1. Akhavan, S. Numerical solution of singular Fredholm integro-differential equations of the second kind via Petrov-Galerkin method by using Legendre multiwavelet, Journal of mathematics and computer science. 9 (2014), 321-331.
2. Bhrawy, A.H., Alghamdi, M.A. and Taha, T.M. A new modified gen-eralized Laguerre operational matrix of fractional integration for solving fractional di_erential equations on the half line, Advances in Difference
Equations. (2012), 0:179. doi: 10.1186/1687-1847-2012-179.
3. Bhrawy, A.H., Al-Zahrani, A.A., Alhamed, Y.A. and Baleanu, D. A new generalized Laguerre-Gauss collocation scheme for numerical solution of generalized fractional pantograph equations, Romanian Reports Of Physics. 59 (7-8) (2014), 646-657.
4. Bhrawy, A.H., Baleanu, D., Assas, L.M. and Tenreiro Machado, J.A. On a generalized Laguerre operational matrix of fractional integration, Mathematical Problems in Engineering. (2013), Article ID 569286, 7 pages.
5. Bhrawy, A.H. and Taha, T.M. An operational matrix of fractional integration of the Laguerre polynomials and its application on a semi-infinite interval, Mathematical Sciences. (2012), 6:41. doi: 10.1186/2251-7456-6-41.
6. Bhrawy, A.H., Tharwat, M.M. and Alghamdi, M.A. A new operational matrix of fractional integration for shifted jacobi polynomials, Bulletin of the Malaysian Mathematical Sciences Society. 37 (4) (2014), 983-995.
7. De Bonis, M.C. and Mastroianni, M.G. Nystrom method for systems of integral equations on the real semiaxis, IMA Journal of Numerical Analysis. 29 (2009), 632-650.
8. Funaro, D. Polynomial Approximations of Di_erential Equations, Springer Verlag, 1992.
9. Maalek Ghaini, F.M., Tavassoli Kajani, F. and Ghasemi, M. Solving boundary integral equation using Laguerre polynomials, World Applied Sciences Journal. 7 (1) (2009), 102-104.
10. Mastroianni, G. and Milovanovic, G.V. Some numerical methods for second kind Fredholm integral equations on the real semiaxis, IMA Journal of Numerical Analysis. 29 (2009), 1046-1066.
11. Muskhelishvili, N.I. Singular integral equations, Noordhoff, Holland, 1953.
12. Nik Long, N. M. A., Eshkuvatov, Z. K., Yaghobifar, M. and Hasan, M. Numerical solution of infinite boundary integral equation by using Galerkin method with Laguerre polynomials, World Academy of Science Engineering
and Technology. 47 (2008), 334-337.
13. Sanikidze, D.G. On the numerical solution of a class of singular integral equations on an infinite interval, Differential Equations. 41 (9) (2005), 1353-1358.
14. Shen, J., Tang, T. and Wang, L.L. Spectral Methods Algorithms, Analysis and Applications, Springer, 2011.
15. Shen, J. and Wang, L.L. Some Recent Advances on Spectral Methods for Unbounded Domains, J. Commun. comput. Phys. 5 (2009), 195-241.
16. Sloan, I.H. Quadrature methods for integral equations of the second kind over infinite intervals, Mathematics of Computation. 36 (154) (1981), 511-523.
17. Volterra, V. Theory of functionnals of integro-differential equations, Dover, New York, 1959.
Send comment about this article