1. Atangana, A. and Cloot, A.H. Stability and convergence of the space fractional variable-order Schrödinger equation, Adv. Diff. Equ. 2013 (2013) 80.
2. Amore, P., Fernández, F.M., Hofmann, C.P. and Sáenz, R.A. Collocation method for fractional quantum mechanics, J. Math. Phys. 51 (2010) 122101.
3. Chang, Y. and Chen, H. Fourth-order finite difference scheme and efficient algorithm for nonlinear fractional Schrödinger equations, Adv.
4. Dai, P. and Wu, Q. An efficient block Gauss-Seidel iteration method forthe space fractional coupled nonlinear Schrödinger equations, Appl. Math. Lett. 117 (2021) 107–116.
5. Demengel, F. and Demengel, G. Fractional sobolev spaces, in: Functional spaces for the theory of elliptic partial differential equations, Springer, London, (2012) 179–228.
6. Laskin, N. Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A 268 (2000) 298–305.
7. Ortigueira, M.D. Riesz potential operators and inverses via fractional centred derivatives, Int. J. Math. Math. Sci. (2006) 1–12.
8. Saad, Y. Iterative methods for sparse linear systems, Second edition PWS, New York, 1995.
9. Saad, Y. and Schultz, M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. and Stat. Comput. 7 (1986) 856–869.
10. Sun, Z.Z. and Gao, G.h. Fractional differential equations, De Gruyter, 2020.
11. Wang, D., Xiao, A. and Yang, W. Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phys. 242 (2013) 670–681.
12. Wang, D., Xiao, A. and Yang, W. A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations, J. Comput. Phys. 272 (2014) 644–655.
13. Wang, D., Xiao, A. and Yang, W. Maximum-norm error analysis of a difference scheme for the space fractional CNLS, Appl. Math. Comput. 257 (2015) 241–251.
14. Young, D.M. Iterative solution or large linear systems, Academic Press, New York, 1971.
Send comment about this article