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On stagnation of the DGMRES method
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Abstract
Let A be an n-by-n matrix with index α > 0 and b ∈ Cn. In this paper,
the problem of stagnation of the DGMRES method for the singular linear
system Ax = b is considered. We show that DGMRES(A, b, α) has partial
stagnation of order at least k if and only if (0, . . . , 0) belongs to the the joint
numerical range of matrices {Bα+1, . . . , Bα+k}, where B is a compression
of A to the range of Aα. Also, we characterize the nonsingular part of a
matrices A such that DGMRES(A, b, α) does not stagnate for all b ∈ Cn.
Moreover, a sufficient condition for non-existence of real stagnation vectors
b ∈ R(Aα) for the DGMRES method is presented, and the DGMRES
stagnation of special matrices are studied.
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1 Introduction

Let A be an n-by-n matrix with index α. The index is the size of the largest
Jordan block of A corresponding to the zero eigenvalue. The Drazin inverse
AD of A is the unique n-by-n matrix that satisfies

AAD = ADA, Aα+1AD = Aα, ADAAD = AD.

Since AD can be written as a polynomial in A [2, p. 186], there is a possi-
bility of using Krylov subspace methods to find the Drazin inverse solution
ADb to a possibly inconsistent linear system Ax = b. Such an algorithm,
called DGMRES, developed by Sidi [7]. DGMRES has been considered in
several studies; see [1, 8]. This algorithm is similar to the GMRES algorithm
developed by Saad and Schultz [6] for solving nonsingular linear systems.
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The stagnation of GMRES was studied in [3, 5, 10] and the stagnation of
DGMRES was studied in [11].

Note that while the linear system Ax = b may have no solution, if we
multiply each side by Aα, then the linear system Aα+1x = Aαb is consistent
and has x = ADb as a solution. The DGMRES algorithm works as follows.
Given an initial guess x0, compute the initial residual r0 = b−Ax0. We will
choose approximate solutions xk, k = 1, 2, . . . , n − α, to be of the form x0

plus a linear combination of vectors from the kth Krylov subspace

Kk(A,Aαr0) = span{Aαr0, . . . , A
α+k−1r0}, (1)

such that the residual vector rk = b−Axk satisfies

∥Aαrk∥ = minx∈Kk(A,Aαr0)∥A
α(b−A(x0 + x)∥

= minc1,...,ck∥Aα(b−A(x0 + c1A
αr0 + · · ·+ ckA

α+k−1r0))∥
= minc1,...,ck∥Aαr0 − c1A

2α+1r0 − · · · − ckA
2α+kr0))∥. (2)

The DGMRES terminates with the exact Drazin-inverse solution in at
most n− α iterations (i.e., ∥Aαrn−α∥ = 0) [7]. Throughout this paper, ∥ · ∥
denotes the Euclidean norm for vectors and the spectral norm for matrices.
Without loss of generality, we assume that x0 = 0 and ∥Aαr0∥ = ∥Aαb∥ = 1,
because if Aαr0 = 0, then the DGMRES algorithm has the solution x0 at the
initial step, in other words, the DGMRES algorithm has no progress.
Definition 1. Let {A1, A2, . . . , Ak} be n× n matrices. The joint numerical
range for (A1, A2, . . . , Ak) is defined and denoted by

W (A1, A2, . . . , Ak) := {(x∗A1x, x
∗A2x, . . . , x

∗Akx) : x ∈ Cn, x∗x = 1}.

Note that in Definition 1, if k = 1, then the joint numerical range coincide
with the standard numerical range.

2 Partial stagnation of DGMRES

In this section, the problem of stagnation of the DGMRES algorithm for
singular linear system Ax = b is studied.
Definition 2. Let A be an n-by-n matrix with index α and a right-hand
side vector b ∈ Cn. We say that DGMRES (A, b, α) has partial stagnation of
order k, if

∥Aαr0∥ = · · · = ∥Aαrk∥ > ∥Aαrk+1∥ ≥ · · · ≥ ∥Aαrn−α∥ = 0. (3)

Also, if DGMRES (A, b, α) has partial stagnation of order k = n − α − 1,
then DGMRES (A, b, α) has complete stagnation. DGMRES (A, b, α) does
not stagnate, if DGMRES (A, b, α) has not partial stagnation of any order.
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In the following result, we state an equivalent definition for partial stag-
nation [11].

Lemma 1. Let A be an n-by-n matrix with index α and a right-hand side
vector b ∈ Cn. Then DGMRES (A, b, α) has partial stagnation of order at
least k if and only if Aαb is perpendicular to span{A2α+1b, . . . , A2α+kb}.

Proof. By using (2), we obtain that for all 1 ≤ i ≤ k,

∥Aαb∥ = minc1,...,ci∥Aαb− c1A
2α+1b− · · · − ciA

2α+ib))∥.

Therefore, Aαb should be perpendicular to span{A2α+1b, . . . , A2α+kb}.

By using the Core-Nilpotent decomposition and QR decomposition, we
obtain the following decomposition [1].

Let A ∈ Cn×n with α = ind(A) > 0. Then there exists a unitary matrix
Q ∈ Cn×n such that

A = Q

[
B ∗
0 N

]
Q∗, (4)

where B ∈ Cm×m is the compression of A to R(Aα) and N is nilpotent with
index α.

Theorem 1. Let A ∈ Cn×n with index α be as in (4). Then there exists a
vector b ∈ Cn such that DGMRES(A, b, α) has partial stagnation of order at
least k if and only if (0, . . . , 0) ∈ W (Bα+1, . . . , Bα+k).

Proof. By Lemma 1, we know that the DGMRES(A, b, α) has partial stag-
nation of order at least k, if and only if (Aαb)∗A2α+ib = 0, i = 1, . . . , k.
Then

(Aαb)∗(Aα+i)(Aαb) = 0, i = 1, . . . , k. (5)

By using (4) and (5), for i = 1, . . . , k,

(Aαb)∗(Aα+i)(Aαb) = (Aαb)∗Q

[
Bα+i ∗
0 Nα+i

]
Q∗(Aαb)

= (Q∗(Aαb))∗
[
Bα+i ∗
0 0

]
Q∗(Aαb) = 0. (6)

Define z =
(
z1
z2

)
= Q∗(Aαb), where z1 ∈ Cm. Since 0 ̸= Aαb ∈ R(Aα) and

the last n−m columns of Q form an orthonormal basis for the R(Aα)⊥, we
obtain that z2 = 0 and hence ∥z1∥ = ∥z∥ = ∥Q∗(Aαb)∥ = 1. Therefore,

z∗
[
Bα+i ∗
0 0

]
z = z∗1B

α+iz1 = 0, i = 1, . . . , k. (7)

This means that (0, . . . , 0) ∈ W (Bα+1, . . . , Bα+k).
Conversely, assume that (0, . . . , 0) ∈ W (Bα+1, . . . , Bα+k). Then there

exists a unit vector z1 ∈ Cm such that z∗1B
α+iz1 = 0, i = 1, . . . , k. Define
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z =
(
z1
0

)
∈ Cn. Then (7) holds. We know that the first m columns of Q form

an orthonormal basis for the range of Aα. Then Qz = Q
(
z1
0

)
∈ R(Aα), and

hence the equation Aαx = Qz has a solution x = b. Since z = Q∗(Aαb), by
using (7)

(Q∗(Aαb))∗
[
Bα+i ∗
0 0

]
(Q∗(Aαb)) = z∗1B

α+iz1 = 0, i = 1, . . . , k.

Therefore, (Aαb)∗(Aα+i)(Aαb) = (Aαb)∗(A2α+ib) = 0, i = 1, . . . k. This
shows that Aαb is perpendicular to A2α+ib, i = 1, . . . , k. Then by Lemma 1,
DGMRES(A, b, α) has partial stagnation of order at least k.

3 Complete stagnation of DGMRES

Let A be an n-by-n matrix with index α and let b ∈ Cn. By Definition 2, we
know that DGMRES(A, b, α) has complete stagnation if

∥Aαr0∥ = · · · = ∥Aαrn−α−1∥ > ∥Aαrn−α∥ = 0. (8)

In the following result, we show that ∥Aαrm∥ = 0.

Theorem 2. Let A ∈ Mn(C) with index α be as in (4) and let b ∈ Cn. Then
Aαrm = 0, where m is the dimension of R(Aα), the range of Aα.

Proof. The matrix B ∈ Mm(C) is nonsingular, so by using the Cayley–
Hamilton theorem, there exists a polynomial of degree at most m − 1 say
p(x) = am−1x

m−1 + · · ·+ a1x+ a0 such that (B−1)α+1 = p(B). Then by [2,
p. 186] the Drazin inverse AD = Aαp(A). Then

∥Aαrm∥ =minx∈Km(A,Aαb)∥Aα(b−Ax)∥
=mint0,...,tm−1

∥Aαb−A2α+1(t0b+ · · ·+ tm−1A
m−1b)∥

≤∥Aαb−A2α+1(a0b+ · · ·+ am−1A
m−1b)∥

=∥Aαb−Aα+1[Aαp(A)]b∥ = ∥(Aα −Aα+1AD)b)∥. (9)

Since Aα+1AD = Aα, we obtain that ∥Aαrm∥ = 0.

Remark 1. Theorem 2 shows that the DGMRES method terminates at most
after m iterations. Then the complete stagnation occurs if m = n− α. This
means that the nilpotent part N in (4) must be equal to the Jordan block of
size α corresponding to zero eigenvalue, N = Jα(0).
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4 Stagnation of real matrices

Let A ∈ Rn×n with α = ind(A) > 0. Then by the core-nilpotent and QR
decompositions for real matrices, there exist an orthogonal matrix Q ∈ Rn×n,
an invertible matrix B ∈ Rm×m, and a nilpotent matrix N ∈ Rn−m×n−m

such that (4) holds. Let A ∈ Rn×n and let e ∈ Rn. Then easy computation
shows that

eTAe = 0 if and only if eT (A+AT )e = 0.

Let A ∈ Rn×n be as in (4) with α = ind(A) > 0. If we are looking for
a real stagnation vector e ∈ R(Aα), it is enough to consider the following
polynomial system:

eT (Aα+i + (Aα+i)T )e = 0, i = 1, 2, . . . , k, eT e = 1. (10)

Meurant [4, Theorem 2.2] presented a sufficient condition for non-existence
of real stagnation vectors b ∈ Rn for the GMRES method. In the following
result, we state a sufficient condition for non-existence of real stagnation
vectors b ∈ R(Aα) for DGMRES method.

Theorem 3. Let A ∈ Rn×n with α = ind(A) > 0 be as in (4) and let
Bi := Bi + (Bi)T , i = α + 1, α + 2, . . . , α + k, where k ≤ m is a natural
number. If there exist real scalars µi, i = 1, 2, . . . , k such that the matrix
µ1Bα+1+ · · ·+µkBα+k is a (positive or negative) definite matrix, then there
is no real stagnation vector e ∈ R(Aα).

Proof. Assume if possible there exist a real stagnation vector e ∈ R(Aα).
Then there exists b ∈ Rn such that e = Aαb and (5) holds. By using the
notations z =

(
z1
z2

)
= QT (Aαb) with ∥z1∥ = 1 in Theorem 1, we obtain that

zT1 B
α+iz1 = 0, i = 1, . . . , k. By (10), zT1 (Bα+i + (Bα+i)T )z1 = zT1 Bα+iz1 =

0, i = 1, . . . , k, and hence zT1 (µ1Bα+1+· · ·+µkBα+k)z1 = 0. Since µ1Bα+1+
· · · + µkBα+k is (positive or negative ) definite, we obtain that z1 = 0, a
contradiction with ∥z1∥ = 1.

Example 1. Let A be as in (4), where B =

 1 2 1
1 −1 2
1 0 −1

 and N =

[
0 0
0 0

]
.

It is readily seen that 10B2 + B3 =

 96 30 44
30 62 −1
44 −1 44

 is positive definite, where

B2 = B2 + (B2)T and B3 = B3 + (B3)T . Then by Theorem 3, there is no
real stagnation vector.
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5 Stagnation of special matrices

Let A be as in (4). If m = 0, then A is nilpotent with index α, which
means that Aα = 0, and hence Aαb = 0 for all b ∈ Cn. Then without
loss of generality, we assume that ∥Aαb∥ = 1 throughout this paper. Also,
we assume that m > 0, which means that B ∈ Mm(C) is invertible and A
is not nilpotent. In this section, we are going to characterize all matrices
B ∈ Mm(C) such that DGMRES(A, b, α) does not stagnate, for all b ∈ Cn

and unitary matrices Q ∈ Mn(C).
The decomposition (4) is known as the core-nilpotent decomposition of

A. Moreover, the matrix B is nonsingular. On the other hand, this decom-
position is shown by A = B ⊕N .

Theorem 4. Let B ∈ Mm(C) be an invertible matrix and let N ∈ Mn−m(C)
be a nilpotent matrix with index α. Then Bα+1 is a scalar matrix if and
only if DGMRES(A, b, α) does not stagnate for any b ∈ Cn and invertible

V ∈ Mn(C), where A = V

[
B 0
0 N

]
V −1.

Proof. Assume thatBα+1 = λIm is a scalar matrix, where λ ̸= 0. Let b ∈ Cn

be an arbitrary vector and let V ∈ Mn(C) be an arbitrary invertible matrix.
Assume that V = QR is the QR decomposition of V . Then

A = V

[
B 0
0 N

]
V −1 =Q

[
R1 ∗
0 R2

] [
B 0
0 N

] [
R−1

1 ∗
0 R−1

2

]
Q∗

=Q

[
R1BR−1

1 ∗
0 R2NR−1

2

]
Q∗.

Note that R2NR−1
2 is again a nilpotent matrix with index α > 0 and that

R1BR−1
1 = λIm is a scalar matrix. Since 0 /∈ W ((R1BR−1

1 )α+1) = {λα+1},
by Theorem 1, DGMRES(A, b, α) does not stagnate, for any b ∈ Cn and
V ∈ Mn(C).

Conversely, let DGMRES(A, b, α) do not stagnate for any b ∈ Cn and
let V ∈ Mn(C). Assume if possible Bα+1 is not a scalar matrix. Then
by [9, Theorem 3], there exists an invertible matrix V1 ∈ Mm(C) such that
0 ∈ W (V1B

α+1V −1
1 ). Let V1 = Q1R1 be the QR decomposition of V1. Define

the matrix V :=

[
V1 0
0 In−m

]
and the unitary matrix Q :=

[
Q1 0
0 In−m

]
. Then

A = V

[
B 0
0 N

]
V −1 = Q

[
R1BR−1

1 0
0 N

]
Q∗.

Since 0 ∈ W (V1B
α+1V −1

1 ) = W (R1B
α+1R−1

1 ), by Theorem 1, DGMRES(A, b, α)
has a partial stagnation of order at least one, a contradiction. Then Bα+1 is
a scalar matrix.
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Zhou and Wei [11, Section 3] showed that for 2×2 matrices, the stagnation
system has no relation with condition number of V and that the stagnation
system always has a real root, where V is the Jordan transformation matrix
of A. Indeed, in the following result, we show that for any 2 × 2 matrix A,
DGMRES(A, b, α) does not stagnate for any Jordan transformation matrix
V ∈ M2(C) and b ∈ C2.

Proposition 1. Let A be a nonzero singular 2× 2 matrix with index α = 1
and let b ∈ C2 be an arbitrary vector. Then DGMRES(A, b, α) does not
stagnate.

Proof. The Jordan decomposition of 2-by-2 matrix A has the following form:

A = V

[
λ 0
0 0

]
V −1.

Then B2 = [λ2] is a scalar matrix, and hence by Theorem 4, DGMRES(A, b, α)
does not stagnate for any b ∈ C2.

In the following example, we show that by changing the right-hand side
vector b, the stagnation of DGMRES(A, b, α) will be removed.

Example 2. Let A = B ⊕N , where

B =


2.5300 −0.4147 −0.6717 −0.3570
−0.4147 1.7306 0.8017 −0.4718
−0.6717 0.8017 −0.5233 0.5021
−0.3570 −0.4718 0.5021 1.2627

 , and N =

[
0 1
0 0

]
.

By choosing the vector b =
[
−0.5291 −0.1187 −1.2012 −0.5129 0 0

]T as the
right-hand side vector, DGMRES(A, b, 2) has partial stagnation of order one
(see Figure 1 (a)).

By choosing b̂ =
[
0.2277 0.4357 0.3111 0.9234 0.4302 0.1848

]T
, as a ran-

dom vector, DGMRES(A, b̂, 2) does not stagnate (see Figure 1 (b)).

6 Conclusion

Let A be an n-by-n matrix with index α > 0 and let b ∈ Cn. A necessary and
sufficient condition for partial stagnation of DGMRES(A, b, α) is obtained,
and also for A ∈ Mn(R), a sufficient condition for the non-existence of real
stagnation vector b ∈ R(Aα) is studied. Moreover, a characterize for matrices
A ∈ Mn(C) such that DGMRES(A, b, α) does not stagnate for every b ∈ Cn

are considered.
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Figure 1: (a) DGMRES(A, b, 2) (b) DGMRES(A, b̂, 2)
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