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Abstract

We propose a maximum probability model to estimate the origin-destination
trip matrix in the networks, where the observed traffic counts of links and

the target origin-destination trip demands are independent discrete random

variables with known probabilities. The problem is formulated by using the
least squares approach in which the objective is to maximize the probability

that the sum of squared errors between the estimated values and the observed

(target) ones does not exceed a pre-specified threshold. An enumeration
solution approach is proposed to solve the problem in small-sized networks,

while a normal approximation based on the central limit theorem is applied in
large-sized networks to transform the problem into a deterministic nonlinear

fractional model. Some numerical examples are provided to illustrate the

efficiency of the proposed method.
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1 Introduction

Origin-destination (O−D) trip matrix estimation problem is one of the most
important issues in transportation networks, in which the number of trips
between each O−D pair is evaluated and inserted in a matrix called O−D
trip matrix. The traditional methods used for investigating the O −D trip
matrix, including such direct measurement methods as roadside interviews
and flagging techniques, are so costly and mistakable. Conducting these
methods to update the O −D matrix information is not easily possible due
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to limitations of budgeting and implementation problems. In recent years,
using such available information as the observed traffic counts of links or a
target O−D matrix, obtained by a sample survey or an outdated model, the
problem is formulated as a mathematical model that estimates the O − D
matrix in a cheaper and faster way.

Determining the O − D matrix using the traffic counts of links can be
interpreted as the inverse of the traffic assignment (TA) problem. In the TA
problem, the demands of O−D pairs are given previously and assigned to the
paths connecting them so that the total users’ cost is minimized. As a result,
the flows on paths and the traffic counts of links would be determined. In
the O−D matrix estimation problem, the purpose is to estimate the O−D
demands by using the observed traffic counts of links. The solution methods
for this purpose are divided into two basic classes including (see [5]):

1. The proportional assignment models, in which the congestion effects
are not considered and the only reasons to pick and choose a route are
the traveler and route characteristics.

2. The equilibrium assignment models, in which the traffic congestion has
considerable influences on choosing routes. In this case, the Wardrop’s
first principle will satisfy that the traffic network is in equilibrium when
no traveler can achieve a lower travel cost by switching to another route;
see [34].

Considering either the proportional or equilibrium assignment, there are four
main mathematical models to estimate the O −D matrix:

1. Entropy maximization model [33, 36, 18], in which by introducing a
logarithm-based function, the most unbiased O−D trip matrix consis-
tent with the existing evidence is estimated.

2. Least squares approach [9, 11] with the purpose of minimizingthe sum
of squared deviations between the estimated (true) variables and the
observed (target) ones.

3. Maximum likelihood approach [29], which maximizes the likelihood of
observing the target O−D matrix and the observed link traffic counts
conditional on the estimated (true) O −D matrix.

4. Bayesian inference approach [22], in which Bayes’ theorem is applied to
combine information obtained from both the target O−D matrix and
the observed traffic counts of links to estimate the true O −D matrix.

Abareshi, Zaferanieh, and Keramati [3] studied a maximum entropy
(ME) path flow estimator for disaggregated flows between O−D pairs with
a pre-specified level for each disaggregation. Sun et al. [32] applied the ME
approach on a subnetwork O−D matrix estimation model by using the total
traffic generations (attractions) along with some fixed O − D demands of
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the subnetwork as the constraints. Applying a convex combination method,
the resulted nonlinear problem was converted to the classical linear trans-
portation problem where a tabular method was implemented to solve it. Xie,
Kockelman, and Waller [37] proposed an elastic O − D flow table estima-
tion problem for subnetwork analysis. They proposed a combined maximum
entropy-least squares estimator, by which the O −D flows were distributed
over the subnetwork in terms of the maximum entropy principle, while de-
mand function parameters were estimated so that the least sum of squared
errors was achieved.

Sun et al. [31] introduced two bi-level models to reconstruct O − D
demands under congested network using both the observed link and route
travel times. Their proposed models aimed to minimize the distances between
the observed and estimated traffic information (O−D, link and route travel
times) in the upper level, and optimize the stochastic user equilibrium (SUE)
model in the lower level, in which no driver can unilaterally change routes to
improve his/her perceived, rather than actual, travel times.

In many real applications, the precise values of the observable data as link
traffic counts or target O −D trips in a network might be unavailable. For
example, the observed number of travelers moving between cities may differ
in various situations due to the weather conditions or coming the rush hours;
consequently, some measurement errors may occur with known or unknown
probability distributions. Therefore, it is desirable to treat the observed
information as random or time-dependent variables with certain or uncertain
parameters; see [13, 26]. In such cases, the use of statistical modeling to
consider explicitly the presence of measurement and sampling errors in the
observed information is developed.

Hoang, Vu, and Lo [16] formulated the information-based stochastic user
equilibrium dynamic traffic assignment problem in a network, where the real-
time information accounted for the (stochastic) uncertainty in demand and
network capacity. Jones et al. [17] developed new methods for network as-
sessment and control. Applying partial sensor and survey data while impos-
ing equilibrium conditions during the data collection phase, they considered
explicit account of demand variability and uncertainty.

Ma and Qian [20], using day-to-day traffic data collected over many years,
estimated the mean and variance/covariance matrix of the O −D demands.
They [21] also presented a data-driven framework that estimates the day-to-
day dynamic O − D demands using high-granular traffic counts and speed
data collected over many years. Pitomberia-Neto, Loureiro, and Carvalho
[27] estimated the O − D flows using link traffic volumes over a sequence
of days and applied a dynamic hierarchical Bayesian model for estimating
the day-to-day O − D demands. Ching, Scholtes, and Zhang [13] assumed
that the demands between nodes (zones) over a fixed period of time are
formulated as independent random variables with unknown means. They
considered both Poisson and normal distributions as the density functions
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for the random travel demands and applied some numerical algorithms to
estimate the optimal solution.

Shao et al. [28] proposed a bi-level optimization problem using a weighted
least squares model in the upper level and a TA model in the lower level
to estimate the peak hour O − D traffic demand variations from day-to-
day hourly traffic counts throughout the whole year. Abareshi, Zaferanieh,
and Safi [4] introduced a Markov chain O−D matrix estimation problem in
which the average time between two incoming streams to or outgoing streams
from nodes in consecutive time periods was considered as a Markov chain.
Besides, a normal distribution with pre-determined parameters in each period
was used for traffic counts of links. They proposed a bi-level model where
in the upper level, the network flow pattern with the maximum probability
in the nth period was to be estimated, while a traffic assignment problem
considering the equilibrium conditions was solved in the lower level.

Random variables in location problems have also received lots of attention,
recently. Abareshi and Zaferanieh [1] considered prior probabilities to serve
the demands of nodes by different facilities and introduced a bi-level model
by applying the minimum information (MI) approach to determine the most
probable allocation solution in the customer’s point of view. Berman and
Wang [7] studied locating pmedians to serve clients with discrete probabilistic
demand weights, where the purpose was maximizing the probability that
the total weighted distance does not exceed a given threshold value. To
overcome the difficulty of evaluating the objective function, they [7] suggested
to use a normal approximation of the problem based on the central limit
theorem (CLT ) when the size of the network is large enough. Berman and
Wang [6] also considered four probabilistic network location problems with
independent discrete demand weights and proposed efficient algorithms to
solve the problem. Abareshi and Zaferanieh [2] studied the 1-median problem
in the case, where the demand weights of nodes and the travel times of links
were both discrete random variables.

In this paper, the observed traffic counts of links and the entries of the
target O − D matrix are considered to be independent random variables,
where unlike [13], the corresponding probabilities are known. In this case,
the squared errors between the estimated and the observed values are also
independent random variables. Therefore, instead of minimizing the sum of
squared errors, it is suggested to maximize the probability that this amount
is less than or equal to a pre-threshold; see [6, 7]. Indeed, a predetermined
bound is given for the estimated sum of squared errors. The purpose is to
estimate the traffic flows on paths in an equilibrium approach to maximize
the probability that the sum of squared errors between the estimated and
observed (target) values does not exceed the given upper bound.

The problem is first examined for small-sized networks and a mixed-
integer quadratically constrained (MIQC) model is proposed, which could be
solved by using semidefinite programming (SDP ) to reformulate the model
as a quadratic convex problem; see [15]. We also propose an enumeration
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method to solve the problem and compare the results with the ones obtained
by MIQC methods. Then, the CLT is applied to the large-sized networks
whereby the MIQC model is transformed into a nonlinear fractional pro-
gramming (NLFP ) problem. The resulted problem would be solved by such
appropriate methods as parametric algorithm or linearization approaches; see
[30]. The main contributions of the paper are summarized below:

• A maximum probability approach is proposed to estimate the O − D
trip matrix in a probabilistic network in which the observed link traffic
counts and the target O−D matrix are discrete random variables with
known probabilities

• The problem is formulated as an MIQC model being solved via both
MIQC methods and an enumeration approach in small-sized networks,
while a normal approximation based on the CLT is applied to large-
sized networks to transform the problem into a nonlinear fractional
programming model.

• Three different cases are investigated by which the problem in large-
sized networks is solved via the parametric algorithm, generating a
sequence which superlinearly converges to the solution.

• Providing some numerical examples in both small and large-sized net-
works, the validity of the model as well as the solution approach is
verified.

The rest of the paper is organized as follows: Problem formulation and the
proposed MIQC model as well as the enumeration approach are given in
Section 2. In Section 3, the CLT is applied to find the solution in large-sized
networks, which results in an NLFP problem. In Section 4, the solution
approach for the resulted fractional model is stated. In Section 5, some
numerical examples are provided to examine the added value of the proposed
methods. Summary and conclusions are given in the last section.

2 Problem formulation

Let G = (N,E) be a network with the node set N and the link set E. The
observed traffic counts of links as well as the entries of the target O − D
matrix are assumed to be independent random variables with known discrete
probability distributions. Let State = {1, 2, . . . ,H} be the set of all realiza-
tions of the network. The vectors of the link traffic counts and target O−D
matrix in state h ∈ State are, respectively, denoted by V

h
and X

h
. There-

fore, v̄he and x̄hrs denote the observed traffic counts of link e ∈ E and the
target number of trips between the O−D pair (r, s) ∈ N ×N in the state h.
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Figure 1: Small network

Note that if there is neither origin nor destination in the network, the
traffic counts of links cannot be treated independently. For example, in Figure
1, the flow of link e3 is equal to the sum of the traffic counts of links e1 and e2,
that is, ve1+ve2 = ve3 . Then counting traffic on the link e3 is redundant, while
two counts ve1 and ve2 are independent. Moreover, if node 3 is considered as
an origin or a destination, then flows in the network are independent values.
Therefore, the expression ve1 + ve2 = ve3 is not satisfied; see [35].

Ching, Scholtes, and Zhang [13] considered the traffic volumes between
different zones (O − D pairs) over a fixed period of time as independent
random variables with unknown means. In this paper, due to the assumption
of existence of origin and destination nodes, both the link traffic counts and
the target O−D matrix components are assumed to be independent random
variables. A threshold D is given and the purpose is to estimate the O −D
matrix that maximizes the probability that the sum of squared errors between
the estimated and the observed information is less than or equal to D.

The mathematical formulation of the maximum probability least squares
(MPLS) problem to estimate the flow pattern in a probabilistic network is
proposed as follows:

max
f

Z(f) = Pr(
∑
e∈E

(ve − v̄e)2 +
∑
rs

(xrs − x̄rs)2 ≤ D), (1)

s.t.
∑
rs

∑
k∈Krs

fkrsδe,k = ve for all e ∈ E, (2)

∑
k∈Krs

fkrsδk,rs = xrs for all (r, s) ∈ N ×N, (3)

fkrs ≥ 0 for all k ∈ Krs, (r, s), (4)

where v̄e and x̄rs are, respectively, the probabilistic observed traffic count
of link e and target demand between O − D pair (r, s). Also, the decision
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variables ve and xrs represent the corresponding estimated values. The set
Krs includes the K-shortest paths connecting O − D pair (r, s), which is
determined by Eppstein’s K-shortest path ranking algorithm; see [14]. The
variable fkrs denotes the traffic flow on the path k connecting O − D pair
(r, s). The notation δe,k is the arc-path incident indicator, that is, δe,k = 1 if
the link e is a part of path k and zero, otherwise. Similarly, δk,rs = 1 if the
path k is used to connect the O−D pair (r, s) and zero otherwise. Constraint
(2) states that the estimated traffic count of link e equals the sum of flows
of all paths passing through this link. Besides, by constraint (3), the travel
demand between each O −D pair (r, s) equals the sum of flows on all paths
connecting them.

One of the fundamental methods to estimate the solution in probabilistic
cases, is using the expected value model (E-model) that converts the proba-
bilistic model into a deterministic problem by applying the expected values
of the objective function or constraints; see [12]. Indeed in real applications,
applying this approach may be useless and result in ineffective solutions; see
the following example.

Small Example. Consider the network with two links, given in Figure 2.
There are two paths including links e1 and e2 connecting O −D pair (1, 2).
Two realizations for the network with probabilities 0.7 and 0.3 are specified.
The target O − D matrix and the observed link traffic counts in the first
and second realizations are assumed to be x̄11,2 = 6.5, v̄1e1 = 3, v̄1e2 = 2 and
x̄21,2 = 7.5, v̄2e1 = 4, , v̄2e2 = 5, respectively.

To estimate the optimal flow pattern with the least squared errors, ei-
ther each of the distinct realizations or the expected values of the observed
variables, instead of their random amounts, may be considered. The op-
timal flow pattern applying the least squares approach in the first sate is
v∗e1 = 3.5, v∗e2 = 2.5 with the total sum of squared errors 0.75 in the first
state and 8.75 in the second one. Also the optimal solution with the least
squared errors in the second state is v∗∗e1 = 3.5, v∗∗e2 = 4.5 with the total sum
of squared errors 6.75 in the first state and 0.75 in the second one.

For the first state optimal solution, v∗e1 = 3.5, v∗e2 = 2.5, the probability
of the total sum of the squared errors being less than 1 is 0.7, while this
value for the second state optimal solution, v∗∗e1 = 3.5, v∗∗e2 = 4.5, is 0.3. If
the expected values of x̄1,2, v̄e1 , and v̄e2 are used, then the problem can be
written as follows:

min
f
Zexp(f) =

∑
e

(ve − µe)
2 +

∑
rs

(xrs − µrs)
2, (5)

subject to constraints (2), (3), and (4). The notations µe and µrs are used
for the expected values of random variables v̄e and x̄rs, respectively. Let the
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Figure 2: Network with two links

optimal flow vector of problem (5) be denoted by f∗exp. Then, the total sum
of squared errors in the first state is 1.47 and in the second one is 4.67. Hence
the total sum of squared errors is larger than 1 in both cases.

If the purpose is to estimate a solution with the least sum of squared errors
in both states simultaneously, then f∗exp is preferred to the solutions of the
first and second states. But, if there is a pre-determined upper bound D = 1
for the total sum of squared errors, then the solution v∗e1 = 3.5, v∗e2 = 2.5
satisfies this condition with probability 0.7 and obviously is preferred to the
other ones.

Let Zh(f) =
∑

e(ve − v̄he )2 +
∑

rs(xrs − x̄hrs)2, for each state h ∈ State,
where ve and xrs are defined by constraints (2) and (3), respectively. We
define the characterization function Yh(f) as follows:

Yh(f) =

{
1 Zh(f) ≤ D,
0 otherwise.

Therefore problem (1) is rewritten as follows:

max
f

Z(f) =
∑
h

Yh(f)Ph
r , (6)

where Ph
r is the probability of state h. Let the optimal path flow vector for

the following least squares problem, in state h ∈ State, be represented by f∗h :

min
f
Zh(f) =

∑
e

(ve − v̄he )2 +
∑
rs

(xrs − x̄hrs)2,

subject to constraints (2), (3), and (4). The flow vector f∗h can be estimated
by using such solution methods for the least squares O − D matrix esti-
mation problem as Lagrangian dual approach or active-set constraints; see
[10, 11, 24].

Definition 1. The set of indices h ∈ State with Zh(f∗h) ≤ D is defined
as the candidate set and denoted by Cset = {h ∈ State; Zh(f∗h) ≤ D}.
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If h /∈ Cset, then Yh(f∗h) = 0, and consequently Yh(f) = 0 for all vectors
f . The definition of the characterization function Yh(f) for each vector f
results in the following constraint using the binary variable yh, where yh is
used instead of Yh(f) to simplify the model:∑

e∈E
(ve − v̄he )2 +

∑
rs

(xrs − x̄hrs)2 −D ≤M(1− yh), (7)

where M is chosen sufficiently large. Inequality (7) together with the objec-
tive function maxf Z(f) =

∑
h yhP

h
r is equivalent to the definition of Yh(f).

Therefore, the following MIQC problem is resulted:

MIQC : max
f

Z(f) =
∑
h

yhP
h
r , (8)

s.t.
∑
e∈E

(ve − v̄he )2 +
∑
rs

(xrs − x̄hrs)2 −D ≤M(1− yh),∑
rs

∑
k∈Krs

fkrsδe,k = ve for all e ∈ E,

∑
k∈Krs

fkrsδk,rs = xrs for all (r, s) ∈ N ×N,

fkrs ≥ 0 for all k, (r, s), yh ∈ {0, 1} for all h ∈ State.

There are some solution approaches to solve problem (8). Galli and Letch-
ford [15] studied the possibility of extending the reformulation approach,
using the SDP , proposed in [8] for equality-constrained 0− 1 quadratic pro-
grams, to the more general case of mixed-integer quadratically constrained
quadratic (MIQCQ) problems. The proposed reformulation strengthened
the continuous relaxation of the problem, while the optimal solution re-
mained unchanged. Misener and Floudas [23] studied the global optimization
of MIQCQ problems by using a branch and bound algorithm applying a re-
laxation approach. They integrated the edge-concave relaxation with the
piecewise-linear programming to tightly underestimate the MIQCQ prob-
lems.

We propose an enumeration solution approach to solve problem (1) and
compare the results with the ones obtained by solving MIQC problem (8).
First, it is required to find the vectors f that minimize the maximum of the
functions Zh(f), where indices h belong to the subsets of Cset. Let Si ⊆ Cset

be a subset with cardinality i, the optimal solution of the following problem
should be determined:

min
f

max
h∈Si

Zh(f) =
∑
e∈E

(ve − v̄he )2 +
∑
rs

(xrs − x̄hrs)2, (9)
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subject to constraints (2), (3), and (4). Problem (9) could be reformulated
as a quadratically constrained (QC) problem:

QC : min
f

θ, (10)

s.t.
∑
rs

∑
k∈Krs

fkrsδe,k = ve for all e ∈ E,

∑
k∈Krs

fkrsδk,rs = xrs for all (r, s) ∈ N ×N,

∑
e∈E

(ve − v̄he )2 +
∑
rs

(xrs − x̄hrs)2 ≤ θ for all h ∈ Si,

fkrs ≥ 0 for all k, (r, s).

Problem (10) would be solved by using such nonlinear programming meth-
ods as Lagrangian dual approach or other quadratically constrained program-
ming techniques; see [19, 25]. Let the optimal solution of problem (10) be
f∗Si

. If Yh(f∗Si
) = 1 for all h ∈ Si, then Z(f∗Si

) =
∑

h∈Si
Ph
r . By comparing

the values of Z(f∗Si
) for all subsets Si ⊆ Cset, the optimal solution of problem

(1) is determined. Note that if a solution f∗ is obtained, then any subset Si

that the sum of its elements’ probabilities is less than Z(f∗) can be ignored.

In Section 5, the solution of problem (1) is obtained for Yang’s network
by both solving the resulted MIQC problem (8) and applying the proposed
enumeration method using the QC problem (10). In Section 3, a normal
approximation is applied to investigate the problem in large-sized networks,
which results in an NLFP problem equivalent to problem (1).

3 Normal approximation

In this section, the MPLS problem in large-sized networks, having an enor-
mous number of links and O − D pairs, is studied. Let the expected mean
and variance of the probabilistic observed traffic count v̄e be, respectively,
denoted by µe and σ2

e , and the expected mean and variance of x̄rs be repre-
sented by µrs and σ2

rs. Using Lemmas 1 and 2, first the mean and variance
of term

∑
e∈E(ve − v̄e)2 +

∑
rs(xrs − x̄rs)2 are determined. Then applying

the CLT , problem (1) is reduced to an NLFP problem.

Lemma 1. The mean of term (ve − v̄e)
2 is µ̂e = (ve − µe)

2 + σ2
e , and

its variance is σ̂2
e = 4v2eσ

2
e +Ke, where Ke = var(v̄2e).

Proof. Using the expansion of term (ve − v̄e)2 together with equality σ2
e =

E(v̄2e)− µ2
e yields:
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E(ve − v̄e)2 = E(v2e − 2vev̄e + v̄2e) = v2e − 2veµe + σ2
e + µ2

e = µ̂e

and
var(ve − v̄e)2 = 0 + 4v2eσ

2
e + var(v̄2e).

Lemma 2. The mean and variance of term (xrs − x̄rs)2 are µ̂rs = (xrs −
µrs)

2 + σ2
rs and σ̂2

rs = 4x2rsσ
2
rs +Krs, respectively, where Krs = var(x̄2rs).

The proof of Lemma 2 is similar to Lemma 1 and has been omitted.
Applying the CLT and noting the independence of the probabilistic variables
v̄es and x̄rss, the term W =

∑
e∈E(ve− v̄e)2 +

∑
rs(xrs− x̄rs)2 has a normal

distribution with the expected mean µW =
∑

e µ̂e +
∑

rs µ̂rs and variance
σ2
W =

∑
e σ̂

2
e +

∑
rs σ̂

2
rs. Hence,∑

e∈E(ve − v̄e)2 +
∑

rs(xrs − x̄rs)2 − µW

σW
∼ normal(0, 1).

Therefore,

Pr(
∑
e∈E

(ve − v̄e)2 +
∑
rs

(xrs − x̄rs)2 ≤ D)

= Pr(

∑
e∈E(ve − v̄e)2 +

∑
rs(xrs − x̄rs)2 − µW

σW
≤ D − µW

σW
)

= φ(
D − µW

σW
),

where φ is the cumulative distribution function of the standard normal dis-
tribution. Since φ is an increasing function, problem (1) would be rewritten
as the following NLFP problem:

max
f

Zfrac(f) =
D −

∑
e µ̂e −

∑
rs µ̂rs√∑

e σ̂
2
e +

∑
rs σ̂

2
rs

, (11)

subject to constraints (2), (3), and (4), where variables µ̂e, σ̂
2
e , µ̂rs and σ̂2

rs

are the same as given in Lemmas 1 and 2. Problem (11) could be solved
by using such nonlinear fractional programming methods as parametric algo-
rithm or linearization approaches; see [30]. In the next section, a parametric
method is employed to solve problem (11) in three cases.

4 Solution approach

Consider the following fractional programming problem:
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Algorithm 1 Parametric method

1: Take λ = λ1 such that F (λ1) ≥ 0. (There is such a λ1, since F (0) ≥ 0
considering the assumption that f(x) ≥ 0 for at least one x ∈ S.)

2: Solve problem (13). If |F (λ)| ≤ ε, stop. Otherwise, go to Step (3).

3: Set λ =
f(x∗)

g(x∗)
, where x∗ is the optimal solution of problem (13) obtained

in Step (2). Go to Step (2).

P : max
x
{q(x) =

f(x)

g(x)
|x ∈ S}, (12)

where f and g are real-valued differentiable functions on S ⊆ Rn. The
parametric method is used to solve problem (12) in the case that S ⊆ Rn is
a compact and nonempty set and functions f, g : S → R are continuous with
g(x) > 0 for all x ∈ S and f(x) ≥ 0 for at least one x ∈ S; see [30]. The
equivalent parametric problem is introduced as follows:

Q(λ) : max
x
{f(x)− λg(x)|x ∈ S}, (13)

where λ is a real-valued parameter. Let F (λ) be the optimal value of the
objective function in problem Q(λ). The reader is referenced to [30] to see
the proofs of the following lemmas and more details.

Lemma 3. Let x̄ be the optimal solution to problem (12) and λ̄ =
f(x̄)

g(x̄)
.

Then

1. F (λ) < 0 if and only if λ > λ̄,

2. F (λ) = 0 if and only if λ = λ̄,

3. F (λ) > 0 if and only if λ < λ̄.

Corollary 1. If F (λ) = 0, then the optimal solution to problem (13) is also
optimal to problem (12).

Lemma 4. The function F (λ) is continuous, convex, and strictly decreasing
on R.

Therefore, problem (12) is solved by determining the root of F (λ) = 0. It
can be shown that the root is unique and nonnegative; see [30]. The methods
used for solving the equation F (λ) = 0 will generate the solution algorithms
for the NLFP problem (12). The solution steps are outlined in Algorithm 1.
The sequence generated by Algorithm 1 superlinearly converges to the root
of F (λ) = 0; see [30]. Next, we give the solution method for problem (11) by
introducing three subproblems under specified conditions.
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1: The First case: D−
∑

e µ̂e −
∑

rs µ̂rs > 0. In this case, the numera-
tor and denominator of the objective function in problem (11) are both
continuous, differentiable, and positive functions. We use the paramet-
ric method described in Algorithm 1 to solve problem (11). In Step (2)
of Algorithm 1, the following problem should be solved:

max
f

D′ −
∑
e

(ve − µe)2 −
∑
rs

(xrs − µrs)2 − λ
√∑

e

4v2eσ
2
e +

∑
rs

4x2rsσ
2
rs + k′′,

(14)

subject to constraints (2), (3), and (4). In this problem, D′ =
D−

∑
e σ

2
e−
∑

rs σ
2
rs and k′′ =

∑
rsKrs+

∑
eKe. Using such nonlinear

constrained programming methods as penalty methods or augmented
Lagrangian approaches, problem (14) could be solved; see [25]. How-
ever, if the first case is infeasible, the second one should be investigated.

2: The Second case: D −
∑

e µ̂e −
∑

rs µ̂rs = 0. In this case, the
following least squares programming problem is considered:

min
f

∑
e

(ve − µe)
2 +

∑
rs

(xrs − µrs)
2, (15)

subject to constraints (2), (3), and (4). Problem (15) could be solved by
using such methods for least squares O−D matrix estimation problems
as Lagrangian dual approach or active-set constraints; see [10, 11, 24].
If the optimal value of problem (15) equals D′, then the obtained so-
lution would be also optimal for problem (11) with the objective value
equal to zero, else the third case should be considered.

3: The third case: D −
∑

e µ̂e −
∑

rs µ̂rs < 0. This case would be
considered if neither the first nor the second case is feasible. Here, the
parametric method is used with small modifications, to solve problem
(12) in which f(x) is negative while g(x) is positive. Consider the
problem:

Q′(λ) : max
x
{f(x) + λg(x)|x ∈ S}. (16)

Let F ′(λ) be the optimal value of problem (16). Then, Lemma 5, Corol-
lary 2, and Lemma 6 are applied to find the optimal solution. For more
detail see [30].

Lemma 5. Let x̄ be an optimal solution to problem (12) in the case

that the numerator is negative and λ̄ = −f(x̄)

g(x̄)
. Then

(a) F ′(λ) < 0 if and only if λ < λ̄,

(b) F ′(λ) = 0 if and only if λ = λ̄,
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(c) F ′(λ) > 0 if and only if λ > λ̄.

Proof. We only examine case (a), the other cases are similarly proved.
Let F ′(λ) < 0; then f(x′) + λg(x′) < 0 for all x′ ∈ S. Since g(·)

is a positive function, then −f(x′)

g(x′)
> λ for all x′ ∈ S. Therefore,

−f(x̄)

g(x̄)
> λ and consequently λ̄ > λ.

Conversely, if λ̄ > λ, then −f(x̄)

g(x̄)
> λ, and consequently

f(x̄)

g(x̄)
< −λ.

Since x̄ is the optimal solution to problem (12), then
f(x)

g(x)
< −λ for

all x ∈ S. Hence, f(x) + λg(x) < 0 for all x ∈ S and consequently
F ′(λ) < 0.

Corollary 2. Let F ′(λ) = 0; then the optimal solution to problem
(16) is also optimal to problem (12).

Lemma 6. The function F ′(λ) is continuous, convex, and strictly
increasing on R.

Proof. The continuity and convexity are proved similar to Lemma 4; see
[30]. Let λ1 < λ2 and x1 and x2 be the optimal solutions to problems
Q′(λ1) and Q′(λ2), respectively. Then g(x) > 0 yields

F ′(λ1) = f(x1)+λ1g(x1) < f(x1)+λ2g(x1) ≤ f(x2)+λ2g(x2) = F ′(λ2).

In this case, Algorithm 1 is modified in Step (1) by choosing λ such
that F ′(λ) ≤ 0. In Step (2), the problem Q′(λ) should be solved and

in Step (3) the parameter λ is updated by equality λ = −f(x∗)

g(x∗)
.

Using Algorithm 1 with the mentioned modifications, problem (11)
could be solved in the third case, where in the second step of Algo-
rithm 1, the following problem should be solved:

max
f

D′ −
∑
e

(ve − µe)2 −
∑
rs

(xrs − µrs)2 + λ

√∑
e

4v2eσ
2
e +

∑
rs

4x2rsσ
2
rs + k′′,

subject to constraints (2), (3), and (4), by using nonlinear constrained
programming methods such as penalty methods or augmented La-
grangian approaches; see [25].
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Efficiency of the method

Applying the proposed methods in Sections 2 and 3 for small and large-sized
networks, respectively, the nonlinear problem (1) with probabilistic variables
in the objective function would be reduced to deterministic models, problems
(10) and (11).

It should be noted that by applying the enumeration method proposed
in Section 2, 2|Cset| nonlinear constrained problems should be solved where
Cset is the candidate set introduced in Section 2. Therefore, in the worst
case that Cset = State, 2H NP -hard problems are to be solved, which cause
the running time of the solution method to increase dramatically specially
for large networks. Whereas, using the CLT approach for medium and large-
scale networks, it is required to solve just one deterministic fractional model,
problem (11), instead of several nonlinear models, while simultaneously the
number of constraints is also decreased.

In order to obtain the solution of problem (11), three different cases are
considered in a certain order, where in the case of feasibility of each one, the
remaining cases are neglected. The involved problems in cases 1 and 3 are
readily solved by applying the parametric method, generating a sequence that
superlinearly converges to the solution. The least squares problem (15) in
the second case could be also solved by active-set constraints or Lagrangian
approaches; see [24]. It is worth mentioning that, applying the CLT , an ap-
proximation of the optimal value of original problem (1) is provided, where
the reliability of the solution would be investigated via the numerical exam-
ples in the next section.

5 Numerical examples

In this section, some numerical examples are provided to illustrate the effi-
ciency of the proposed approaches discussed in the previous sections.

Eexample 2. In the first example, a small-sized network is studied, us-
ing the method stated in Section 2. Consider Yang’s network given in Figure
3. It is assumed, there are five realizations for the observed information
in the network with probability vector Probability = {0.2, 0.1, 0.2, 0.2, 0.3}.
The necessary data, including the free flow travel times of links and the ob-
served (target) flows in different states, are summarized in Tables 1 and 2.
Ten equilibrium paths are picked up by Eppstein’s K-shortest paths ranking
algorithm [14], corresponding to four O − D pairs (1, 3), (1, 4), (2, 3), (2, 4)
shown in Table 2.

The optimal path flow vectors f∗ obtained by solving MIQC problem (8)
and the proposed enumeration (ENM) method using problem (10), are given
in Table 3, under column headings MIQC and ENM , respectively. Since
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MATLAB solvers could not provide a feasible solution for MIQC problem
(8), the corresponding model was implemented in CPLEX 12.6, while the
QC problem (10) was solved by MATLAB R2014a. The optimal solutions
with their corresponding objective values Z(f∗) as well as the states that
Yh(f∗) = 1 for different values of D are inserted in Table 3 (Note that the
optimal solution is not unique).

As it is seen in Table 3, both methods MIQC and ENM reach the
same values of the objective function for different amounts of threshold D.
In addition, increasing the value of D results in increasing the MIQC and
ENM objective functions. In other words, when the threshold for the sum of
squared errors rises, the total probability of states h with Yh(f∗) = 1 grows.

Figure 3: Yang’s network

Next, to examine the stability of the resulted solutions in the case of
occurring some errors in the observed information, we have made some mod-
ifications in the values of the observed link traffic counts and target O−D de-
mands. To this purpose, first, the values of v̄he and x̄hrs for all links e and O−D
pairs (r, s) are multiplied by α = 1.5, 0.5 in states h = 1, 4. The solutions for
two values D = 50000 and D = 95000 are obtained by the ENM algorithm
and represented in Table 4. Then to investigate the effect of probabilities,
the probability vector is changed to Probability = [0.05 0.8 0.05 0.05 0.05]
and the solutions are again obtained for α = 1.5, 0.5.

As it is seen in Table 4, multiplying the values of v̄2e and x̄2rs by α = 1.5
does not change the solution in both cases D = 50000 and 95000 compared
with that of Table 3. While, when the values of v̄4e and x̄4rs are multiplied
by 1.5, the solution changes for both D = 50000 and D = 95000. This
is because, as it is perceived by Table 3, the value of the function Zh(f∗)
corresponding to the optimal solution f∗ was less than D = 50000 for state
h = 4; therefore, any change in the observed information in state h = 4
would affect the objective function. In other words, since in case D = 50000,
the candidate set Cset consists of just h = 4, multiplying the values v̄4e and



G
al

le
y

P
ro

of

Maximum probability O-D matrix estimation in large-sized networks 121

Table 1: The information of links in Yang’s network

Index From To Free flow The observed traffic counts in states
of link travel time 1 2 3 4 5

1 1 5 13.18 130 100 120 150 100
2 1 7 4.29 100 210 200 180 180
3 2 6 11.49 180 80 80 150 130
4 2 7 4.46 130 50 80 130 100
5 5 3 13.24 200 80 120 100 90
6 5 8 3.00 30 90 90 90 100
7 6 4 12.16 200 150 100 110 130
8 6 8 5.00 10 180 180 150 100
9 7 8 11.89 230 60 60 100 120
10 8 5 4.00 30 330 330 130 200
11 8 6 4.00 50 85 120 140 150
12 8 9 13.05 210 150 150 130 130
13 9 3 4.19 115 140 140 100 100
14 9 4 3.11 90 200 200 100 140

x̄4rs by 1.5 for all links e and O − D pairs (r, s), cause the candidate set to
be empty and consequently, the optimal objective value would be equal to
zero. While, the state h = 2 did not even belong to the candidate set Cset

in Table 3. By multiplying its observed values by 1.5, the value of Z2(f∗2 )
is still greater than D which means that 2 /∈ Cset for both D = 50000 and
95000.

However, the case is different for α = 0.5. Multiplying α = 0.5 in v̄2e and
x̄2rs brings the state h = 2 to Cset for both D = 50000, 95000. Although,
since the probability of state h = 2 is less than the others, if it is necessary,
the model might neglect it to find a solution with greater probability. When
D increases to 95000, the model finds a solution with Zh(f∗) ≤ D for h =
2, 3, 4, 5.

Next, we have changed the used probability vector to Probability =
[0.05 0.8 0.05 0.05 0.05] to see the influence of probabilities on the optimal
solution. Even, using the new vector of probabilities, the solutions corre-
sponding to α = 1.5 are the same as previous, since the candidate set has
not changed. But, for α = 0.5, where the candidate set includes the state
h = 2, the model attempts to find a solution with Z2(f∗) ≤ D. Note in the
case that v̄4e and x̄4rs are multiplied by 0.5, the candidate set dose not include
the second state for D = 50000 and 95000.

Generally, changing the observed information of some states, might or
might not result in changing the solution. Indeed, it depends on the state
itself, whether it is in the candidate set or not, as well as its observed (target)
values and probability.

Example 3. In this example, a large-sized network is investigated by using
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Table 2: Target O −D demands with the equilibrium shortest paths in Yang’s network

Target demands in states
Index 1 2 3 4 5 From To Path Path track

1 150 150 100 200 120 1 3 1 1→ 5→ 3

2 120 200 120 150 130 1 4 2 1→ 5→ 8→ 6→ 4
3 1→ 5→ 8→ 9→ 4
4 1→ 7→ 8→ 6→ 4
5 1→ 7→ 8→ 9→ 4

3 820 140 180 90 90 2 3 6 2→ 7→ 8→ 5→ 3
7 2→ 7→ 8→ 9→ 3
8 2→ 6→ 8→ 5→ 3
9 2→ 6→ 8→ 9→ 3

4 300 80 80 100 170 2 4 10 2→ 6→ 4

the normal approximation stated in Sections 3 and 4. We have considered
Anahiem network shown in Figure 4 with 419 nodes and 914 links. Figure
4 and such necessary information as the free flow travel times and capacities
of links are available in address http : //www.bgu.ac.il/ bargera/tntp/. Us-
ing Eppstein’s K-shortest path ranking algorithm [14], the equilibrium cyclic
free paths for 80, 90, 100, and 110 selected O −D pairs are determined. We
have considered different samples of sizes 200, 300, 400, and 500 for network
realizations, taking random values with a discrete uniform distribution in
the interval [0, 8500], for the observed link traffic counts and target O − D
demands.

The proposed approximation method based on the CLT is written in
MATLAB R2014a and applied to find the optimal solutions for different
values of D and different numbers of O − D pairs, applying taken random
samples. To investigate the acceptability of the obtained solutions, the esti-
mated optimal solution vector f∗ obtained by problem (11) is given to prob-

lem (6) and Z(f∗) is calculated. Then the values of φ(
D − µW

σW
) for f∗ and

Z(f∗) are compared. The absolute errors between Z(f∗) and φ(
D − µW

σW
)

for different sample sizes (SS) and different values of D are shown in Table
5. The small absolute errors indicate the validity of the estimated solutions
by the CLT approach.

The optimal values of parameter λ in Algorithm 1 obtained in one of the
three cases discussed in Section 4, for 80 O−D pairs, are inserted in Table 6.
As the table indicates, the optimal value of λ mostly belongs to the interval
[0, 2]. In other words, the numerator in problem (11) is at most two times of
the denominator. However, this may change for different problems.
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Table 3: The estimated path flows with their objective functions values for different

amounts of D

Optimal flows
Paths D = 50000 D = 65000 D = 80000

ENM MIQC ENM MIQC ENM MIQC
1 111.81 95.16 67.55 77.74 67.55 79.89
2 60.24 51.94 50.87 49.75 50.87 50.94
3 35.46 35.93 32.25 44.50 32.25 49.44
4 53.88 42.78 61.62 47.1 61.62 47.93
5 20.52 31.51 31.18 42.38 31.18 46.67
6 11.95 26.74 34.43 41.22 34.43 46.23
7 23.59 29.30 17.89 38.60 17.89 44.49
8 46.60 40.54 49.35 45.67 49.35 46.77
9 53.66 46.83 31.80 41.75 31.80 44.38
10 54.67 61.11 81.92 49.42 81.92 85.49

States {4} {4} {4, 5} {4, 5} {4, 5} {4, 5}
Z(f∗) 0.2000 0.2000 0.5000 0.5000 0.5000 0.5000
Paths D = 95000 D = 11000 D = 125000

ENM MIQC ENM MIQC ENM MIQC
1 28.30 32.37 33.59 42.53 33.59 64.83
2 36.13 36.51 53.37 44.52 53.37 45.89
3 34.41 32.82 29.95 35.03 29.95 42.52
4 66.80 64.44 81.51 77.77 81.51 56.01
5 54.42 54.69 58.09 50.32 58.09 50.38
6 38.55 36.15 10.15 23.73 10.15 41.40
7 11.53 17.73 9.73 16.52 9.73 32.42
8 127.70 125.08 131.02 107.1 131.02 67.56
9 28.26 25.73 18.44 27.88 18.44 41.73
10 11.15 18.61 25.73 38.12 25.73 61.162

States {3, 4, 5} {3, 4, 5} {2, 3, 4, 5} {2, 3, 4, 5} {2, 3, 4, 5} {2, 3, 4, 5}
Z(f∗) 0.7000 0.7000 0.8000 0.8000 0.8000 0.8000
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Table 4: The changes in the solution under some modifications in the observed informa-

tion

v̄2e = 1.5v̄2e , x̄2rs = 1.5x̄2rs v̄4e = 1.5v̄4e , x̄4rs = 1.5x̄4rs
Paths D = 50000 D = 95000 D = 50000 D = 95000

1 111.81 28.30 − 28.30
2 60.24 36.14 − 35.50

3 35.46 36.41 − 35.05

4 53.88 66.81 − 67.45
5 20.53 54.42 − 53.78

6 11.95 38.55 − 37.00
7 23.60 11.53 − 13.08

8 46.61 127.71 − 129.26

9 53.67 28.27 − 26.72
10 54.67 11.16 − 11.16

Z(f∗) 0.2 0.7 0 0.5
States {4} {3, 4, 5} {} {3, 5}

v̄2e = 0.5v̄2e , x̄2rs = 0.5x̄2rs v̄4e = 0.5v̄4e , x̄4rs = 0.5x̄4rs
Paths D = 50000 D = 95000 D = 50000 D = 95000

1 111.81 27.45 55.91 51.06
2 60.24 37.62 30.12 45.91
3 35.46 30.79 17.74 26.45
4 53.88 62.70 26.95 55.53

5 20.53 54.72 10.26 32.64
6 11.95 31.54 5.97 32.03
7 23.60 15.57 11.80 19.13
8 46.61 127.64 23.31 49.52

9 53.67 22.32 26.83 19.57
10 54.67 11.28 27.33 80.33

Z(f∗) 0.2 0.8 0.2 0.5

States {4} {2, 3, 4, 5} {4} {4, 5}
Probability = [0.05 0.8 0.05 0.05 0.05]

v̄2e = 1.5v̄2e , x̄2rs = 1.5x̄2rs v̄4e = 1.5v̄4e , x̄4rs = 1.5x̄4rs
Paths D = 50000 D = 95000 D = 50000 D = 95000

1 111.81 28.30 − 28.30

2 60.24 36.14 − 35.50
3 35.46 36.41 − 35.05
4 53.88 66.81 − 67.45

5 20.53 54.42 − 53.78
6 11.95 38.55 − 37.00
7 23.60 11.53 − 13.08
8 46.61 127.71 − 129.26
9 53.67 28.27 − 26.72

10 54.67 11.16 − 11.16

Z(f∗) 0.05 0.15 0 0.10

States {4} {3, 4, 5} {} {3, 5}
v̄2e = 0.5v̄2e , x̄2rs = 0.5x̄2rs v̄4e = 0.5v̄4e , x̄4rs = 0.5x̄4rs

Paths D = 50000 D = 95000 D = 50000 D = 95000

1 16.80 27.45 55.91 51.06

2 26.69 37.62 30.12 45.91
3 14.98 30.79 17.74 26.45

4 40.76 62.70 26.95 55.53

5 29.05 54.72 10.26 32.64
6 6.41 31.54 5.97 32.03

7 3.53 15.57 11.80 19.13

8 64.18 127.64 23.31 49.52
9 10.55 22.32 26.83 19.57

10 12.87 11.28 27.33 80.33

Z(f∗) 0.8 0.95 0.05 0.10
States {2} {2, 3, 4, 5} {4} {4, 5}



G
al

le
y

P
ro

of

Maximum probability O-D matrix estimation in large-sized networks 125

Table 5: The absolute errors between Z(f∗) and φ(
D − µW
σW

)

O −D 80 90
SS\ D (1010) 1.7 1.75 1.8 1.85 1.9 1.7 1.75 1.8 1.85 1.9

200 0.08 0.04 0.04 0.04 0.03 0.08 0.07 0.02 0.09 0.05
300 0.05 0.03 0.06 0.07 0.02 0.06 0.07 0.01 0.05 0.06
400 0.08 0.05 0.03 0.07 0.04 0.07 0.07 0.03 0.05 0.04
500 0.08 0.06 0.07 0.05 0.04 0.05 0.10 0.03 0.06 0.05

O −D 100 110
SS\ D (1010) 1.7 1.75 1.8 1.85 1.9 1.7 1.75 1.8 1.85 1.9

200 0.06 0.09 0.05 0.06 0.08 0.03 0.08 0.07 0.06 0.08
300 0.07 0.06 0.00 0.10 0.07 0.04 0.08 0.06 0.04 0.08
400 0.03 0.09 0.03 0.06 0.07 0.03 0.07 0.04 0.03 0.06
500 0.04 0.08 0.03 0.06 0.08 0.03 0.07 0.05 0.01 0.08

The comparison between the average value of Z(f∗) and φ(
D − µW

σW
),

for different values of D and different numbers of O − D pairs, are given

by Figures 5a–5d. As it is seen, the value of φ(
D − µW

σW
) is a reasonable

approximation for Z(f∗), the objective function of problem (6).

Figure 4: Anahiem network

Example 4. In the last example, in order to examine the efficiency of the
CLT method in comparison to other existing nonlinear solvers, we consider
a 50-node network with 998 links and 56 O − D pairs, where the network
topology and necessary data are constructed randomly. Indeed, the existence
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Table 6: The optimal values of parameter λ̄ for 80 O −D pairs

SS \ D 1.7 (1010) 1.75 (1010) 1.8 (1010) 1.85 (1010) 1.9 (1010)
200 0.96 0.41 0.32 1.02 1.58
300 1.02 0.39 0.22 0.96 1.55
400 1.00 0.39 0.22 0.88 1.54
500 1.02 0.35 0.28 0.91 1.55

Table 7: The comparison between the CLT method and MIQC solvers

D 1.9 (108) 1.8 (108) 1.7 (108)
Solver RT (sec) OBJF RT (sec) OBJF RT (sec) OBJF
CLT 54.13 1.00 46.71 0.97 43.47 0.50

BONMIN 11.75 0.98 − Infeasible − Infeasible

BARON − Infeasible − Infeasible − Infeasible

OQNLP − Infeasible − Infeasible − Infeasible

or nonexistence of links between nodes is determined by binary random vari-
ables, while the free flow travel times of links are randomly selected from the
interval [10, 30]. Using Eppstein K-shortest paths ranking algorithm [14],
65 paths are picked up. In addition, 200 realizations are considered for the
network where the values of the observed link traffic counts and target O−D
demands are taken from the interval [0, 750] by the discrete uniform distri-
bution.

Problem (1) is solved via both applying the proposed normal approxima-
tion based on the CLT and employing MIQC solvers including BONMIN ,
BARON, OQNLP to problem (8). The corresponding running time (RT )
and the objective function value (OBJF ) for different values of D are in-
serted in Table 7. The sign − indicates that the solver could not find any
feasible solution.

As it is seen by Table 7, in most cases, the MIQC solvers did not find
any feasible solution, while the CLT -based method was always able to find
the optimal solution in an acceptable time. We have also examined such
other existing solvers as LINDOGLOBAL, COUNNE, and DICOPT on
smaller and larger networks, where almost in all cases, the solvers did not
provide any solution. Since the results were similar to Table 7, they have not
been reported again.

6 Summary and conclusions

The available data in such transportation problems as the O − D matrix
estimation may be treated as nondeterministic information due to some ex-
ternal conditions. In this paper, we have considered different states for the



G
al

le
y

P
ro

of

Maximum probability O-D matrix estimation in large-sized networks 127

(a) Comparison for 80 O −D pairs (b) Comparison for 90 O −D pairs

(c) Comparison for 100 O −D pairs (d) Comparison for 110 O −D pairs

Figure 5: Comparison between φ(
D − µW
σW

) and Z(f∗)

observed link traffic counts and target O−D matrix. The purpose was to es-
timate the solution that maximizes the probability of the sum of the squared
errors being less than or equal to a pre-selected threshold. We investigated
the problem in small and large-sized networks. An enumeration-based solu-
tion algorithm of the exponential time complexity was presented for small
networks, where the validity of the solutions was verified via comparing with
MIQC solutions. As it was shown through examples, both theMIQC solvers
and enumeration algorithm provided equal objective function values in the
optimality. Due to the large running time of the enumeration method, a nor-
mal approximation was proposed for large-sized networks. Using the CLT ,
the probabilistic problem in large-sized networks was transformed into one
deterministic nonlinear fractional programming model. To reduce the com-
plexity of the resulted model, three cases were considered to be solved in a
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certain order where in the case of feasibility of each one, the next problems
would be neglected. A parametric algorithm was implemented to solve the
problems in the first and third cases, where the obtained sequence would
superlinearly converge to the optimal solution. Providing some numerical
examples, the approximated objective function by the CLT approach was
compared with its true value where considering the small differences between
them, the efficiency of the CLT approach was verified.
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