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Solving linear optimal control
problems of the time-delayed systems
by Adomian decomposition method

S.M. Mirhosseini-Alizamini*

Abstract

We apply the Adomian decomposition method (ADM) to obtain a subop-
timal control for linear time-varying systems with multiple state and control
delays and with quadratic cost functional. In fact, the nonlinear two-point
boundary value problem, derived from Pontryagin’s maximum principle, is
solved by ADM. For the first time, we present here a convergence proof for
ADM. In order to use the proposed method, a control design algorithm with
low computational complexity is presented. Through the finite iterations of
algorithm, a suboptimal control law is obtained for the linear time-varying
multi-delay systems. Some illustrative examples are employed to demonstrate
the accuracy and efficiency of the proposed methods.

AMS(2010): 49N05; 93C05.
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1 Introduction

Optimal control of time-delay systems is one of the most challenging math-
ematical problems in control theory. Indeed, the presence of delay makes
analysis and control design much more complicated. Delays frequently oc-
cur in mechanics, physics, population dynamics, biological, chemical, elec-
tronic, and transformation systems; see [14]. The theory and the application
of optimal control for linear time-delay systems have been developed per-
fectly. However, as for nonlinear systems, synthesis problems that are solved
by classical control theory lead to difficult computations. It is well known
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that the nonlinear optimal control time-delay systems can be reduced to a
two-point boundary value problem (TPBVP) involving both delay and ad-
vance delay terms, implementing Pontryagin’s maximum principle (PMP);
see [15]. In general, this TPBVP cannot be solved exactly and most re-
searches have been devoted to finding an approximate solution, for non-
linear TPBVP. We briefly review some recent papers that are relevant to
the method developed in the current work for time-delay optimal control
problem. An averaging approximations for time-delay optimal control prob-
lems [5], the B-spline approximation scheme [8,24], the PMP [9], variational
iteration method (VIM) [25-28], a novel feedforward-feedback suboptimal
control of linear time-delay systems [13], Haar wavelets approach [29], hybrid
of block-pulse functions and orthonormal basis [7, 11,19, 22,30], composite
Chebyshev finite difference method [20], the Hamilton-Jacobi-Bellman equa-
tion [6], a delay-dependent stability of neutral systems [4], an interior-point
algorithm [34,35], and an embedding process that transfers the problem to a
new optimal measure problem [17].

The topic of the Adomian decomposition method (ADM) has been rapidly
growing in recent years. It was first proposed by Adomian [1,2]. In this
method, the solution of functional equations is considered as the sum of an
infinite series usually converging to the solution. A lot of research works
have been conducted recently in applying this method to a class of linear and
nonlinear partial differential equations; see [33]. The Adomian’s decompo-
sition has many advantages: It does not require any kind of discretization,
linearization, or perturbation of the variables and the equation, therefore it
does not need any modification of the actual model that could change the
solution; it is efficient on providing an approximate or even exact solution
in a closed form, to linear and nonlinear problems and provides a fast and
accurate convergent series, and therefore it is only necessary to calculate a
few terms of the series in order to obtain a reliable approximate solution; the
method depends only on the known function ug(t) and the algorithm is of
simple implementation. The method, has been widely applied to solve non-
linear problems, and different modifications are suggested to overcome the
demerits arising in the solution procedure [3,32].

This paper concerns with a class of nonlinear quadratic optimal control
problem with multi-delay systems. Applying the main ideas of the shooting
method to the basic and also an ADM. By applying the necessary optimality
conditions, we obtain iterative formulas for the ADM. By using the finite-step
iteration of algorithm, we obtain a suboptimal control law. The convergence
of the ADM is studied and for illustrating the effectiveness of these methods,
some test problems are investigated. Four illustrative examples are given to
demonstrate the simplicity and efficiency of the proposed method.

The structure of this paper is arranged as follows: Section 2 is devoted to
Pontryagin’s maximum principle used for solving linear time-varying multi-
delay system. Section 3 is dedicated to the proposed design approach to
solve a closed loop optimal control problem based on the ADM and conver-
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gence of the method is demonstrated. Section 4 is devoted to the suboptimal
control strategy and algorithm for the proposed method. In Section 5, the
numerical examples are simulated to show the reasonableness of our theory
and demonstrate the performance of our network. Finally, we end this paper
with conclusions in Section 6.

2 Problem statement and optimality conditions

Consider the following linear time-varying multi-delay system:

z(t) = ¢(t),  to— T <t <o, (1)
U(t) = ¢(t)7 tO — Tu < t < th

where z(t) € R™ and u(t) € R™, are the state and control vectors, respec-
tively; A(t), Ai(t), B(t), and By(t) are real, piecewise continuous matrices
of appropriate dimensions defined on the appropriate intervals; ¢(t) and ¥(t)
are specified initial functions; 7, and 7, are constant positive scalars. Here, it
is assumed that system (1) is controllable and that 7, < 7. Find the control
signal u(¢) that minimizes the cost functional:

7=y 0@t + 5 [ TR0 + u WROuO) @ (2

where, the matrix Q5 € R™™"™ is symmetric positive semidefinite, Q(t) €
R™™ and R(t) € R™*™ are chosen to be positive semidefinite and positive
definite matrices, respectively.

The Hamiltonian function for the problem is

Ml u A t) = 52" (R + Ju” (OREu(?) 3
FATOUAW() + A1l -~ 72) + BOu() + Byu(t )

where A(¢) € R™ is the vector of the Lagrange multiplier. According to the
necessary conditions for optimality, we can obtain the following nonlinear
TPBVP [15,31]:

At)x(t) + A1 (D)z(t — 72) — (S1(t) + Sa2(t))A(t)
—Sg(t))\(t + Tu) — S4(t)>\(t — Tu), to <t < tf — Tu,
AWD)2() + A (D2t — 72) — Sy (OA(E)

=S4t — 1), tr — 7, ST < Uy

i(t) = (4)

and
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. —Q)z(t) — AT(HA()
At) = ATt + 1) ANt +70), to <t <tp—Ts, (5)
—Q)z(t) = AT(A(t), ty —7p <t <tf

with initial conditions

where
Si(t) = B(t)R™'(t) BT (1),
Sa(t) = Bi(t)R™(t — 7)) By (1),
S3(t) = B()R™ () B (t + ),
S4(t) :Bl( )R 1(t_Tu)BT(t_Tu)a

x(t — 7) is the time-delay term and A(t + 7) is the time-advance term. Also,
the optimal control law is obtained by

—R1 ()BT (t)A(t)
uw (t) = —RYO)BY (t+ 1) ANt + 7)), to <t <tp—Tu, (7)
—R7Y )BT ()A(t), ty— Ty <t <ty

The optimal can be implemented as a closed loop optimal if the co-state
vector obtained consists of linear function of the states and a nonlinear term,
which is the adjoint vector sequence, in the form

A(t) = P(t)z(t) + 9(t), Alty) = Qr(ty), (8)

where P(t) € R™*" is an unknown positive-semidefinite function matrix and
g(t) € R™ is the adjoint vector.

Substituting (8) into equation (4) yields

&(t) = [A(t) = S1(O) P(1)] x(t) — S1(t)g(t) + A (t)z(t — 72) + F(1),
= (), to—T<t<t, (9)

=S (t) [P(t)x(t) + g(t)] — S3(t) [P(t + Tu)x(t + Tu) + g(t + 74)]
F(t) = =Sa(t) [P(t — 1)z (t — ) + g(t — T)], to <t <ty — Tu,
—S4(t) [P(t —mu)x(t —1u) + 9t — Tu)], ty — 7w <<ty
(10)
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Computing the derivatives to the both sides with respect to ¢ of equation (8),
we have

AE) = P)(t) + PO + (), to <t <ty
= [P() + P@)A®) - POSI(0)P)] 2(t) = P@)S1(1)g(1)
P()Ar()a(t = 72) + POF(t) + g(2). (1)

[E——1

Putting (8) into equation (5), we get

. —Q)x(t) — AT(t)P(t)x(t) — AT(t)g(t)
At) = AT (t + ) [Pt + To)x(t +70) + gt + )| to <t <ty — 70, (12)
—Q(t)a(t) — AT (1) P(t)a(t) — AT (B)g(t), bty — 70 <<ty

Thus, from (11) and (12), we can obtain the following Riccati matrix
differential equation:

— P(t) = P(t)A(t) + AT (t)P(t) — P(t)S1(t)P(t) + Q(¢), P(ty) =Qy, (13)
and the following adjoint vector differential equation:

g(t) = = [At) = SLOPH)]" 9(t) =Pt} Ar(8)a(t—72)+G (1), g(ts) =0, (14)

where

— AT (t+ 72) [P(t+ 7o)a(t + 72) + g(t + )] + P(1)S2(t) [P(D)z(t) + g(1)]
—P(t)Ss(t) [P(t + u)o(t + Tu) + g(t + 7u)]

G(t): P() ()[P(t_TU) (t_Tu)"'_g(t_Tu)}, t0<t<tf_7—ar),
P(t)S2(t) [P(8)2(t) + g(1)] + P()S3(8) [P(t + Tu)a(t + 7u) + g(t + 7u)]
P(t)S4(t) [P(t — Tw)z(t — Tu) + g(t — Tu)], ty — 7o <L <ty—Tu,
P(t)Sa(t) [P(t — Tw)z(t — Tu) + g(t — Tu)], tp —Tu <t <ty
(15)
Substituting (8) into (7) yields
—RTI)BT (O)[P()x(t) + 9(t)]
uw (t) = —R7Y()BY (t 4 ) [P(t + 7))zt + 7o) + gt + 70)], to <t < tp—
T

“RIYOBIWIPOa(t) + 9] by — 7 <E< Ly,
For the sake of simplicity, let us define the right hand sides of (9) and
(14) as follows:
itz g) = [A@) = S1(O)P(6)] 2(t) = S1(t)g(t) + Ar(H)x(t —72) + F(t), (16)

falt,z,9) == — [A(t) = Si(O)PO]" g(t) — P()Ar(Da(t — 72) + G(t), (17)

U
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where F(t) and G(t) are relations (10) and (15), respectively.
Thus the TPBVP in (9) and (14) changes to

SC(t) - fl(taxag)a
g(t) = fQ(tvxag)v (18)
x(to) = zo, g(ty) =0.

Note that, relations (18) form a nonlinear TPBVP with time-varying coef-
ficient involving both delay and advance terms. The exact solution of this
problem is, in general, extremely difficult, if not impossible. In the next sec-
tion, we propose another analytic approximate method based on ADM, for
this purpose.

3 Adomian decomposition method

In order to illustrate the basic concepts of the ADM, we consider the following
equation:

L(u) + R(u) + N (u) = h(t), (19)

where u(t) is an unknown function, £ is a linear operator, that is assumed
to be invertible, R is another linear differential operator, N'(u) represents
the nonlinear terms, and h is a continuous function. Applying the inverse
operator £~ to both sides of (19) and using the given conditions, we obtain

u=f—LT(Rw) = LT N (), (20)

where the function f(t) represents the terms arising from integrating the
function h(t) and using the initial condition.

The standard Adomian method defines the solution u(t) of (19) as a series

ut) =Y un(t), (21)
n=0

where the components u,, (t) are usually determined recurrently. Substituting
this infinite series into (20) leads to

D ounlt) = f(t) - L7 (R(Z un(t))> - L <N(Z un(t))> - (22
n=0 n=0

n=0

The nonlinear term in (21) can be computed by substituting

N(u) =Y An(uo,u, ... un), (23)
n=0
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where A, is the Adomian polynomials, which can be determined by

1 on e A
An:maququukl o123, (24)
q=

n=0

Now, substituting (23) into (22) leads to

S un(t) = f(t) - £ (R(Z un(t))> — Lt <Z An> .
n=0 n=0 n=0
Each term of series (21) is given by the recurrent relation

Uo = f(t)
Up = =L R(up_1)) — L7HA,_1), n>1.

Now, we briefly describe how to apply the ADM to systems (18). For this
purpose, we use a shooting method like procedure combine with the ADM
for solving TPBVP in (18).

Remark. It is necessary to transform the boundary value problem into
a initial value problem. Therefore, we must find a € R such that the condi-

tion g(ty) = 0 can be replaced by the condition g(to) = . Thus we rewrite
the TPBVP (18) as follows:

g(t :fQ(tvxag)? (25)
where a € R is an unknown parameter. This parameter will be identified
after sufficient iterations of ADM.

Based on the ADM, we seek the solution {z, g} as follows:

N N
= lim E T = lim E
N—o00 w g N—o00 g
n=0 n=0
and hence the recursive relationship is found as

Tn+1 = E_lAl,na n Z 07
gTL-‘rl - [-:_1A2,7‘L7 n 2 07
z(to) = wo, g(to) = a,

with inverse £L71(.) = fg(.)dt and
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t $n7gn ZAkna k:1a2a

where Ay, ,, are the Adomian polynomials and are calculated by

1o — i —
Ak’nzmﬁfk (t,nzoq xk,;q gk> , n=0,1,2,.... (26)

q=0

Take the first n + 1 terms of the nth approximation of x and g as follows:

{‘I)n =z + 2y L7 (Avio), (27)

v, = go + Z?:l ‘c_l(AQ,i—l)-

Find the sequences ®,, = xg + --- + x,, and ¥,, = gg + - - - + g, such that

(28)

q)n =+ ‘C_l(fl(t7 q)n—la \I/n—l))a n > 17
Uy =go+ L (folt,®n1,¥0 1)), n>1,

where z¢(t) = z(to) = zo, go(t) = g(to) =

Theorem 1. Assume that {3 _,zk(t)} and {3} _, gx(t)} are the solution
sequences produced by ADM formula (28), which converge, respectively, to
Z(t,«) and g(t,a), as n — oco. Then Z(t,a),g(t,a) are the exact solutions
of (25). Accordingly, T(t,a),qg(t,@) are the exact solutions of (18) when @
is the real root of g(ty, ) = 0.

Proof. Let consider TPBVP (25) as follows:

x(t) = z(to) + L7 f1(t, z,9)],
g9(t) = g(to) + L7[f (tmg)]
z(to) = o, g(to) =

where £ = %() and £L71 = ft -)dt. We have

t
ZEn(t) == / [Al,n—l(xmxl, 3 Tp—1,90,91," 7971—1)] dS, n Z ]-a (29)

to
¢
gn(t) =/ [A2 n—1(z0, 21, -+ ,Tn-1,90,91, " ,gn—1)]ds, n>1, (30)
to
xo(t) = z(to) = xo, go(t) = g(to) = a.

Taking limits of both sides of (29) and (30) as n — oo implies
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t n
nh_{gozxkr<t) - /tO |‘nh_>ngo];1Al,k—l(x07xla 3 Tk—-1,90,91, ¢ 7gk—1)] d87

t n
nli_{lgozgk(t) = /to [nlgrgo];x‘lzkﬂfo,xh“'  Th—1,90591," 791@1)] ds.

#(t,a) = / [Fi(s, (5, @), 55, 0)))ds,

to

§(taa)=/ [f2(s,Z(s, ), q(s, a))]ds.

to

Differentiating both sides with respect to t yields

Moreover, if t = tg, then from (29) and (30), 2, (t0) = 0, gn(to) = 0 for every
n > 1. Thus

n n

> aklto) = zolto) = w0, Y grlto) = golto) = a,

k=0 k=0

or equivalently, Z(to, @) = xo, g(to,a) = «. Hence, Z(t,«) and g(t, o) are
the exact solutions of (25). In addition, they are the exact solutions of (18),
only if the condition g(ts) = 0 is satisfied. So, it is straightforward to choose
the unknown parameter o € R™ such that g(ty,«) = 0. Denoting this real
root of g(tf, ) = 0 by @ completes the proof. O

4 Suboptimal control design strategy

Consider the linear time-varying multi-delay system (1) with cost functional
(2). Then, the Nth order suboptimal trajectory-control pair is obtained as
follows:

TN (t) - Zi\/vz() Lk (t)a
{QN(t) = k(1) (31)

and
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- 1(lt)BTt)[ Jon (t) + gn (1))

()P

—RY )BT (t + ) [P(t + T)an (t + 7)
]
(

un(t) = (32)

—|—gN(t—|—7'), o <t <ty—ry,

—RYO)BT@)[P(H)an () +gn (O], tr— T <<

The integer N in (31) and (32) is generally determined according to a concrete
control precision. Then, the following cost functional can be calculated:

t
In = gekenQantn) + 5 [T @k 0+ FOROuN®) . (@)

The Nth order in (31) and (32) has the desirable accuracy, if for given
positive constant € > 0, the following condition holds jointly:

‘JN —JN-a

34
Ty <e, (34)

If the tolerance error bound is chosen small enough, the Nth order suboptimal
control law will be very close to u*(t), and thus, the value of cost functional
in (33) and its optimal value J* will be almost identical.

Algorithm: Suboptimal control law of system (1):

Step 1: Obtain P(t) from (13). Let xq(t) = z(to) = &(t), 9o(t) = g(to)
and k = 1.

Step 2: Compute zx(t) and gx(t) from (29) and (30).

Step 3: Let N = k and obtain zx(t) and uy(¢) from (31) and (32).

IJn — JIn-1
JIN
and output uy(t), go to step 5; else, replace k by k + 1 and go to step 2.

Step 4: Calculate Jy according to (33). If ' < €, then stop

Step 5: Stop the algorithm; zn(¢) and uy(¢) are accurate enough.

5 Numerical examples

In this section, the proposed method is illustrated by some test problems.
The calculations are performed by using MATLAB software.

Example 1. Consider the following linear time-varying multi-delay systems
[20]:
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. 1 3
(t) = x(t — 5) +te(t — ) + u(l), 0<t<1, (35)
z(t) =t+1, -3<t<0,
with the cost functional
3, 1,
J=cax*(1)+ 5 [ w(t)dt (36)
2 2 o
The exact solutions of z(t) and u(t) are given by
239075,3 | 3129081,2 _ 1178769 1
1203320 T Tesisast ooz L T 1y 0St<y
1,3 | 1119201,2 _ 680513, , 7039811 1 1
30" + Sao66a U — To0332¢ T 73367047 1 SU<3g
— J 239075 44 | 3375959,3 _ 20932555,2 , 1156163 56216927 1 3
(t) = 4 Tosi32s! T Soasosd! — isasocod! + Tovorsal T igiaorass:z S ¢ < i
47815 45 | 2306773 44 _ 24618713 | 14865377,2 | 17419475,
420332 10087968 2521992 53802496 26901248
2652913 3
+ 11673108 1Sty
and
296893,2 | 2078251, _ 1484465 1
1203320 T Saoeea t — euisoz O St <7,
_ ) 296893, _ 890679 1 1
u(t) = 4 Storee? — 120332 § SU<3g
296893 1
"~ 2101667 s St L

Furthermore, the exact value of the cost functional J is given by J =
1.70648554.

In order to obtain an accurate enough suboptimal control law, we applied the
proposed algorithm with the tolerance bounds € = 2 x 1076. In this case, con-

J=Jo| gz 1076 <

vergence is achieved after 10 iterations, that is, 7
10

2 x 1076,

To analysis the accuracy and effectiveness of the ADM and VIM, the rel-
ative error of objective value is summarized in Table 1, for several iterations.
Accordingly, results show that in N = 10, ADM converges to the exact solu-
tion. The optimal value of the cost functional is obtained as Jig = 1.706485.

We compared the results obtained from ADM and VIM with exact solu-
tion. Figure 1 shows the simulation curves of u(t) at iteration time 10 and
the corresponding state trajectory x(t). Results of both methods are very
close to exact solution as shown by Figure 1. This confirms that the proposed
method yields excellent results.

Example 2. Consider the following linear time-varying multi-delay systems
[7,16,21,36]:
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Table 1: Simulation results of Example 1 at different iteration times.

method ADM ADM VIM VIM
JN—JN71 JN_JNfl
N J _ J _
N In N TN
6 1.682312 — 1.678321 —
7 1.691205 | 5.255 x 1072 | 1.685342 | 4.165 x 102
8 1.703156 | 7.016 x 10~2 | 1.692335 | 4.132 x 10~3
9 1.706484 | 1.961 x 10~2 | 1.697346 | 2.952 x 103
10 1.706485 | 1.757 x 1076 | 1.697349 | 1.767 x 1076
1
3 ADM
(o] VIiM
0.9 Exact | 7
0.8 b
Zo7t 1 e
0.6 b
0.5 b
=
0.4 2.6
o] 0.5 1 o] 0.5 1
t t

1 2

i(t) = —x(t) + x(t — §> +u(t) — zu(t — g), 0<t<,

1
a(t) =1, _§ <t <0, (37)
u(t)zov _§<t<07

with the cost functional
1t 2 1,
J== () + -u(t) ) (¢)dt. (38)
2 J, 2

According to system (1), we have A = —1,4; = B=1,B; = —%,Q =
LR=1.

In order to obtain an accurate enough suboptimal control law, we applied
the proposed algorithm with the tolerance bounds € = 8.1 x 10~7. Simulation
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results at different iteration times are summarized in Table 2. From Table
2, it is observed that convergence is achieved after 10 iterations, that is,
“]“J_Jg =8.040 x 1077 < 8.1 x 1077

J10

In Table 3, the minimums of J using the hybrid of block pulse and Leg-
endre polynomials [21], hybrid of general block pulse and Legendre polyno-
mials [36], orthogonal basis [16], hybrid of block pulse and orthogonal Taylor
series [7], and present two methods are listed. Also the suboptimal control
and state of the proposed ADM and VIM are demonstrated in Figure 2.

Table 2: Simulation results of Example 2 at different iteration times

method ADM ADM VIM VIM

IN —JINn—1 JIN —JINn—1
N Jn 5 JIn B
6 0.36430512 — 0.35935108 —
7 0.36512980 | 2.258 x 1072 | 0.36431299 | 1.382 x 102
8 0.37311212 | 2.139 x 1072 | 0.37511283 | 2.879 x 10~2
9 0.37311294 | 2.519 x 1076 | 0.37311210 | 5.362 x 10~3
10 0.37311291 | 8.040 x 10~7 | 0.37311310 | 2.680 x 10~

Table 3: The cost functional values for Example 2

Method Cost functional values

Marzban and Razzaghi [21] 0.37311241
Wang [36] 0.37312682

Kellat [16] 0.3731123
Dadkhah and Farahi [7] 0.373112935

Proposed method (N = 10)

ADM 0.37311291

VIM 0.37311310

Example 3. Consider the following linear time-varying multi-delay systems
[12,18,23]:

&1(t) = xz2(t) + 21 (¢ — 1), t>0,

Eo(t) = taq(t) + 2z (t — 1) + 22(t — 1) + u(t) — u(t — 0.5), (39)
z1(t) = x2(t) = 1, -1<t<0,

u(t) =5(t+1), —0.5 <t <0,

with the cost functional
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Figure 2: The suboptimal control and state, when N = 10 for Example 2.

u?(t)
(t+2)

Jdt. (40)

3
J= %x?(:ﬂ) +23(3) + % /0 [22(8) + 221 ()2 (t) + 25(1) +

According to system (1), we have

(1) am () o) me(h)

and from (2), we get

Qf:<ég)» Qz(ﬁ) R=1/(t+2).

In order to obtain an accurate enough suboptimal control law, we applied
the proposed algorithm with the tolerance bounds ¢ = 2.3 x 10~%. Simu-
lation results at different iteration times are summarized in Table 4. From
Table 4, it is observed that convergence is achieved after 12 iterations, that
Ji2 — Jin
J12
between the value of J obtained by the present method with N = 12, to-
gether with the value of J reported in the literature: Malek-Zavarei [18], by
employing an iterative approach for determining the suboptimal control of
the mentioned problem; the method of Hwang and Chen [12], by employing
Legendre polynomials of order 20; and the method of Marzban and Pirmora-
dian [23], by employing a direct approach based on a hybrid of block-pulse
functions and Lagrange interpolating polynomials.

is, =2.270 x 1076 < 2.3 x 1076, Table 5, a comparison is made
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Table 4: Simulation results of Example 3 at different iteration times

method ADM ADM VIM VIM
JN—JN71 JN_JNfl
N J _ J _
N Ty N Ty
8 23.21056 22.17650

9 23.05198 | 6.879 x 1072 | 22.15431 | 1.001 x 1072
10 22.02108 | 1.681 x 1073 | 22.01430 | 5.903 x 103
11 22.02230 | 5.539 x 107> | 22.02143 | 3.237 x 10~*
12 22.02235 | 2.270 x 107° | 22.02115 | 1.271 x 10~°

Table 5: The cost functional values for Example 3

Method Cost functional values
Malek-Zavarei [18] 24.0200500
Hwang and Chen [12] 22.0212
Marzban and Pirmoradian [23] 22.0230201080
Proposed method (N = 12)
ADM 22.02235
VIM 22.02115

Example 4. We now consider the following nonlinear time-varying multi-
delay systems:

z(t) =x(t — Da(t — 2)u(t — 2), 0<t<3,
a(t)=1, —2<t<0, (41)
u(t) =0, —-2<t<0,
with the cost functional
3
J= / (22(t) + u2(8))dt. (42)
0

This optimal control is adopted from [10,34,35]. In order to obtain an accu-
rate enough suboptimal control law, we applied the proposed algorithm with
the tolerance bounds € = 1.2 x 1075, Table 6, a comparison is made between
the value of J obtained by the present method with N = 13, together with
the value of J reported in the literature. The approximate solution of x(t)
and u(t), obtained by the proposed method with N = 13 and the results
of PMP method generated by Gollmann et al. [10] are plotted in Figure 3.
Therefore, in view of the results, the present method is quite effective.
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Table 6: The cost functional values for Example 4

Method Cost functional values
Wachter et al. [35](600 grid points) 2.763044
Vanderbei [34](600 grid points) 2.763044
Gollmann et al. [10](600 grid points) 2.761594156
Proposed method (N = 13)
ADM 2.761591012
VIM 2.761592238

T T ™
vvvvvvvvv
¥  ADM
o viM | ]
PMP
2 3

t

Figure 3: The suboptimal control and state, when N = 13 for Example 4.

6 Conclusion

In this work, the ADM has been successfully applied to find the solution of
suboptimal control for linear time-varying systems with multiple state and
control delays, and quadratic cost functional is presented. By using the ADM
and VIM with the finite-step iteration of algorithm, we obtained a suboptimal
control law. Some numerical examples have been provided to demonstrate
the validity and applicability of the proposed method. The method is general
and yields very accurate results.



Solving linear optimal control problems of the time-delayed systems by ... 181

Acknowledgements

Author is grateful to the anonymous referees and the editors for their con-
structive comments.

References

1. Adomian, G. Nonlinear stochastic systems theory and applications to
physics, Kluwer Academic Publishers, 1989, Boston.

2. Adomian, G. A review of the decomposition method in applied mathemat-
ics, J. Math. Anal. Appl. 135(2) (1989), 501-544.

3. Alizadeh, A. and Effati, S. Numerical schemes for fractional optimal con-
trol problems, J. Dyn. Sys. Meas. Contr. 4 (2017), 1-14.

4. Balasubramaniam, P., Krishnasamy, R. and Rakkiyappan, R. Delay-
dependent stability of neutral systems with time-varying delays using delay-
decomposition approach, Appl. Math. Model. 36 (2012), 2253-2261.

5. Banks, H.T. and Burns, J.A. Hereditary control problem: Numerical meth-
ods based on averaging approximations, SIAM J. Contr. Optim. 16(2)
(1978), 169-208.

6. Basin, M. and Rodriguez-Gonzalez, J. Optimal control of linear systems
with multiple time delays in control input, IEEE Trans. Automat. Contr.
51(1) (2006), 91-97.

7. Dadkhah, M. and Farahi, M.H. Optimal control of time delay systems via
hybrid of block-pulse functions and orthogonal Taylor series, Int. J. Appl.
Comput. Math. 2(1) (2016), 137-152.

8. Edrisi-Tabriz, Y., Lakestani, M. and Heydari, A. Two numerical methods
for nonlinear constrained quadratic optimal control problems using linear
B-spline functions, Iranian J. Numer. Anal. Optim. 6(2) (2016), 17-37.

9. Gollmann, L., Kern, D. and Maurer, H. Optimal control problems with
delays in state and control variables subject to mixzed control state con-
straints, Optim. Contr. Appl. Meth. 30 (2009), 341-365.

10. Gollmann, L. and Maurer, H. Theory and applications of optimal control
problems with mul-tiple time delays, J. Ind. Manag. Optim. 10(2) (2014),
413-441.

11. Haddadi, N., Ordokhani, Y. and Razzaghi, M. Optimal control of delay
systems by using a hybrid functions approximation, J. Optim. Theor. Appl.
153 (2012), 338-356.



182 S.M. Mirhosseini-Alizamini

12. Hwang, G. and Chen, M.Y. Suboptimal control of linear time-varying
multi-delay systems via shifted Legendre polynomials, Int. J. Syst. Sci.
16(12) (1985), 1517-1537.

13. Jajarmi, A., Dehghan-Nayyeri, M. and Saberi-Nik, H. A mnowvel
feedforward-feedback suboptimal control of linear time-delay systems via
shifted Legendre polynomials, J. Complex. 35 (2016), 46-62.

14. Jamshidi, M. and Wang, C.M. A computational algorithm for large-scale
nonlinear time-delays systems, IEEE Trans. Syst. Man. Cyber. SMC. 14
(1984), 2-9.

15. Kharatishvili, G.L. The mazimum principle in the theory of optimal pro-
cess with time-lags, Doklady Akademii Nauk SSSR. 136 (1961), 39-42.

16. Khellat, F. and Vasegh, N. Suboptimal control of linear systems with
delays in state and input by orthogonal basis, Int. J. Comput. Math. 88(4)
(2011), 781-794.

17. Koshkouei, A.J., Farahi, M.H. and Burnham, K.J. An almost optimal
control design method for nonlinear time-delay systems, Int. J. Contr.
85(2) (2012), 147-158.

18. Malek-Zavarei, M. Near-optimum design of nonstationary linear systems
with state and control delays, J. Optim. Theor. Appl. 30 (1980), 73-88.

19. Marzban, H.R. Optimal control of linear multi-delay systems based on
a multi-interval decomposition scheme, Optim. Contr. Appl. Meth. 37(1)
(2016), 190-211.

20. Marzban, H.R. and Hoseini, S.M. An efficient discretization scheme for
solving nonlinear optimal control problems with multiple time delays, Op-
tim. Contr. Appl. Meth. 37(4) (2016), 682-707.

21. Marzban, H.R. and Razzaghi, M. Optimal control of linear delay systems
via hybrid of block-pulse and Legendre polynomials, J. Franklin Inst. 341
(2004), 279-293.

22. Marzban, H.R. and Pirmoradian, H. A direct approach for the solution of
nonlinear optimal control problems with multiple delays subject to mixed
state-control constraints , Appl. Math. Model. 53 (2018), 189-213.

23. Marzban, H.R. and Pirmoradian, H. A novel approach for the numer-
ical investigation of optimal control problems containing multiple delays,
Optim. Contr. Appl. Meth. 39(1) (2018), 302-325.

24. Mehne, H.H., and Farahi, M.H. Transformation to a fired domian in LP
modelling for a class of optimal shape design problems, Iranian J. Numer.
Anal. Optim. 9(1) (2019), 1-16.



Solving linear optimal control problems of the time-delayed systems by ... 183

25. Mirhosseini-Alizamini, S.M. Numerical solution of the controlled har-
monic oscillator by homotopy perturbation method, Contr. Optim. Appl
Math. 2(1) (2017), 77-91.

26. Mirhosseini-Alizamini, S.M. and Effati, S. An iterative method for sub-
optimal control of a class of nonlinear time-delayed systems, Int. J. Contr.
92 (12) (2019), 2885-2869.

27. Mirhosseini-Alizamini, S.M., Effati, S. and Heydari, A. An iterative
method for suboptimal control of linear time-delayed systems, Syst. Contr.
Lett. 82 (2015), 40-50.

28. Mirhosseini-Alizamini, S.M., Effati, S. and Heydari, A. Solution of lin-
ear time-varying multi-delay systems via variational iteration method, J.

Math. Comput. Sci. 16 (2016), 282-297.

29. Nazemi, A. and Mansoori, M. Solving optimal control problems of the
time-delayed systems by Haar wavelet, J. Vib. Contr. 22(11) (2014), 2657
2670.

30. Nazemi, A. and Shabani, M.M. Numerical solution of the time-delayed
optimal control problems with hybrid functions, IMA J. Math. Contr. In-
form. 32(3) (2015), 623-638.

31. Richard, J.P. Time-delay systems: An overview of some recent advances
and open problems, Automatica, 39 (2003), 1667-1694.

32. Saberi Nik, H., Rebelo, P. and Zahedi, S. Solution of infinite horizon
nonlinear optimal control problems by piecewise Adomian decomposition
method, Math. Model. Anal. 18(4) (2013), 543-560.

33. Shehata, M.M. A study of some nonlinear partial differential equations
by using Adomian decomposition method and variational iteration method,
Am. J. Comput. Math. 5 (2015), 195-203.

34. Vanderbei, R.J. and Shanno, D.F. An interior-point algorithm for non-
convex nonlinear programming, Comput. Optim. Appl. 13 (1999), 231-252.

35. Wachter, A. and Biegler, L.T. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming, Math.
Program. 106 (2006), 25-57.

36. Wang, X.T. Numerical solutions of optimal control for linear time-
varying systems with delays via hybrid functions, J. Franklin Inst. 344
(2007), 941-953.





