988237 7.89× 10−4

0.3 0.3655622875 0.3655793088 4.65× 10−5 0.3657914404 6.26× 10−4

0.4 0.4554440667 0.4553871491 1.24× 10−4 0.4555956649 3.32× 10−4

0.5 0.5710063542 0.5707422861 4.62× 10−4 0.5709460580 1.05× 10−4

0.6 0.7122491501 0.7115606556 9.66× 10−4 0.7117584843 6.88× 10−4

0.7 0.8791724543 0.8777395127 1.62× 10−3 0.8779301112 1.41× 10−3

0.8 1.071776267 1.069157431 2.44× 10−3 1.069339409 2.27× 10−3

0.9 1.290060588 1.285674303 3.40× 10−3 1.285846152 3.26× 10−3

1 1.534025417 1.527131339 4.49× 10−3 1.527291415 4.38× 10−3
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Table 7: Exact and approximate solution of uj(x) at tj = 0.5 with and without pertur-

bation terms in f, g and Φ

x exact solution approximate solution relative error perturbed solution relative error

0.1 0.5164872127 0.5165050073 3.44× 10−5 0.5154115152 2.08× 10−3

0.2 0.5659488508 0.5660064728 1.01× 10−4 0.5648920604 1.86× 10−3

0.3 0.6483849144 0.6484638498 1.21× 10−4 0.6473145948 1.65× 10−3

0.4 0.7637954034 0.7638099282 1.90× 10−5 0.7626119527 1.54× 10−3

0.5 0.9121803178 0.9119513987 2.50× 10−4 0.9106908844 1.63× 10−3

0.6 1.093539658 1.092769640 7.04× 10−4 1.091432842 1.92× 10−3

0.7 1.307873423 1.306121720 1.33× 10−3 1.304694990 1.30× 10−3

0.8 1.555181613 1.551841629 1.09× 10−3 1.550311436 3.13× 10−3

0.9 1.835464230 1.829741743 3.11× 10−3 1.828094690 4.01× 10−3

1 2.148721271 2.139614496 4.23× 10−3 2.137837344 5.06× 10−3

Table 8: Exact and approximate solution of uj(x) at tj = 0.75 with and without pertur-

bation terms in f, g and Φ

x exact solution approximate solution relative error perturbed solution relative error

0.1 0.7711700002 0.7711983689 3.36× 10−5 0.7736467637 3.21× 10−3

0.2 0.8346800007 0.8347737522 1.12× 10−4 0.8372983250 3.13× 10−3

0.3 0.9405300015 0.9406671824 1.45× 10−4 0.9433190828 2.96× 10−3

0.4 1.088720003 1.088781041 5.60× 10−5 1.091611970 2.65× 10−3

0.5 1.279250004 1.278980053 2.11× 10−4 1.282042479 2.18× 10−3

0.6 1.512120006 1.511092655 6.79× 10−4 1.514440029 1.53× 10−3

0.7 1.787330008 1.784912741 1.35× 10−3 1.788599719 7.10× 10−4

0.8 2.104880011 2.100201772 2.22× 10−3 2.104284426 2.82× 10−4

0.9 2.464770014 2.456691211 3.27× 10−3 2.461227246 1.43× 10−3

1 2.867000017 2.854085288 4.50× 10−3 2.859134249 2.74× 10−3
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Table 9: Exact and approximate solution of uj(x) at tj = 1 with and without perturba-

tion terms in f, g and Φ

x exact solution approximate solution relative error perturbed solution relative error

0.1 1.027182818 1.027222369 3.85× 10−5 1.025635295 1.50× 10−3

0.2 1.108731273 1.108860738 1.16× 10−4 1.107171622 1.40× 10−3

0.3 1.244645364 1.244829262 1.47× 10−4 1.242968576 1.34× 10−3

0.4 1.434925092 1.434986046 2.42× 10−5 1.432882007 1.42× 10−3

0.5 1.679570457 1.679134916 2.59× 10−4 1.676712572 1.70× 10−3

0.6 1.978581458 1.977027872 7.85× 10−4 1.974208173 2.21× 10−3

0.7 2.331958096 2.328368191 1.53× 10−3 2.325067038 2.95× 10−3

0.8 2.739700370 2.732814161 2.51× 10−3 2.728941436 3.92× 10−3

0.9 3.201808281 3.189983398 3.69× 10−3 3.185441974 5.11× 10−3

1 3.718281828 3.699457703 5.06× 10−3 3.694142422 6.49× 10−3

7 Conclusions

The HPM for the one-dimensional inverse problems has been presented. The
method described is mathematically simple and computationally effective.
As we see in Tables 2 − 9, small errors in the data make small errors in
the solution, so that, the solution depends continuously on the data. In
this paper, the noise terms that are shown in Table 1, are made randomized
and have standard normal distributions. Maple 16 packages have been used
to compute the solution before and after adding noise terms. Rapidity ,
accuracy and stability are advantages of this formulation.
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روش توسط گرما هدایت معکوس مسأله تقریبی جواب یک پایداری و همگرایی شرایط بررسی
هموتوپی اختلال

ذاکری علی و جنتی قدسیه

ریاضی دانشکده طوسی، الدین نصیر خواجه دانشگاه

غیرخطی گرمایی هدایت معکوس مسأله یک حل برای هموتوپی اختلال روش کاربرد مقاله این در : چکیده
دمای از خطی تابع صورت به رسانش مسأله این در می-گیرد. قرار بررسی مورد بعدی یک فضای در
است. مجهول تعریف دامنه کران یک در دما مقدار این بر علاوه است. کران-دار دامنه یک در ناشناخته
متغیر -سازی گسسته و متناهی تفاضلات روش بستن کار به با است. بدخیم مسأله یک موردنظر مسأله
استفاده با آن تقریبی جواب که می-شود تبدیل غیرخطی دیفرانسیل معادلات دستگاه یک به مسأله زمانی،
بررسی مورد پیشنهادی روش پایداری و همگرایی شرایط ادامه در می-گردد. تعیین هموتوپی اختلال روش از

می-گردد. ارائه خطا بالای کران یک آخر در می-گیرد. قرار

معکوس. مسائل سازی؛ گسسته- روش-های نفوذ؛ معادلات ؛ هموتوپی اختلال روش : کلیدی کلمات


	Binder6
	مقالات
	complete


	Binder61pdf
	inside


