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581 Modeling individual mobility’s impact on COVID-19 transmission

Abstract

This research explores the influence of individual mobility on COVID-19
transmission, utilizing a temporal mathematical model to clarify disease
spread and vaccination dynamics across diverse regions. Employing a com-
putationally efficient two-patch configuration that emphasizes regional in-
teractions, our study aims to guide optimal disease control strategies. The
introduced SEIR-V model with a two-patch setup estimates the vaccination
reproduction number, Rv, while equilibrium points and system stability
are identified. Visualizations from numerical simulations and sensitivity
analyses illustrate key parameters affecting the vaccination reproduction
number and COVID-19 control measures. Our findings underscore system
responsiveness, emphasizing the intricate relationship between Rv, migra-
tion rates, and disease prevalence.

AMS subject classifications (2020): Primary 39A12; Secondary 92C60, 92D30.

Keywords: COVID-19; Metapopulation; Global stability; Local stability;
Vaccination reproduction number.

1 Introduction

In December 2019, a coronavirus emerged in Wuhan, China, transmitted from
animals to humans [22]. The outbreak escalated rapidly, with 44 reported
cases in China by January 3, 2020 [29]. The virus swiftly spread nationwide,
prompting the declaration of a state of epidemic in March 2020, exacerbated
by global human migration and travel between cities [18, 20]. The facilitation
of worldwide travel and commerce contributed to the rapid global dissemi-
nation, resulting in over 585 million reported cases and 6.4 million reported
deaths as of August 2022 [28]. Consequently, a multitude of researchers have
been captivated by the dynamics of COVID-19 dissemination [16, 6, 7, 9, 12].

The investigation focused on the movement patterns of individuals across
a network during the global spread of COVID-19 in 203 countries [13].
Researchers observed that human mobility, particularly through cities and
tourism, significantly contributed to the virus’s dissemination, supported by
Arino and others who affirmed that epidemic spread increases during trans-
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portation [2]. Numerous epidemiologists, including Baister et al. [4], Ahmad
et al. [1], McCarthy et al. [21], and Iyaniwura et al. [15] employed metapop-
ulation models to explore COVID-19 transmission dynamics. These models
considered diverse scenarios, such as studying individual mobility and social
interactions in major cities, investigating vaccination strategies in a prison
setting, and using hybrid gravity-metapopulation modeling to analyze the
spread between different regions. Other studies delved into specific regions
like Ireland and formulated generalized n-patch SEIR epidemiological models
to devise effective control strategies against the disease [14, 19].

This paper introduces metapopulation modeling to investigate the impact
of individual mobility on the spread of COVID-19, building upon our previ-
ous model [7]. Our focus is on developing a temporal mathematical model to
describe COVID-19 transmission with vaccination, aiming to optimize disease
control strategies within and between different regions. Using a two-patch
configuration (n = 2), we address the complexities of calculations, ensuring
the boundedness and positivity of solutions. We calculate the vaccination re-
production number (Rv) for the two-patch metapopulation and analyze the
local and global stability of the disease-free equilibrium (DFE), establishing
that if Rv > 1, then the disease becomes endemic. Sensitivity analysis and
numerical simulations further explore the impact of key parameters on Rv,
confirming the existence and stability of the endemic equilibrium. Addition-
ally, we examine the influence of migration rates on COVID-19 transmission
between the two patches.

The paper’s structure unfolds as follows: Section 2 revisits the previously
introduced and analyzed model. In Section 3, we introduce the metapopula-
tion model. Section 4 proposes the SEIR-V model with a two-patch configu-
ration for COVID-19, estimating the vaccination reproduction number (Rv).
We identify equilibrium points and conduct stability analysis for the dynamic
system of COVID-19 propagation. Section 5 presents numerical simulations
and sensitivity analyses to illustrate theoretical results. Finally, Section 6
encapsulates our conclusions.
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583 Modeling individual mobility’s impact on COVID-19 transmission

2 Baseline model

We first recall the model introduced and analyzed in [7], which describes the
transmission dynamics of COVID-19. In this model, the population is sub-
divided into seven distinct groups: susceptible individuals (S), exposed but
not yet infectious individuals (E), vaccinated individuals (V ), asymptomatic
infectious individuals (Ia), symptomatic and hospitalized infectious individ-
uals (Is), individuals who have succumbed to the disease (D), and those who
have recovered (R).

It is assumed that there is no vertical transmission of the disease so that
all births occur into the susceptible human class, at the rate µ > 0. Moreover,
we assume that the total human population N remains constant; thus, birth
and death rates are equal.

Hence, the normalized reduced system is given by

S′ (t) = µ− (α1η + α2 (1− η))S (t) (Ia (t) + Is (t))− µS (t)

+λ2V (t) + γR (t)− λ1S (t) ,

E′ (t) = (α1η + α2 (1− η))S (t) (Ia (t) + Is (t))− (β1 + β2 + µ+ λ3)E (t) ,

V ′ (t) = λ1S (t) + λ3E (t) + λ4Ia (t)− (λ2 + λ5 + µ)V (t) ,

I ′a (t) = β1E (t)− (γ1 + λ4 + µ) Ia (t) ,

I ′s (t) = β2E (t)− (γ2 + δ + µ) Is (t) ,

R′ (t) = γ1Ia (t) + γ2Is (t) + λ5V (t)− γR (t)− µR (t) ,

(1)
where

α1 is the infection rate of confined susceptible and α2 is the infection rate
of unconfined susceptible such as α1 < α2.

η is the confinement rate within the population.
(βi)i=1,2 are infected-infectious rates.
γ is the reinfection rate after recovery from a first infection.
(γi)i=1,2 are the recovery rates.
(λi)i=1,3,4 are the vaccination rates.
λ2 is the rate of vaccine ineffectiveness.
λ5 is the vaccine effectiveness rate.
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δ is the COVID-19 mortality rate.

µ is the natality rate.

The study of the model is detailed in [7]. For this model (1), the vacci-
nation reproduction number is given by

Rv =
(α1η + α2 (1− η))

(γ1 + λ4 + µ) (γ2 + δ + µ)
(2)

× (β1 (γ2 + δ + µ) + β2 (γ1 + λ4 + µ)) (λ2 + λ5 + µ) (γ + µ)

(β1 + β2 + µ+ λ3) ((λ2 + λ5 + µ) (γ + µ) + λ1 (γ + λ5 + µ))
.

3 Metapopulation model

In works [4, 1, 21, 15, 14, 2, 19, 3], a comprehensive system of differential
equations is developed to characterize human mobility. Within this model,
subpopulations are identified based on their origin and their current location.
Building upon the model detailed in the preceding section, we expand it
by introducing the concept of a neighborhood wherein interactions occur
between infected and non-infected individuals.

Consider a network comprising p nodes. Within this network, individuals
are characterized by two key attributes: the node of origin, signifying their
residence, and the node they currently occupy at time t. We assume that
the total human population Ni in each node remains constant and strictly
positive, and the transition rates from one pathological state to another also
remain the same for all patches. Furthermore, we suppose that birth occurs
in the resident node while deaths take place in any node where the human is
present.

The population in the patch i, is divided into compartments of suscepti-
ble (Si), exposed (Ei), vaccinated(Vi), asymptomatic infectious (Ia,i), symp-
tomatic and hospitalized infectious (Is,i), death (Di), and the recovered as
(Ri).

The total number of individuals in the patch i size at time t is defined by

Ni = Si(t) + Ei(t) + Vi(t) + Ia,i(t) + Is,i(t) +Ri(t) +Di(t),

and the total population is given by
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585 Modeling individual mobility’s impact on COVID-19 transmission

N =

p∑
i=1

Ni.

We adopt a methodology akin to that employed by Arino and van Den
Driessche [3]. Migration is observed between any pair of patches, transpiring
at the specified rates:

• φS
ij migration rate of susceptible individuals from the patch i to the

patch j,

• φE
ij migration rate of infected individuals (noninfectious) from the patch

i to the patch j,

• φV
ij migration rate of vaccination individuals from the patch i to the

patch j,

• φIa
ij migration rate of asymptomatic infectious individuals from the

patch i to the patch j,

• φIs
ij migration rate of symptomatic infectious individuals from the patch

i to the patch j,

• φR
ij migration rate of recovered and immunized infectious individuals

from the patch i to the patch j,

where
φS
ii = φE

ii = φV
ii = φIa

ii = φIs
ii = φR

ii = 0.

Hence, the metapopulation system of differential equations that will model
the dynamics of coronavirus spread is the system given by
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dSi

dt
= µNi

N − (α1ηi + α2 (1− ηi)) (Ia,i + Is,i)Si +
p∑

j=1(j ̸=i)

φS
jiSj

−

(
p∑

j=1(j ̸=i)

φS
ij

)
Si − (µ+ λ1)Si + λ2Vi + γRi,

dEi

dt
= (α1ηi + α2 (1− ηi)) (Ia,i + Is,i)Si +

p∑
j=1(j ̸=i)

φE
jiEj

−

(
p∑

j=1(j≠i)

φE
ij

)
Ei − (β1 + β2 + µ+ λ3)Ei,

dVi

dt
= λ1Si + λ3Ei + λ4Ia,i +

p∑
j=1(j ̸=i)

φV
jiVj

−

(
p∑

j=1(j ̸=i)

φV
ij

)
Vi − (λ2 + λ5 + µ)Vi,

dIa,i
dt

= β1Ei +
p∑

j=1(j ̸=i)

φIa
ji Ia,j −

(
p∑

j=1(j ̸=i)

φIa
ij

)
Ia,i − (γ1 + λ4 + µ) Ia,i,

dIs,i
dt

= β2Ei − (γ2 + δ + µ) Is,i,

dRi

dt
= γ1Ia,i + γ2Is,i + λ5Vi +

p∑
j=1(j ̸=i)

φR
jiRj

−

(
p∑

j=1(j ̸=i)

φR
ij

)
Ri − (γ + µ)Ri,

dDi

dt
= δIs,i,

with initial conditions
Si (0) > 0, Ei (0) ⩾ 0,

∑p
i=1 Ei (0) > 0,

Vi (0) > 0, Ia,i (0) ⩾ 0,
∑p

i=1 Ia,i (0) > 0,

Is,i (0) ⩾ 0,
∑p

i=1 Is,i (0) > 0, Ri (0) > 0,

for i = 1, p.

4 Two-patch SEIR-V model for COVID-19

To enhance the realism of our study, we confine our investigation to a two-
patch model, undertaking a rigorous mathematical analysis of its dynamics.
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587 Modeling individual mobility’s impact on COVID-19 transmission

The diagram of the transmission of COVID-19 in two-patch is shown in
Figure 1.

Figure 1: Diagram of the proposed two-Patch SEIR-V Model.

The SEIR-V two-Patch model is formulated as follows:
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dS1

dt
= µn1 − c1 (Ia,1 + Is,1)S1 + φS

21S2 −
(
φS
12 + c0

)
S1 + λ2V1 + γR1,

dS2

dt
= µn2 − c2 (Ia,2 + Is,2)S2 + φS

12S1 −
(
φS
21 + c0

)
S2 + λ2V2 + γR2,

dE1

dt
= c1 (Ia,1 + Is,1)S1 + φE

21E2 −
(
φE
12 + c3

)
E1,

dE2

dt
= c2 (Ia,2 + Is,2)S2 + φE

12E1 −
(
φE
21 + c3

)
E2,

dV1

dt
= λ1S1 + λ3E1 + λ4Ia,1 + φV

21V2 −
(
φV
12 + c4

)
V1,

dV2

dt
= λ1S2 + λ3E2 + λ4Ia,2 + φV

12V1 −
(
φV
21 + c4

)
V2,

dIa,1
dt

= β1E1 + φIa
21Ia,2 −

(
φIa
12 + c5

)
Ia,1,

dIa,2
dt

= β1E2 + φIa
12Ia,1 −

(
φIa
21 + c5

)
Ia,2,

dIs,1
dt

= β2E1 − c6Is,1,

dIs,2
dt

= β2E2 − c6Is,2,

dR1

dt
= γ1Ia,1 + γ2Is,1 + λ5V1 + φR

21R2 −
(
φR
12 + c7

)
R1,

dR2

dt
= γ1Ia,2 + γ2Is,2 + λ5V2 + φR

12R1 −
(
φR
21 + c7

)
R2,

(3)
with initial conditions

Si (0) > 0,

Ei (0) ⩾ 0, E1 (0) + E2 (0) > 0,

Vi (0) > 0,

Ia,i (0) ⩾ 0, Ia,1 (0) + Ia,2 (0) > 0,

Is,i (0) ⩾ 0, Is,1 (0) + Is,2 (0) > 0,

Ri (0) > 0,

(4)

for i = 1, 2. Here
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589 Modeling individual mobility’s impact on COVID-19 transmission

n1 = N1

N , n2 = N2

N ,

c0 = (µ+ λ1) ,

c1 = (α1η1 + α2 (1− η1)) ,

c2 = (α1η2 + α2 (1− η2)) ,

c3 = β1 + β2 + µ+ λ3,


c4 = (λ2 + λ5 + µ) ,

c5 = γ1 + λ4 + µ,

c6 = γ2 + δ + µ,

c7 = (γ + µ) .

(5)

4.1 Boundedness and positivity of solutions

We consider the following zone of biological interest:

Ω =
{
(S1, S2, E1, E2, V1, V2, Ia,1, Ia,2, Is,1, Is,2, R1, R2) ∈ R12

+ : (6)

0 ⩽
∑
i

Si +
∑
i

Ei +
∑
i

Vi +
∑
i

Ia,i +
∑
i

Is,i +
∑
i

Ri ⩽ 1, i = 1, 2

}
.

Theorem 1. Consider system (3) with initial conditions (4).
The set Ω is an attracting and positively invariant with respect to model

(3), with Si, Vi, Ri

(
i = 1, 2

)
; remaining positive. The total population in

each patch is assumed to be constant, and all their pathological states are
also bounded.

Proof. Under initial conditions (4):

• In the event that E1 becomes zero at t1 before E2 becomes zero, then
at t1, we have

dE1

dt
= c1 (Ia,1 + Is,1)S1 + φE

21E2 ⩾ 0.

This demonstrates that E1 is a nondecreasing function of t at t1. Hence,
E1 stays nonnegative. Analogously, the same holds for E2.

• In the event that Ia,1 becomes zero at some time t2 before Ia,2 becomes
zero, then at t2, we have

dIa,1
dt

= β1E1 + φIa
21Ia,2 ⩾ 0.

This demonstrates that Ia,1 is a nondecreasing function of t at t2.
Hence, Ia,1 stays nonnegative. Analogously, the same holds for Ia,2.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 2, 2024, pp 580–612
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• In the event that Is,1 becomes zero at some time t3 before Is,2 becomes
zero, then at t3, we have

dIs,1
dt

= β2E1 ⩾ 0.

This demonstrates that Is,1 is a nondecreasing function of t at t3.
Hence, Is,1 stays nonnegative. Analogously, the same holds for Is,2.

• Suppose now that at some time t4, S1 (t4) = 0 before S2 goes to zero.
Then at t = t4, from system (3), we have

dS1

dt
= µ

N1

N
+ φS

21S2 + λ2V1 + γR1 > 0,

which implies that dS1

dt
> 0 when N1

N
is strictly positive.

Thus, there is no time t4 such that S1 (t4) = 0. Therefore, S1 stays pos-
itive for t > 0 when the initial condition S1 (0) > 0. Using comparable
reasoning, we deduce the positivity of S2.

• Likewise at some time t5, V1 (t5) = 0 before V2 goes to zero. Then at t
= t5, from system (3), we have

dV1

dt
= λ1S1 + λ3E1 + λ4Ia,1 + φV

21V2 > 0,

which implies that dV1

dt
> 0 because S1 (t) > 0 for t > 0.

Thus, there is no time t5 such that V1 (t5) = 0. Therefore, V1 stays
positive. Using comparable reasoning, we deduce the positivity of V2.

• Likewise at some time t6; R1 (t6) before R2 goes to zero. Then at t

= t6, from system (3), we have

dR1

dt
= γ1Ia,1 + γ2Is,1 + λ5V1 + φR

21R2 > 0,

which implies that dR1

dt
> 0 because V1 (t) > 0 for t > 0.

Thus, there is no time t6 such that R1 (t6) = 0. Therefore, R1 stays
positive. Using comparable reasoning, we deduce the positivity of R2.
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591 Modeling individual mobility’s impact on COVID-19 transmission

Since the positive set Ω is invariant under system (3) and the total population
in each patch (Ni)i=1,2 is assumed to be constant, and all their pathological
states are also bounded.

4.2 Disease-Free Equilibrium

The DFE (disease-free equilibrium) of system (3) is expressed as

E∗
0 =

(
S∗
1 S∗

2 0 0 V ∗
1 V ∗

2 0 0 0 0 R∗
1 R∗

2

)T
, (7)

where

S∗
1 =

µk2k3 (n1 (d1 + d3) + d1n2)

d3 (d3 + d1 + d2)
,

S∗
2 =

µk2k3 (d2n1 + (d2 + d3)n2)

d3 (d3 + d1 + d2)
,

V ∗
1 =

λ1

(
φV
21 + c4

)
µk2k3 (n1 (d1 + d3) + d1n2)

k2d3 (d3 + d1 + d2)

+
λ1φ

V
21k2

µk2k3 (d2n1 + (d2 + d3)n2)

d3 (d3 + d1 + d2)
,

V ∗
2 =

λ1φ
V
12µk2k3 (n1 (d1 + d3) + d1n2)

k2d3 (d3 + d1 + d2)

+
λ1

(
φV
12 + c4

)
µk2k3 (d2n1 + (d2 + d3)n2)

k2d3 (d3 + d1 + d2)
,

R∗
1 =

λ5λ1k4µk2k3 (n1 (d1 + d3) + d1n2)

k2k3d3 (d3 + d1 + d2)

+
µk2k3λ5λ1

(
φV
21k3 + φR

21k5
)
(d2n1 + (d2 + d3)n2)

k2k3d3
(
φR
12 + c7

)
(d3 + d1 + d2)

,

R∗
2 =

µk2k3λ1λ5

(
φV
12k3 + φR

12k4
)
(n1 (d1 + d3) + d1n2)

k2k3d3
(
φR
21 + c7

)
(d3 + d1 + d2)

+
λ5λ1k5µk2k3 (d2n1 + (d2 + d3)n2)

k2k3d3 (d3 + d1 + d2)
,

and 
d1 = γλ1λ5k6 + λ1λ2k3φ

V
21 + k3k2φ

S
21,

d2 = γλ1λ5k7 + λ1λ2k3φ
V
12 + k2k3φ

S
12,

d3 = k3k2µ+ λ1µ (λ5 + c7) (k6 + k7 + c4c7) ,

(8)
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and 

k2 = c24 + φV
12c4 + φV

21c4,

k3 = c27 + φR
12c7 + φR

21c7,

k4 =
(
φV
21 + c4

) (
φR
21 + c7

)
+ φV

12φ
R
21,

k5 =
(
φV
12 + c4

) (
φR
12 + c7

)
+ φR

12φ
V
21,

k6 = φV
21

(
φR
21 + c7

)
+ φR

21

(
φV
12 + c4

)
,

k7 = φV
12

(
φR
12 + c7

)
+ φR

12

(
φV
21 + c4

)
.

(9)

The existence of the DFE E∗
0 remains unaffected by any prerequisites regard-

ing positive operational data.

4.3 Vaccination reproduction number Rv of two-patch
metapopulation

In this subsection, we present the method used for our SEIR-V model to esti-
mate the vaccination reproduction number Rv. This method is proposed by
Diekmann, Heesterbeek, and Metz [26] and elaborated by Van Den Driessche
and Watmough [27, 25], which gives a way of determining Rv for an ordi-
nary differential equation compartmental model by using the next-generation
matrix.

Let X = (E1, E2, Ia,1, Ia,2, Is,1, Is,2)
T . Then the system can be written as

dX

dt
= F (X)− V (X) ,

where

F (X) =



c1 (Ia,1 + Is,1)S1

c2 (Ia,2 + Is,2)S2

0

0

0

0


,

and
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593 Modeling individual mobility’s impact on COVID-19 transmission

V (X) =



−φE
21E2 +

(
φE
12 + c3

)
E1

−φE
12E1 +

(
φE
21 + c3

)
E2

−β1E1 − φIa
21Ia,2 +

(
φIa
12 + c5

)
Ia,1

−β1E2 − φIa
12Ia,1 +

(
φIa
21 + c5

)
Ia,2

−β2E1 + c6Is,1

−β2E2 + c6Is,2


.

The basic reproduction number, Rv, is calculated by next generation tech-
nique. The F and V matrices at the DFE E∗

0 is given as follows:

F =
∂F (X)

∂X

∣∣∣∣
E∗
0

=



0 0 c1S
∗
1 0 c1S

∗
1 0

0 0 0 c2S
∗
2 0 c2S

∗
2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

and

V =
∂V (X)

∂X

∣∣∣∣
E∗
0

=



φE
12 + c3 −φE

21 0 0 0 0

−φE
12 φE

21 + c3 0 0 0 0

−β1 0 φIa
12 + c5 −φIa

21 0 0

0 −β1 −φIa
12 φIa

21 + c5 0 0

−β2 0 0 0 c6 0

0 −β2 0 0 0 c6


.

Therefore, the next generation matrix is

FV −1 =



m1S
∗
1 m3S

∗
1

c1(c5+φIa
21 )

k1
S∗
1

c1φ
Ia
21

k1
S∗
1

c1
c6
S∗
1 0

m2S
∗
2 m4S

∗
2

c2φ
Ia
12

k1
S∗
2

c2(c5+φIa
12 )

k1
S∗
2 0 c2

c6
S∗
2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

where

Iran. J. Numer. Anal. Optim., Vol. 14, No. 2, 2024, pp 580–612



Bouziane, Boubekeur, Keddar and Belhamiti 594

m1 = c1

((
c3 + φE

21

)
k0

(
β2

c6
+

c5β1

k1

)
+

β1φ
Ia
21

c3k1

)
,

m2 = c2

(
φE
12

k0

(
β2

c6
+

c5β1

k1

)
+

β1φ
Ia
12

c3k1

)
,

m3 = c1

(
φE
21

k0

(
β2

c6
+

c5β1

k1

)
+

β1φ
Ia
21

c3k1

)
,

m4 = c2

((
c3 + φE

12

)
k0

(
β2

c6
+

c5β1

k1

)
+

β1φ
Ia
12

c3k1

)
,

and

k0 = c3φ
E
12 + c3φ

E
21 + c23,

k1 = c5φ
Ia
12 + c5φ

Ia
21 + c25.

The reproduction number, Rv, is the spectral radius of the next generation
matrix, which is given by

Rv =
1

2

µk2k3
d3 (d3 + d1 + d2)

(
(d1 + n1d3)m1 + (d2 + n2d3)m4

+

√
((d1 + n1d3)m1 − (d2 + n2d3)m4)

2
+ 4m2m3 (d1 + n1d3) (d2 + n2d3)

)
,

where (ci) and (di) are defined in (5) and (8), respectively.

4.4 Model analysis

Theorem 2. If Rv < 1, then the DFE E∗
0 is locally asymptotically stable

and unstable otherwise.

Proof. System (3) has a unique DFE point E∗
0 in the set Ω, given in (7).

The eigenvalues of the Jacobian matrix at the DFE point E∗
0 are given by

ρ1 = ρ2 = −c6,

ρ3 = −
(
φE
12 + φE

21 + c3
)
,

ρ4 = −c3,

ρ5 = −
(
c5 + φIa

12 + φIa
21

)
,

ρ6 = −c5,
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where (ρi)i=7,12 are roots of

P (Z) = Z6 + C5Z
5 + C4Z

4 + C3Z
3 + C2Z

2 + C1Z + C0.

By using Lienard–Chipart criteria, the DFE point E∗
0 is locally asymptotically

stable if the coefficients C5, C4, C3, C2, C1, and C0 are positive and their
Hurwitz’s determinants are positive. It shows that the positivity of Hurwitz
determinants is very complicated to achieve. However, the computational
cost can be reduced by using the simplified version mentioned in [5, 17].
That is, the coefficients that must be computed are C5, C4, C3, C2, C1, and
C0 only. Note that C5, C4, and C3 are needed because the simplified version
of Lienard–Chipart criteria still require |H2| = C5C4 − C3 > 0 [11].

Indeed, we employed formal calculation software (Maxima Version 5.42.1)
to establish that if Rv < 1, then all (Ci)i=0,5 and |H2| are positive.

Theorem 3. If Rv < 1, then the the DFE E∗
0 is globally asymptotically

stable in Ω.

Proof. Since for i = 1,2, we have

S1 ⩽ S∗
1 , S2 ⩽ S∗

2 ,

dE1

dt
⩽ −

(
φE
12 + c3

)
E1 + φE

21E2 + c1S
∗
1Ia,1 + c1S

∗
1Is,1,

dE2

dt
⩽ φE

12E1 −
(
φE
21 + c3

)
E2 + c2S

∗
2Ia,2 + c2S

∗
2Is,2,

dIa,1
dt

⩽ β1E1 −
(
φIa
12 + c5

)
Ia,1 + φIa

21Ia,2,

dIa,2
dt

⩽ β1E2 + φIa
12Ia,1 −

(
φIa
21 + c5

)
Ia,2,

dIs,1
dt

⩽ β2E1 − c6Is,1,

dIs,2
dt

⩽ β2E2 − c6Is,2.

(10)

Defining an auxiliary linear system using the right-hand side of system (10),
we have
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dẼ1

dt
= −

(
φE
12 + c3

)
Ẽ1 + φE

21Ẽ2 + c1S
∗
1 Ĩa,1 + c1S

∗
1 Ĩs,1,

dẼ2

dt
= φE

12Ẽ1 −
(
φE
21 + c3

)
Ẽ2 + c2S

∗
2 Ĩa,2 + c2S

∗
2 Ĩs,2,

dĨa,1
dt

= β1Ẽ1 −
(
φIa
12 + c5

)
Ĩa,1 + φIa

21Ĩa,2,

dĨa,2
dt

= β1Ẽ2 + φIa
12Ia,1 −

(
φIa
21 + c5

)
Ĩa,2,

dĨs,1
dt

= β2Ẽ1 − c6Ĩs,1,

dĨs,2
dt

= β2Ẽ2 − c6Ĩs,2,

or, in other words,

d

dt

(
Ẽ1 Ẽ2 Ĩa,1 Ĩa,2 Ĩs,1 Ĩs,2

)T

=



−
(
φE
12 + c3

)
φE
21 c1S

∗
1 0 c1S

∗
1 0

φE
12 −

(
φE
21 + c3

)
0 c2S

∗
2 0 c2S

∗
2

β1 0 −
(
φIa
12 + c5

)
0φIa

21 0 0

0 β1 φIa
12 −

(
φIa
21 + c5

)
0 0

β2 0 0 0 −c6 0

0 β2 0 0 0 −c6





Ẽ1

Ẽ2

Ĩa,1

Ĩa,2

Ĩs,1

Ĩs,2


.

So,

d

dt



dẼ1

dẼ2

dĨa,1

dĨa,2

dĨs,1

dĨs,2


= (F − V )



dẼ1

dẼ2

dĨa,1

dĨa,2

dĨs,1

dĨs,2.


. (11)

We have Rv < 1 ⇐⇒ σ (F − V ) < 0, where σ (F − V ) is the spectral abscissa
of the matrix F − V (see the proof of Theorem 2 [26]). So, when Rv < 1,
the eigenvalues of (F − V ) are with negative real parts. Thus all nonnegative
solutions of (11) are such that

lim
t−→+∞

(
Ẽ1, Ẽ2, Ĩa,1, Ĩa,2, Ĩs,1, Ĩs,2

)
= (0, 0, 0, 0, 0, 0) .
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By a standard comparison principle (see [24, Theorem B.1]) and the non-
negativity of (E1, E2, Ia,1, Ia,2, Is,1, Is,2), we conclude that when Rv < 1, all
nonnegative solutions of (3) satisfy

lim
t−→+∞

(E1, E2, Ia,1, Ia,2, Is,1, Is,2) = (0, 0, 0, 0, 0, 0) . (12)

Since (12) is satisfied, (3) is an asymptotically autonomous system [see [8,
Theorem 2.5]] with limit affine system

dS1

dt
= µ+ φS

21S2 −
(
φS
12 + c0

)
S1 + λ2V1 + γR1,

dS2

dt
= µ+ φS

12S1 −
(
φS
21 + c0

)
S2 + λ2V2 + γR2,

dV1

dt
= λ1S1 + φV

21V2 −
(
φV
12 + c4

)
V1,

dV2

dt
= λ1S2 + φV

12V1 −
(
φV
21 + c4

)
V2,

dR1

dt
= λ5V1 + φR

21R2 −
(
φR
12 + c7

)
R1,

dR2

dt
= λ5V2 + φR

12R1 −
(
φR
21 + c7

)
R2.

(13)

It is easy to verify from (13) that

lim
t−→+∞

(S1, S2, V1, V2, R1, R2) = (S∗
1 , S

∗
2 , V

∗
1 , V

∗
2 , R

∗
1, R

∗
2) .

The globally asymptotic stability of the DFE E∗
0 is then proved if Rv < 1.

The presence of endemic equilibrium, characterized by positive infective
numbers, has barely been discussed here. Although their existence has not
been formally proven, numerical simulations suggest a globally asymptoti-
cally stable equilibrium when Rv > 1. Investigating the system’s persistence
properties under the condition Rv > 1 would be a valuable avenue for further
exploration.

Lemma 1. [30] Let ϕt : X → X be a semiflow and let X0 ⊂ X be an open
set. Define ∂X0 = X∖X0 and M∂ = {x ∈ ∂X0 : ϕtx ∈ ∂X0, t ⩾ 0} . Assume
the following conditions:

1. ϕtX0 ⊂ X0 and ϕt has a global attractor A.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 2, 2024, pp 580–612



Bouziane, Boubekeur, Keddar and Belhamiti 598

2. There exists a finite sequence M = {M1, . . . ,Mk} of disjoint, compact,
and isolated invariant sets in ∂X0 such that

(a) Ω(M∂) := ∪x∈M∂
w (x) ⊂ ∪k

i=1Mi.

(b) No subset of M forms a cycle in ∂X0.

(c) Mi is isolated in X.

(d) W s (Mi) ∩ X0 = ∅, where W s (Mi) = {x ∈ X0 : w (x) ⊂ Mi} for
each 1 ⩽ i ⩽ k.

Then ϕt is uniformly persistent with respect to (X0, ∂X0), that is, there exists
θ > 0 such that

lim inf
t−→+∞

d (ϕtx, ∂X0) ⩾ θ for x ∈ X0.

Therefore, we have the following result.

Theorem 4. If Rv > 1, then system (3) is uniformly persistent, namely,
there exists a constant θ > 0 such that

lim
t−→+∞

infSi (t) > θ, lim
t−→+∞

infEi (t) > θ, lim
t−→+∞

infVi (t) > θ,

lim
t−→+∞

inf Ia,i (t) > θ, lim
t−→+∞

inf Is,i (t) > θ, lim
t−→+∞

infRi (t) > θ,

for any initial conditions satisfying (4).

Proof. Choose
X = Ω

X0 =
{
(S1, S2, E1, E2, V1, V2, Ia,1, Ia,2, Is,1, Is,2, R1, R2) ∈ X :

E1 + E2 > 0, Ia,1 + Ia,2 > 0, Is,1 + Is,2 > 0
}
,

and

∂X0 = X ∖X0

=
{
(S1, S2, E1, E2, V1, V2, Ia,1, Ia,2, Is,1, Is,2, R1, R2) ∈ X :

E1 = E2 = Ia,1 = Ia,2 = Is,1 = Is,2 = 0
}
.

Let ϕt be the semi flow induced by the solutions of system (3).
We have proved in Theorem 1 that ϕtX0 ⊂ X0 and ϕt is ultimately

bounded in X0; so there always exists a global attractor for ϕt. It is obvious
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that E∗
0 is the unique boundary equilibrium on ∂X0, which implies that E∗

0

is globally stable on ∂X0. Moreover, (S1, S2, , V1, V2, R1, R2) converges to
(S∗

1 , S
∗
2 , , V

∗
1 , V

∗
2 , R

∗
1, R

∗
2) on ∂X0.

Let M1 = {E∗
0 } and M = {M1}, then ∪x∈M∂

w (x) = M1 and no subset
of M forms a cycle in ∂X0.

If Rv > 1, then E∗
0 is unstable in X0. Therefore, conditions (2 − c) and

(2−d) of Lemma 1 are satisfied. Then ϕt is uniformly persistent with respect
to (X0, ∂X0), that is, there exists θ > 0 such that

lim inf
t−→+∞

d (ϕtx, ∂X0) ⩾ θ for x ∈ X0.

We have thus shown that if Rv > 1, then the disease is endemic.

5 Numerical simulation

In this section, we extend our exploration into the numerical simulation
of COVID-19 transmission within a two-patch framework, leveraging well-
established methodologies commonly employed in epidemiological studies.
Building upon the model detailed and examined in Section 4, our objective
is to unravel the intricate dynamics of COVID-19 transmission influenced by
migration, vaccination, and medical unavailability.

In a prior study [7], we investigated disease transmission dynamics in the
absence of migration in a single patch. In the current work, which builds
upon our earlier research, we now consider the pivotal role of migration—
representing the movement of individuals between patches. Migration rates,
denoted by φ12 and φ21, exert a substantial influence on the overall trans-
mission dynamics.

To ground our simulations in real-world scenarios, we integrate data from
Table 1 into our analysis. Additionally, we set migration rates from the
patch 1 to the patch 2 (φS

12, φE
12, φV

12, φIa
12, φR

12) at 0.001 and migration
rates from the patch 2 to the patch 1 (φS

21, φE
21, φV

21, φIa
21, φR

21) at 0.005.
These rates underscore the interconnectedness of patches and contribute to
the comprehensive understanding of disease spread across different regions.
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Table 1: The operational parameters of the simulation consist of two categories: those
characterizing the population and the disease remain the same across all patches,
whereas parameters reflecting the behavior of individuals vary from one patch to another

Our simulation parameters encompass scenarios without migration re-
strictions, incorporating measures such as containment and vaccination strate-
gies. The outcomes of these simulations gauged through Rv and other perti-
nent metrics, offer valuable insights into the potential efficacy of interventions
aimed at curtailing the virus’s propagation.

Subsequently, we delve into an analysis of the sensitivity of key parame-
ters to the vaccine reproduction number Rv. Following this, we meticulously
scrutinize the theoretical results previously obtained, aiming to provide em-
pirical substantiation and validate the accuracy of our theoretical framework.
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This multifaceted approach enhances our understanding of the practical im-
plications of proposed interventions and reinforces the robustness of our the-
oretical foundation.

5.1 Sensitivity analysis of the main parameters on Rv

To effectively mitigate the impact of COVID-19 and reduce associated fatali-
ties, understanding the relative importance of various parameters influencing
its progression is crucial. The vaccination reproduction number, Rv [10],
stands out as a key determinant in the transmission dynamics of COVID-19.

Our investigation employs sensitivity analysis on Rv within the framework
of our model (3). This analysis aims to discern the individual importance of
each parameter, shedding light on influential factors in disease transmission.
The derived sensitivity indices offer insights into how a state variable changes
relative to variations in specific parameters.

Sensitivity analysis, a widely used technique, involves computing the first-
order partial derivatives of model output concerning input parameters. This
process can be conceptualized as calculating gradients in a multidimensional
reference parameter space [23], providing valuable information on the model’s
responsiveness to slight changes in input parameters.

The normalized forward sensitivity index of Rv, denoted as IRv
p , quantifies

the sensitivity with respect to a given parameter p and is defined by the
expression:

IRv
p =

∂Rv

∂p

p

Rv
.

This index facilitates a quantitative assessment of how alterations in individ-
ual parameters influence the value of Rv, a pivotal metric for understanding
disease transmission. By leveraging explicit formulas for each parameter af-
fecting Rv, as detailed in reference [31], we gain precise insights into the im-
pact of specific parameters on Rv. Such sensitivity analysis proves invaluable
in prioritizing interventions and control measures to effectively curtail the
spread of the disease, enabling a more targeted and comprehensive approach
to managing COVID-19.
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Table 2: Local sensitivity indices for Rv concerning parameters in the proposed model are
computed at the baseline parameter values provided in Table 1. Parameters exhibiting
the highest sensitivity are highlighted in bold

Table 2 highlights the parameters most responsive to changes in the vac-
cination reproduction number (Rv), with the transmission probability of
unconfined individuals (α2) and the transition rate from exposed to symp-
tomatic infected (β2) exhibiting the highest sensitivity. The vaccination rate
(λ1) and the transition rate from exposed to asymptomatic infected (β1)
closely follow in significance. A 10% increase (or decrease) in α2 or β2 leads
to corresponding 8.9% and 3.7% changes in Rv, respectively, as denoted by
IRv
α1

= +0.89 and IRv
η1

= +0.37. Conversely, a 10% increase in λ1 or β1

corresponds to a 1.8% and 3.4% decrease in Rv, respectively, indicated by
IRv

λ1
= −0.18 and IRv

β1
= −0.34.

The local analysis emphasizes the importance of implementing effective
containment measures for managing the transmission probability (α2) and
the transition rate from exposed to symptomatic infected. This involves
stringent containment measures, the use of physical barriers, and adherence
to social distancing guidelines. Additionally, vaccination efforts, represented
by the rate (λ1), play a crucial role in reducing the spread of the disease. By
strategically controlling these parameters, a significant reduction in COVID-
19-related deaths can be achieved.
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5.2 The stability of the DFE

In this subsection, we will confirm the theoretical results obtained earlier
through numerical simulations for the following parameter values (per day):

α1 = 0.010 ; α2 = 0.0655 ; η1 = 0.20 ; η2 = 0.25 ; λ1 = 0.01817.

The existence and stability conditions in Theorem 2 are satisfied

Rv = 0.8375 < 1.

Hence, system (3) has a DFE,

E∗
0 =

[
S∗
1 , S∗

2 , E∗
1 , E∗

2 , V ∗
1 , V ∗

2 , I∗a,1, I∗a,2, I∗s,1, I∗s,2 , R∗
1, R∗

2

]T
= [0.1915, 0.0385, 0, 0, 0.3326, 0.0713, 0, 0, 0, 0, 0.2861, 0.0573]

T
.

Therefore, the DFE E∗
0 is stable. This also implies that the disease is eradi-

cated, as depicted in Figures 2 and 3.

Furthermore, if we increase the values of the most sensitive parame-
ters such as α1 = 0.0653, α2 = 0.1295, η1 = 0.20, η2 = 0.30 and
λ1 = 0.00117, through direct calculation, the vaccination reproduction num-
ber Rv = 6.4251 > 1. Consequently, according to Theorem 2, the DFE is
unstable, and the model (3) has an endemic equilibrium.

Figure 2: The proposed model has only one DFE E∗
0 , which is asymptotically stable

when Rv < 1.
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Figure 3: The proposed model has only one DFE E∗
0 , which is asymptotically stable

when Rv < 1.

5.3 The existence and stability of the endemic
equilibrium of the model

Now, we deal with the existence of endemic equilibrium of model (3). Con-
sider the following parameter values (per day):

α1 = 0.0653, α2 = 0.1295, η1 = 0.20, η2 = 0.30, λ1 = 0.00117.

Hence, we obtain
Rv = 6.4251 > 1.

System (3) has an endemic equilibrium,

E∗∗
1 =

[
S∗∗
1 , S∗∗

2 , E∗∗
1 , E∗∗

2 , V ∗∗
1 , V ∗∗

2 , I∗∗a,1, I∗∗a,2, I∗∗s,1, I∗∗s,2, R∗∗
1 , R∗∗

2

]T
=
[
1.0663e− 01, 2.3693e− 02, 6.0569e− 04, 6.4518e− 06,

1.6194e− 02, 3.0613e− 03, 2.0238e− 03, 8.2520e− 05,

5.0185e− 03, 5.3556e− 05, 1.5170e− 02, 2.7128e− 03
]T

.

Figures 4 and 5 illustrate the stability of E∗∗
1 .
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Figure 4: Illustration of the stability of E∗∗
1 .

Figure 5: Illustrates the stability of E∗∗
1 .

By adjusting the key operational parameters to yield varying values of Rv

greater than 1, we have

Rv = [3.7816, 4.6628, 5.5440, 6.4251, 7.3063, 8.1875]
T
.

We observe in Figure 6, the endemic equilibrium point along with standard
deviations for each disease state,
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SD =
[
3.6400e− 02, 7.1634e− 03, 3.8114e− 05, 4.1860e− 07,

4.1299e− 03, 8.3947e− 04, 1.2731e− 04, 5.2295e− 06,

3.1569e− 04, 3.4790e− 06, 3.1924e− 03, 6.5984e− 04
]T

.

These standard deviation values for each disease state indicate that the data
points in a set are closely clustered around the mean, suggesting low vari-
ability.

Additionally, numerical simulations in Figure 6 show that the solutions
with different values of Rv converge to the same endemic equilibrium, where
the initial values are

S1 (0) = 7.1970e− 01, S2 (0) = 2.3990e− 01, E1 (0) = 8.2500e− 04,

E2 (0) = 2.7500e− 04, V1 (0) = 2.7975e− 02, V2 (0) = 9.3250e− 03,

Ia,1 (0) = 3.7500e− 04, Ia,2 (0) = 1.2500e− 04, Is,1 (0) = 3.7500e− 04,

Is,2 (0) = 1.2500e− 04, R1 (0) = 4.5000e− 04, R2 (0) = 1.5000e− 04.

Figure 6: Standard deviation values for each disease state for E∗∗
1 .
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Certainly, there is a possibility that the endemic equilibrium remains
stable given the specified parameters. This leads us to an intriguing question:
if the vaccination reproduction number Rv exceeds 1, then the model (3) with
migration allows for a locally asymptotically stable endemic equilibrium.

5.4 The effect of migration rate on the transmission of
COVID-19 in the two patches

For migration rate values ranging from 0 to 0.01, we observe the results in
Figure 7.

Figure 7: The migration rate effect on Rv.

The numerical simulations presented in Figure 7 underscore the endemic
nature of the disease. As the migration rate diminishes from the more popu-
lated patch 1 to the less populated patch 2, and concurrently rises from the
patch 2 to the patch 1, the vaccine reproduction number Rv demonstrates
a proportional increase. This observation validates the outcomes of the sen-
sitivity analysis performed on Rv. Theoretical insights, coupled with these
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numerical simulations, emphasize the intricate relationship between COVID-
19 prevalence across diverse patches and the corresponding migration rates.
These findings contribute to a comprehensive understanding of the dynamics,
suggesting that the prevalence is intricately tied to the patterns of migration
between distinct patches.

6 Conclusion

In conclusion, the findings from sensitivity analysis shed light on the nuanced
interplay between key parameters and the vaccination reproduction number
(Rv) in the context of COVID-19 dynamics. Notably, the transmission rate
of unconfined individuals (α2) and the transition rate from exposed to symp-
tomatic infected individuals (β2) emerge as pivotal factors influencing the
increase in Rv. Robust containment measures targeting these aspects, such
as stringent protocols, physical barriers, and adherence to social distancing
guidelines, are imperative for effective disease control. Furthermore, the vac-
cination rate (λ1) and the transition rate from exposed to asymptomatic
infected individuals (β1) closely follow in significance. A 10% increase or
decrease in α2 or β2 corresponds to substantial changes in Rv, emphasizing
the sensitivity of the system. Conversely, a 10% increase in λ1 or β1 leads to
a notable decrease in Rv. These results provide actionable insights into the
impact of parameter variations on the vaccination reproduction number.

For adequate operational data, the stability of DFE E∗
0 suggests the poten-

tial for disease eradication. However, elevating the values of sensitive param-
eters leads to an increase in Rv to 6.4251, surpassing the critical threshold
of 1. This instability of E∗

0 indicates the presence of an endemic equilib-
rium, as per Theorem 2. The theoretical framework aligns with numerical
simulations, as depicted in Figures 2 and 3, underscoring the importance of
both analytical and computational approaches in understanding the system
behavior. The low standard deviation values across different disease states
suggest that the data points are closely clustered around the mean, indicat-
ing limited variability. Additionally, numerical simulations in Figures 4 and
5 further affirm the endemic nature, demonstrating that varying values of
Rv > 1 converge to the same endemic equilibrium.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 2, 2024, pp 580–612



609 Modeling individual mobility’s impact on COVID-19 transmission

We conclude the simulation by highlighting the complex relationship be-
tween COVID-19 prevalence across distinct patches and the corresponding
migration rates, offering valuable insights into the dynamic nature of the
disease and guiding strategies for effective disease management.

References

[1] Ahmad, R.A., Imron, M.A., Ramadona, A.L., Lathifah, N., Azzahra, F.,
Widyastuti, K. and Fuad, A. Modeling social interaction and metapop-
ulation mobility of the COVID-19 pandemic in main cities of highly
populated Java Island, Indonesia: An agent-based modeling approach,
Front. Ecol. Evol. 10 (2023), 958651.

[2] Arino, J., Sun, C. and Yang, W. Revisiting a two-patch SIS model with
infection during transport, Math. Med. Biol. 33(1) (2015), 29–55.

[3] Arino, J. and Van Den Driessche, P. Disease spread in metapopulations,
Fields Inst. Commun. 48 (2006), 1–12.

[4] Baister, M., McTaggart, E., McMenemy, P., Megiddo, I. and
Kleczkowski, A. COVID-19 in Scottish care homes: A metapop-
ulation model of spread among residents and staff, medRxiv
2021.08.24.21262524.

[5] Bortolatto, R. A note on the Lienard-Chipart criterion and roots of some
families of polynomials, arXiv preprint arXiv:1407.4852 (2014).

[6] Boubekeur, M.A. and Belhamiti, O. Modeling the Impact of Obesity on
COVID-19: Evidence from Sensitivity Analysis, (2023), Submitted.

[7] Bouziane, M., Mezouaghi, A. and Belhamiti, O. analysis of the vac-
cination reproduction number and endemic equilibrium to control the
Covid-19 spread, Adv. Math. Sci. App. 32(2) (2023), 399–430.

[8] Castillo-Chavez, C. and Thieme, H. Autonomous epidemic models, O.
Arino, D. Axelrod, M. Kimmel, M. Langlais (Eds.), Mathematical Pop-
ulation Dynamics: Analysis of Heterogeneity, BU-1248-M (1994) 1–23.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 2, 2024, pp 580–612



Bouziane, Boubekeur, Keddar and Belhamiti 610

[9] Chen, T.M., Rui, J., Wang, Q.P., Zhao, Z.Y., Cui, J.A. and Yin, L.A.
Model for simulating the phase-based transmissibility of a novel coron-
avirus, Infect. Dis. Poverty 9(1) (2020), 1–8.

[10] Chitnis, N., Hyman, J.M. and Cushing, J.M. Determining important
parameters in the spread of malaria through the sensitivity analysis of a
mathematical model, Bull. Math. Biol. 70 (2008), 1272–1296.

[11] Daud, A.A.M. A note on Lienard-Chipart criteria and its application to
epidemic models, Mathematics and Statistics 9 (2021), 41–45.

[12] Faiçal, N., Ivan, A., Juan, N. and Delfim, T. Modeling of COVID-19
transmission dynamics with a case study of Wuhan, Chaos Solit. Fractals.
135 (2020), 109846.

[13] Hancean, M.G., Slavinec, M. and Perc, M. impact of human mobility
networks on the global spread of COVID-19, J. Complex Netw. 8(6)
(2020), 1–14.

[14] Humphries, R., Spillane, M., Mulchrone, K., Wieczorek, S., Riordain,
M. and Havel, P. A metapopulation network model for the spreading
of SARS CoV-2: Case study for Ireland, Infect. Dis. Model. 6 (2021),
420–437.

[15] Iyaniwura, S.A., Ringa, N., Adu, P.A., Mak, S., Janjua, N.Z., Irvine,
M.A. and Otterstatter, M. Understanding the impact of mobility on
COVID-19 spread: A hybrid gravity-metapopulation model of COVID-
19, PLoS Comput. Biol. 19(5) (2023), e1011123.

[16] Keddar, M.E.B. and Belhamiti O. A study of global dynamics and sensi-
tivity analysis of a discrete-time model of the COVID-19 epidemic, Ira-
nian Journal of Numerical Analysis and Optimization (2023), Accepted.
10.22067/IJNAO.2023.82954.1281

[17] Kim, J.H., SU, W. and Song, Y.J. On stability of a polynomial, J. Appl.
Math. Inform. 36 (2018), 231–236.

[18] Knobler, S., Mahmoud, A., Lemon, S. and Pray, L. The impact of glob-
alization on infectious disease emergence and control: Exploring the con-

Iran. J. Numer. Anal. Optim., Vol. 14, No. 2, 2024, pp 580–612



611 Modeling individual mobility’s impact on COVID-19 transmission

sequences and opportunities, Workshop Summary - Forum on Microbial
Threats, The National Academies Press, 2006.

[19] Lan Meng, L. and Zhu, W. SEIR epidemic model for COVID-19 in a
multipatch environment, discrete dynamics in nature society, Discrete
Dyn. Nature Soc. 2021 (2021), Article ID 5401253, 1–12.

[20] Martens, P. and Hall, L. Malaria on the move: human population move-
ment and malaria transmission, Emerg. Infect. Dis. 6 (2) (2000), 103–
109.

[21] McCarthy, C.V., O’Mara, O. and Van Leeuwen, E. The impact of
COVID-19 vaccination in prisons in England and Wales: a metapopu-
lation model, BMC Public Health, 22 (1003) (2022), 1–17.

[22] Perlman, S., Another decade, another Coronavirus, N. Engl. J. Med.
382(8) (2020), 760–762.

[23] Rabitz, H., Kramer, M. and Dacol, D. Sensitivity analysis in chemical
kinetics, Annu. Rev. Phys. Chem. 34 (1983), 419–461.

[24] Smith, H.L. and Waltman, P. The theory of the Chemostat, Cambridge
University, 1995.

[25] Van Den Driessche, P. Reproduction numbers of infectious disease mod-
els, Infect. Dis. Model. 2 (2017), 288–303.

[26] Van Den Driessche, P. and Watmough, J. Reproduction numbers and
sub-threshold endemic equilibria for compartmental models of disease
transmission, Math. Biosci. 180 (2002), 29–48.

[27] Van Den Driessche, P. and Watmough, J. Reproduction numbers and
sub-threshold endemic equilibria for compartmental models of disease
transmission, Math. Biosci 180 (2002), 29–48.

[28] World Health Organization (WHO). Coronavirus (COVID-19) Dash-
board; (accessed April 17, 2022).

[29] World Health Organization (WHO). Novel Coronavirus 2019-nCoV, sit-
uation report-1. (accessed May 10, 2021).

Iran. J. Numer. Anal. Optim., Vol. 14, No. 2, 2024, pp 580–612



Bouziane, Boubekeur, Keddar and Belhamiti 612

[30] Zhao, X. Systems in population biology, Springer, 2003.

[31] Zi, Z. Sensitivity analysis approaches applied to systems biology models,
IET Syst. Biol. 5 (2011), 336–346.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 2, 2024, pp 580–612


	Modeling individual mobility's impact on COVID-19 transmission: Insights from a two-patch SEIR-V approach
	M. Bouziane, M.A. Boubekeur, M.E.B. Keddar and O. Belhamiti

