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Abstract

A classical result of Neumann characterizes the groups in which each

subgroup has finitely many conjugates only as central-by-finite groups. If

X is a class of groups, a group G is said to have X-conjugate classes of

subgroups if G/coreG(NG(H)) ∈ X for each subgroup H of G. Here we

study groups which have soluble minimax conjugate classes of subgroups,

giving a description in terms of G/Z(G). We also characterize FC-groups

which have soluble minimax conjugate classes of subgroups.
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1 Introduction

Following [11], the class of all abelian minimax groups is the class of all max-

by-min abelian groups. A group G is called soluble minimax if it has a finite
∗E-mail: francesco.russo@dma.unina.it

41



42 Francesco Russo

characteristic series 1 = G0 /G1 / . . . /Gn = G whose factors are abelian minimax

groups. Moreover a soluble minimax group is said to be reduced minimax if it has

no nontrivial normal Chernikov radicable subgroups. Fundamental properties of

soluble minimax and reduced minimax groups are described in [11].

Let X be a class of groups. A group G is said to be an XC-group, if

G/CG(xG) ∈ X for all x ∈ G. If X is the class of all finite groups, we obtain

the class of FC-groups; Baer in [1] introduced this class of groups. If X is the

class of all polycyclic-by-finite groups, then the class of PC-groups are obtained

which are introduced in [2]. If X is the class of all Chernikov groups, then one

obtains the class of CC-groups and introduced in [9].

If X is the class of all (soluble minimax)-by-finite groups, we obtain the class

of MC-groups and when X is the class of all (reduced minimax)-by-finite groups,

then the class of MrC-groups is obtained. These classes of groups are introduced

in [4].

Let X be a class of groups. A group G is said to be an XCS-group, or a

group with X-conjugate classes of subgroups, if G/coreG(NG(H)) ∈ X for each

subgroup H of G.

If X is the class of all finite groups, we obtain the class of FCS-groups.

Neumenn in [8] has investigated FCS-groups with a different approach. The

current approach can be found in [6]. If X is the class of all polycyclic-by-finite

groups, one obtains the class of PCS-groups, which are studied in [6]. If X is

the class of all Chernikov groups, we obtain the class of CCS-groups, which are

described in [7] and [10].

If X is the class of all (soluble minimax)-by-finite groups, we obtain the class

of MCS-groups. In particular, if X is the class of all (reduced minimax)-by-finite

groups, then the class of MrCS-groups are obtained.

The present paper is devoted to the studying the classes of MCS and MrCS-

groups. We prove the following description of the groups with soluble minimax

conjugate classes of subgroups.
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2 Main Theorem

(i) Let G be a periodic group. Then G is an MCS-group if and only if it is

central-by-Chernikov ;

(ii) Let G be an MCS-group. If InnG has finite abelian subgroup rank, then G

is central-by-(soluble minimax)-by-finite;

(iii) Let G be an MCS-group. If G contains proper maximal abelian normal

subgroups, then G is (soluble minimax)-by-finite-by-abelian.

Our group-theoretic notation is standard and refered to [11]. Section 2 con-

tains the preparatory results, which are used in Section 3 to prove the Main

Theorem. Section 3 is devoted to give the proof of Main Theorem. In section 4,

we describe some special classes of MCS-groups.

3 Preliminary results

By defintion each PCS-group is an MCS-group and each CCS-group is an MCS-

group. In [6] and [7] some classes of MCS-groups are studied, giving a first answer

to Main Theorem.

We omit the elementary proofs of the next two results.

Lemma 2.1. Let G be a central-by-(soluble minimax)-by-finite group. If H is a

subgroup of G, then H/coreG(H) is (soluble minimax)-by-finite group.

Lemma 2.2. Let G be an MCS-group. If L / H ≤ G, then H/L is an MCS-

group.

Lemma 2.3. Let G be a periodic group. If G is an MCS-group, then G is a

CCS-group.

Proof. For each subgroup H of G, G/coreG(NG(H)) is periodic (soluble minimax)-

by-finite, so it is Chernikov by [11, vol.II,p.166].
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The following lemma extends [6, Corollary 2.7] and [7, Lemma 2.3].

Lemma 2.4. If G is an MCS-group, then G is an MC-group.

Proof. If G is periodic, then the result follows by Lemma 2.3 and [7, Lemma 2.3].

If G is a PCS-group, then the result follows by [6, Corollary 2.7]. Let G be neither

periodic nor a PCS-group. Take g ∈ G and assume H = coreG(NG(< g >)),

H1 = CH(< g >), H2 = coreG(H1) = CH(gG). We have that G/H is (soluble

minimax)-by-finite, H ≤ NG(< g >) and H/CH(< g >) is finite abelian. It is

sufficient to prove that G/H2 is (soluble minimax)-by-finite.

Since

H2 =
⋂
x∈G

(CH(< g >))x =
⋂
x∈G

CH(< g >x) =
⋂
x∈G

CH(< gx >)

and H/(CH(< g >))x ' H/CH(< g >) for every x ∈ G, we obtain the embedding

H/H2 ↪→
∏
x∈G

H/Hx
1 .

In particular we deduce that H/H2 is a bounded abelian group. Lemmas 2.2

and 2.3 imply that G/H2 is an MCS-group such that H/H2 is a periodic normal

CCS-subgroup of G/H2. H/H2 has no nontrivial Chernikov normal subgroups,

so [7, Lemma 2.5] implies that H/H2 is central-by-finite. By definition we can find

a subgroup A/H2 of Z(H/H2) ≤ Z(G/H2) such that (H/H2)/(A/H2) ' H/A

is finite. Obviously G/A is (soluble minimax)-by-finite, so G/H2 is central-by-

(soluble minimax)-by-finite. By Lemma 2.1, H/H2 is (soluble minimax)-by-finite,

and so is G/H2.

There are MC-groups which are not MCS-groups, improving [3, Proposition

2.2].

Example 2.5. Here exibit a metabelian 2-nilpotent MC-group G which is not

an MCS-group. Let p be a prime number and C a nontrivial subgroup of the

additive group of rational numbers, whose denominators are p-numbers. Let

Q = Drn∈N < xn > be a free abelian group of countably infinite rank. Denote
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multiplicatively the operation in C and let C = {cn|n ∈ N} ∪ {1}, where cn 6= 1

for all n and cn 6= cm if n 6= m. A central extension C � G � Q can be

defined by putting [x2i−1, x2i] = ci for all i ∈ N and [xi, xj ] = 1, otherwise. Given

z ∈ G \C, z = cxk1
i1

. . . xkt
it

, where c ∈ C, i1 < . . . < it and ki1 6= 0. Put y = xi1−1

if i1 is even and y = xi1+1 if i1 is odd. Then [xij , y] = 1 if j > 1, so that

[z, y] = [xk1
i1

, y] = [xi1 , y]k1 6= 1 and Z(G) = G′ = C.

Moreover, [z,G] =< [z, xj ] : i1 − 1 ≤ j ≤ it + 1 >, so that [z, G] is finitely

generated and hence it is cyclic. By construction we have that zG is (infinite

cyclic)-by-cyclic and G is an MrC-group (precisely G is a PC-group). The sub-

group H = Dri∈N < x2i > of G has K = NG(H) = coreG(NG(H)) = CH, so

that G/K ≥ Dri∈N < x2i−1K > and G/K has infinite abelian rank.

To convenience the reader, we recall two properties of MC-groups.

Lemma 2.6. Let G be an MC-group and x1, . . . , xn ∈ G. If X =< x1, . . . , xn >,

then XG is (soluble minimax)-by-finite. Moreover, if G is an MrC-group then

XG and G/CG(XG) are reduced minimax.

Proof. It follows by [4, Theorem 2].

Lemma 2.6 shows that an MC-group can be covered by normal (soluble

minimax)-by-finite subgroups (see [4, p.161-162]). [2, Theorem 2.2] and [11, The-

orem 4.36] give the corresponding condition for PC-groups and CC-groups.

Proposition 2.7. If G is an MC-group, then it is locally-(normal and (soluble

minimax)-by-finite). Moreover if G is an MC-group then G′ is locally-(normal

and (soluble minimax)-by-finite).

Proof. It follows by Lemma 2.6.

4 Proof of the Main Theorem

Proof. (i) By Lemma 2.3, G is a periodic CCS-group and so [10, Main The-

orem] implies that G is central-by-Chernikov. Conversely, let G be central-by-
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Chernikov, H be a subgroup of G such that H 6≤ Z(G) and K = coreG(NG(H)).

If K ≥ Z(G), then the result obviously is obtained. If K ∩ Z(G) = 1, then K is

isomorphic with KZ(G)/Z(G), so it is Chernikov and G/K is isomorphic with

(G/Z(G))/(KZ(G)/Z(G)), which is again Chernikov.

(ii) Since InnG ' G/Z(G), we may suppose that G/Z(G) has finite abelian

subgroup rank. Lemma 2.2 implies that G/Z(G) is an MCS-group, so it is an

MC-group, by Lemma 2.4. Thanks to Proposition 2.7, G/Z(G) can be covered by

(soluble minimax)-by-finite normal subgroups Sλ/Z(G), where λ is an ordinal,

indiciated in Λ. Without loss of generality assume Z(G) = 1. We exibit a

covering of G with subgroups Tα such that α ∈ A ≤ Λ, Tα < Tα+1, Tα is (soluble

minimax)-by-finite and Tβ = Tβ+1 = . . . for an ordinal β ∈ A.

G =< Sλ : λ ∈ Λ > and we obviously conclude when λ is a limit ordinal, so

let λ be not a limit ordinal. By induction the chain

T1 =
⋂
λ∈Λ

Sλ,

Tα =< Tα−1, xα−1 >, where xα−1 /∈ Tα−1

has Tα < Tα+1, Tα is (soluble minimax)-by-finite, A ≤ Λ. H = Drα∈A < xα >

has infinite abelian rank which is a contradiction. It follows that G can be covered

by finitely many (soluble minimax)-by-finite normal subgroups Tα, so that G is

(soluble minimax)-by-finite.

(iii) Let A be a proper maximal abelian normal subgroup of G. By Lemma

2.4 and [5, Corollary 3], A has finite index in G. It is enough to verify that G′

is (soluble minimax)-by-finite. If G is periodic the result follows Lemma 2.4 and

by [7, Lemma 3.7]. A similar situation happens when G is a PCS-group by [6,

Lemma 3.1]. Let G be an MCS-group which is neither periodic nor a PCS-

group. Put X = {x1, . . . , xn} a transversal to A in G, G/A = {x1A, . . . , xnA}

and G = XA. Lemmas 2.4 and 2.6 imply that XG = Y is (soluble minimax)-

by-finite, in particular G′ = [G, G] = [Y A, Y A] = Y ′[Y, A]. Now Y ′ is (soluble
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minimax)-by-finite and [Y, A] ≤ Y A = (XG)A = Y is (soluble minimax)-by-finite,

and so G′ is.

5 Special classes of MCS-groups

The Example in [7] shows that there is a CCS-group G such that G/Z(G) has

infinite abelian rank. The consideration of this group does not yield to character-

ize an MCS-group G without restrictions on the rank of G/Z(G). On the other

hand, the restriction on the size of Frattini subgroup of an MCS-group gives rise

the structural informations.

Corollary 4.1. Let G be an MCS-group. If G contains a subgroup H such

that NG(H) has a non-generator element g of G, then G is (soluble minimax)-

by-(radicable nilpotent of class at most 2).

Proof. By Lemma 2.4, G is an MC-group such that FratG ≥ NG(H), but

FratG = coreG(FratG) ≥ coreG(NG(H)) and [5, Theorem 4] complete the proof.

Given a group G, a subgroup H of G is said to be F-perfect if H has no

proper subgroups of finite index (in H). The subgroup F(G) of G generated by

all normal F-perfect subgroups of G is clearly F-perfect. This subgroup is called

the F-perfect part of G and if D(G) is the subgroup of G generated by all periodic

radicable abelian normal subgroups of G, then D(G) ≤ F(G).

Corollary 4.2. If G is an F-perfect MCS-group, then G is metabelian.

Proof. Put R = F(G) and D = D(G), then Lemma 2.4 and [5, Lemma 2] imply

that the series 1 / D / R = G has abelian factors.

The notion of Fitting subgroup allows us to characterize an MrCS-group.

Proposition 4.3. Let G be an MrCS-group and H a subgroup of G. Then

G is central-by-polycyclic-by-finite if and only if Fit(G/coreG(NG(H)) is finitely

generated.
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Proof. Let G/Z(G) be polycyclic-by-finite and H ≤ G. Put K = coreG(NG(H)),

we may assume that K 6≤ Z(G). If K ≥ Z(G) then the result follows immediately.

If K ∩ Z(G) = 1, then K ' KZ(G)/Z(G) is polycyclic-by-finite, and hence so is

G. It follows that Fit(G/K) is finitely generated. Conversely, if G is an MrCS-

group, then Fit(G/K) is nilpotent by [11, Theorem 10.33]. Fit(G/K) is finitely

generated so that G is a PCS-group. Now the main Theorem of [6] completes

our proof.

A special situation happens for the class of FC-groups.

Proposition 4.4. Let G be an FC-group. Then the following conditions are

equivalent:

(i) G is FCS-group;

(ii) G is CCS-group;

(iii) G is PCS-group;

(iv) G is MCS-group;

(v) G is central-by-finite.

Proof. (i) ⇒ (ii) and (iii) ⇒ (iv) are obvious. (v) ⇒ (i) is described in [7,

Proposition 2.4].

(ii) ⇒ (iii). By [7, Proposition 2.4], the class of CCS-groups coincide with

the class of FCS-groups, but each FCS-group is a PCS-group, which gives the

result.

(iv) ⇒ (v). Put U to be the maximal torsion-free subgroup of Z(G) and

G/Z(G) is periodic (see [11, Theorem 4.32]), so it implies that G/U is also peri-

odic. If T is the periodic part of G and G/T is torsion-free abelian, then T∩U = 1

and G ↪→ G/T ×G/U . By Lemma 2.2 and the Main Theorem of [10] implies that

G/U is central-by-finite. Since G/T is abelian and G/T×G/U is central-by-finite,

we conclude that G is central-by-finite.
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