
G
al
le
y
P
ro
of

Iranian Journal of Numerical Analysis and Optimization

Vol. 9, No. 2, (2019), pp 103–121
DOI:10.22067/ijnao.v9i2.70045
————————————————————————————————————
Research Article

Capturing outlines of generic shapes
with cubic Bézier curves using the

Nelder–Mead simplex method

A. Ebrahimi, G. B. Loghmani∗ and M. Sarfraz

Abstract

We design a fast technique for fitting cubic Bézier curves to the boundary
of 2D shapes. The technique is implemented by means of the Nelder–Mead
simplex procedure to optimize the control points. The natural attributes

of the Bézier curve are utilized to discover the initial vertex points of the
Nelder–Mead procedure. The proposed technique is faster than traditional
methods and helps to obtain a better fit with a desirable precision. The
comparative analysis of our results describes that the introduced approach

has a high compression ratio and a low fitting error.

AMS(2010): 65D17; 65D10.

Keywords: Interpolation; Splines; Curve fitting; Nelder–Mead simplex method;
Computer aided design; Computer graphics.

1 Introduction

Capturing the outlines of 2D objects is a substantial topic in computer aided
geometric designs (CAGD), computer graphics, as well as vision and imaging;
see [1, 2, 6, 7, 9–12, 15, 20–25, 32, 38, 39]. Curve fitting with Bézier curves is a
traditional problem in this process. The goal of a curve fitting method is to

∗Corresponding author
Received 8 January 2018; revised 12 January 2019; accepted 8 March 2019
Alireza Ebrahimi

Computer Geometry and Dynamical Systems Laboratory, Faculty of Mathematical Sci-
ences, Yazd University,Yazd, Iran. e-mail: a.ebrahimi@stu.yazd.ac.ir

Ghasem Barid Loghmani

Computer Geometry and Dynamical Systems Laboratory, Faculty of Mathematical Sci-
ences, Yazd University,Yazd, Iran. e-mail: loghmani@yazd.ac.ir

Muhammad Sarfraz

Department of Information Science, College of Computing Sciences & Engineering, Kuwait
University, Kuwait. e-mail: prof.m.sarfraz@gmail.com, muhammad.sarfraz@ku.edu.kw

103



G
al
le
y
P
ro
of

104 A. Ebrahimi, G. B. Loghmani and M. Sarfraz

detect a collection of the control points that can precisely indicate the given
target shape.

In the literature, many methods have been suggested to represent out-
line objects [3, 11, 21, 29, 34]. A vast majority of these methods pertain to
an optimization problem that finds an appropriate curve for the data gen-
erated by the outlines of 2D shapes. Most common algorithms for solving
this model are not suitable optimization algorithms. Since they involve com-
plex computations, they cannot be used for real time applications. Itoh and
Ohno [11] exerted the least square fitting to approximate cubic Bézier curves
without fixing the end points of the curves. Plass and Stone [21] proposed
an iterative procedure for fitting a parametric piecewise cubic polynomial
curve with an selective endpoint and tangent vector specifications. Srafraz
and Khan [28] employed the least square method to certify an appropriate fit.
Their method contains several phases, such as extraction of boundaries, ex-
ploration corner points and break points, and fitting curves. In another study,
the same authors added reparameterization steps to ameliorate the efficiency
of the fit [29]. Sarfraz and Razzak [34] employed a generalized Hermite cubic
spline to capture the outline of digital character images using characteristic
points and the least squares method. The enhanced Bézier curve scheme pro-
posed by Sohel et al. [36] reduces the distance among the Bézier curve and
its control polygon without extra computational complexity. An object cod-
ing technique using Bézier curves was introduced by Masood and Haq [16].
They determined the control points by searching along the endpoint tangents.
Sarfraz and Masood [30] determined the appropriate position of the control
points by using the natural attributes of cubic Bézier curves. Masood and
Sarfraz [18] presented an outline capturing scheme using Bézier cubic approx-
imation. Their method operates in two phases to find intermediate control
points. In Phase 1, the location of the detected control points gets closer
to that of the original control points. Phase 2 is exerted to hit the target
location very exactly. Masood and Sarfraz [17] used the properties of cubic
Bézier curves and analysed the control points spread (CPspread) to subdi-
vide complex segments into two or more segments. Some other techniques
based on the search algorithm include evolutionary algorithm [35], simulated
annealing approach [26,27], genetic algorithm [32,33], and wavelets [37].

In the above mentioned methods, the control points are specified by the
least square algorithm or using the properties of cubic Bézier curves. These
processes are computationally expensive and not appropriate for practical
applications. Our contribution in this study is to introduce a scheme to avoid
these time consuming operations and to guarantee a desirable equivalence
between compression ratios and fitting errors. We perform the Nelder–Mead
algorithm to find the intermediate control points of the cubic Bézier curve.
The initial situation of the control points is specified using extracting some
effective virtues of the Bézier curve.

The rest of the paper is arranged as follows. Section 2 reviews the seg-
mentation of an outline by corner detection. Section 3 introduces the Nelder–



G
al
le
y
P
ro
of

Capturing outlines of generic shapes with cubic Bézier curves ... 105

Mead algorithm. The process of determining the control points for the cubic
Bézier curve approximation using the Nelder–Mead simplex method is de-
scribed in section 4. Section 5 illustrates the experimental observations and
compares them with those of other methods. Finally, the paper is closed up
with a conclusion in Section 6.

2 Outline segmentation

Outline segmentation is used to divide the shape outline into small part and
simplify the curve fitting procedure. We use the corner points to partition
the outline into disparate segments from the natural break points. Authors
have suggested various corner detection algorithms in the literatures [3,4,31].
These algorithms do curvature analysis with numerical techniques. In this
paper, the algorithm designed by Sarfraz et al. [31] is used for the corner
detection, because this algorithm is accurate, effective, and robust to noise.
The method is concisely explained in this section (readers are referred to [31]
for details). The algorithm detects corner points in two steps. Candidate
corner points are discovered from the outline data points in the first step. If
all the boundary points are Qi, 1 ≤ i ≤ n, then the boundary point Qk can
be given as

if (i+ L) ≤ n,
then Qk = Qi+L,
else Qk = Q(i+L)−n,

where L represents the length parameter and preserves of the shape scaling
and resolution. The default value of L is 14. The perpendicular distance dj
from point Qj(x, y) to the direct line joining the points Qi(x, y) and Qk(x, y),
can be given as follows:

if mx = 0,
then dj = |Qj,x −Qi,x|,

else dj =
|Qj,y −mQj,x +mQi,x −Qi,y|√

m2 + 1
,

where m =
my

mx
=

Qk,y −Qi,y

Qk,x −Qi,x
.

The point Qj is specified as a volunteer corner point if its perpendicular
distance (dj) from the direct line QiQk goes beyond D. The local sharpness
and the opening angle of the corners are investigated by the distance param-
eter D. It also checks the incorrect determination of corner points that may
occur due to noise and disarray. The default value of D is set to be 2.6. The
new direct line through increasing both i and k detects the next volunteer



G
al
le
y
P
ro
of

106 A. Ebrahimi, G. B. Loghmani and M. Sarfraz

corner points. In the second step, the superfluous corner points are deter-
mined. A superfluous corner point is one of that any other volunteer with a
higher value of dj is in the domain R. In the other words, a candidate corner
point will stay if it has the greatest value of dj between the R number of
points on its both sides. The default value of R is equal to length parameter.
In the present study, we utilize this method at its default values for corner
detection. All steps of this corner detection method is shown in Algorithm
1.

Algorithm 1 The corner detection algorithm

Set values of L, D, and R;
Detect boundary points {Qi}ni=0 of 2D object using the Canny edge de-
tector;
First step: detect candidate corner points;
for i = 1 to n do

if (i+ L) ≤ n then
Qk = Qi+L,

else
Qk = Q(i+L)−n;

end if
for j = i to k do

Calculate dj the perpendicular distance from point Qj to the
straight line joining points Qi and Qk;
if dj > D then

Add Qj to candidate corner point;
end if

end for
end for
Second step: detect superfluous corner points;
A candidate corner point will stay if it has the greatest value of dj between
the R number of points on its both sides;

3 The Nelder–Mead simplex method (NMSM)

The Nelder–Mead algorithm is a numerical optimization procedure for solving
unconstrained optimization problems in a multidimensional space; see [5,14,
19]. This method is one of the enormously famous derivative-free techniques.
It is a direct search algorithm that only needs a numerical evaluation of the
objective function at a finite number of points per iteration. This method is
planed for prevalent unconstrained minimization problems, such as nonlinear
least squares and nonlinear simultaneous equations; see [8, 13].



G
al
le
y
P
ro
of

Capturing outlines of generic shapes with cubic Bézier curves ... 107

The problem discussed in this study is the following unconstrained opti-
mization problem

min f(x) x ∈ Rn,

where f is a nonlinear function from Rn into R and x ∈ Rn. For the function
f(x), the Nelder–Mead method begins with n+1 vertices as y1, y2, . . . , yn+1

and then evaluates the objective function value of each vertices. We assign
to y1 as the best vertex where f(x) is the lowest and to yn+1 as the worst
point where f(x) is the highest. The most common Nelder–Mead iterations
perform a succession of primary geometric transformations including reflec-
tion, expansion, contraction, and shrinkage to find a better point and make
it replace the worst point. Geometric transformations are controlled by four
parameters including coefficients of reflection ρ, expansion χ, contraction γ,
and shrinkage σ. The introduced parameters should assure the following
consternations:

ρ > 0, χ > 1, 0 < γ < 1, and 0 < σ < 1.

The common values, exerted in this paper, are

ρ = 1, χ = 2, γ =
1

2
, and σ =

1

2
.

We set ϵ = 10−10 for the termination criterion in the Nelder–Mead method.
The principal foundation of the Nelder–Mead method is described in Algo-
rithm 2. Readers are referred to [8,19] for a detailed study of the Nelder–Mead
method.

4 Curve approximation

We partition the outline of a 2D shape into curve segments based on its
corner points. It means that all the outline points between two consecutive
corner points constitute one curve segment. In this literature, cubic Bézier
curves have been used to fit each segment separately using the Nelder–Mead
algorithm.

4.1 Bézier curve

The Bézier curve is a parametric curve C(t) that widely used to describe and
model curves and surfaces in computer aided designs and computer graphics.
The Bézier curve of degree n is given as



G
al
le
y
P
ro
of

108 A. Ebrahimi, G. B. Loghmani and M. Sarfraz

Algorithm 2 The Nelder–Mead algorithm [8]

1. Choose an initial n + 1 vertex points {y1, y2, . . . , yn+1} and choose a
stopping criterion ϵ;
2. Order. Order and re-label the n + 1 vertices to assure f(y1) ≤
f(y2) ≤ · · · ≤ f(yn+1);
3. Reflect. calculate the reflection point yr by yr = ȳ + ρ(ȳ − yn+1),

where ȳ =
∑n

i=1(
yi
n
) is the centroid of the n best points;

if f(y1) ≤ f(yr) < f(yn) then
replace yn+1 with the reflected point yr and go to Step 7;

end if
4. Expand.
if f(yr) < f(y1) then

calculate the expansion point ye by ye = ȳ + χ(yr − ȳ);
end if
if f(ye) < f(yr) then

exchange yn+1 with ye and go to Step 7;
else

exchange yn+1 with yr and go to Step 7;
end if
5. Contract.
if f(yr) ≥ f(yn) then

a contraction is performed among ȳ and the better of yn+1 and yr;
end if
a. Outside.
if f(yn) ≤ f(yr) < f(yn+1) then

apply an outside contraction: compute yoc = ȳ + γ(yr − ȳ);
end if
if f(yoc) ≤ f(yr) then

exchange yn+1 with yoc and go to Step 7;
else

go to Step 6 (perform a shrink);
end if
b. Inside.
if f(yr) ≥ f(yn+1) then

apply an inside contraction: compute yic = ȳ + γ(yn+1 − ȳ);
end if
if f(yic) ≥ f(yn+1) then

exchange yn+1 with yic and go to Step 7;
else

go to Step 6 (perform a shrink);
end if
6. Shrink. Measure the n new vertices
y′ = y1 + σ(yi − y1), i = 2, . . . , n+ 1.
exchange the vertices y2, . . . , yn+1 with the new vertices y′2, . . . , y

′
n+1;

7. Termination Criterion. Arrange and re-label the vertices of the
new simplex as y1, y2, . . . , yn+1 such that f(y1) ≤ f(y2) ≤ · · · ≤ f(yn+1);
if f(yn+1)− f(y1) < ϵ then

stop;
else

go to Step 3.
end if



G
al
le
y
P
ro
of

Capturing outlines of generic shapes with cubic Bézier curves ... 109

C(t) =
n∑

i=0

PiBi,n(t), 0 ≤ t ≤ 1,

where Pi refers to the control points and Bi,n(t) is the Bernstein basis poly-
nomials of index i and degree n expressed as

Bi,n(t) =

(
n

i

)
ti(1− t)n−i, i = 0, . . . , n.

From the defining equation of the Bézier curve, it can be seen that the prop-
erties of Bernstein polynomials are passed on to the Bézier curve; see [20].
These properties are as follows:

• Partition of unity.

• Affine invariance.

• Convex hull property.

• Endpoint interpolation.

• Value of Bernstein polynomials, for all 0 ≤ t ≤ 1, does not appertain
to the location of any control point(s); see [17].

• If the location of any control point is specified, its efficacy all over the
curve can be deprived; see [17].

4.2 Curve fitting with the cubic Bézier curve

Let {Xi}Ni=1 ⊂ R2 denote an ordered set of contour points of a segment. Our
goal is to find control points Pi (i = 0, 1, 2, 3) so that the cubic Bézier curve

C3(t) = P0B0,3(t) + P1B1,3(t) + P2B2,3(t) + P3B3,3(t), 0 ≤ t ≤ 1,

can be a good representation of {Xi}Ni=1. For this purpose, we minimize the
linear least squares fitting error, E, specified as the sum of the squares of the
deviations:

E =

N∑
k=1

||C3(tk)−Xk||2 =

N∑
k=1

∥∥∥ 3∑
i=0

PiBi,3(tk)−Xk

∥∥∥2,
where the parameter values ti are assigned to Xi using the uniform parame-
terization method; see [20]. The control points P0 and P3 are the two corner



G
al
le
y
P
ro
of

110 A. Ebrahimi, G. B. Loghmani and M. Sarfraz

points of the segment. So, the effect of P0 and P3 is removed from a given
cubic Bézier curve as

E =
N∑

k=1

||C ′
3(tk)−X ′

k||2, (1)

where

C ′
3(t) = P1B1,3(t) + P2B2,3(t)

and

X ′
k = Xk − (P0B0,3(tk) + P3B3,3(tk)), k = 1, 2, ..., N.

Therefore, we have to find the control points P1 and P2 by minimizing the
problem defined in (1).

Let Pi = (Pxi , Pyi), i = 1, 2, and write all the intermediate control points
in one vector:

x =


Px1

Py1

Px2

Py2

 .

With this vector, the fitting problem is formulated as

min
x

N∑
k=1

||C ′
3(tk)−X ′

k||2. (2)

That is, there are four parameters to estimate. We employ the Nelder–Mead
method to solve the least square fitting problem defined in (2) and find these
parameters.

4.3 Initialization

Before Algorithm 2 is implemented, a starting point should be selected for
the intermediate control points. The initial vertex points can be chosen
arbitrarily, but using the appropriate initial situation of the control points
increases the speed of convergence and quality of solutions. Duo to x ∈ R4

in the objective function (2), five vertices have to be chosen. The details on
the selection of the initial vertex points are explained as follows.

Let

P1B1,3(t) + P2B2,3(t) = C3(t), (3)



G
al
le
y
P
ro
of

Capturing outlines of generic shapes with cubic Bézier curves ... 111

where

C3(t) = C3(t)− P0B0,3(t)− P3B3,3(t).

Based on the properties of the cubic Bézier curves, we get

B = B1,3(0.5) = B2,3(0.5). (4)

From equations (3) and (4), we have

P1 + P2 = C̃3, (5)

where

C̃3 =
C3(0.5)

B
.

By solving equations (3) and (5), we have


P1 =

C3(t)−B2,3(t)C̃3

B1,3(t)−B2,3(t)
,

P2 = C̃3 − P1.

Suppose P1
i and P2

i are the computed intermediate control points at
(0 ≤ ti ≤ 1, ti ̸= 0, 0.5, 1,), and

P1
i =

C3(ti)−B2,3(ti)C̃3

B1,3(ti)−B2,3(ti)
,

P2
i = C̃3 − P1

i.

where i = 1, 2, . . . , 5.

Let P i
1 = (P i

x1
, P i

y1
) and P i

2 = (P i
x2
, P i

y2
). The vector xi can be identified

as



G
al
le
y
P
ro
of

112 A. Ebrahimi, G. B. Loghmani and M. Sarfraz

xi =


P i
x1

P i
y1

P i
x2

P i
y2

 , i = 1, 2, . . . , 5.

Hence, these vectors can be used for the initial vertex points of the Nelder–
Mead method.

In order to illustrate the curve fitting using the Nelder–Mead algorithm,
we consider a curve as shown in Figure 1(a). Figure 1(b) shows the fitting
of a given curve (black) using a cubic Bézier curve (red). The initial vertex
points are marked by •, and the intermediate control points computed by the
Nelder–Mead algorithm are marked by ∗. The fitting error versus the number
of iterations for this curve with different initial vertex points is demonstrated
in Figure 2. As shown in Figure 2, the Nelder–Mead method based on the
proposed initial vertex points converges faster than the one based on random
initial vertex points.

(a) Given curve. (b) Cubic Bézier approximation.

Figure 1: Fitting a given curve (black) using a cubic Bézier curve (red) with
the proposed algorithm (NMSM).

4.4 Segment subdivision

When curve fitting is done by means of the proposed method (i.e. NMSM),
there is a possibility for a generated complex curve not be acceptable and
for the deviation error to be high. In such a case, the segment subdivision is
applied to decrease the fitting deviation. In this paper, the complex segment
of the outline is partitioned into two parts at the point of the maximum
deviation error if the maximum deviation error oversteps the given error
threshold limit (ETL). The process of subdivision will continue constantly
and recursively until the fitting error reaches a value under the given error
threshold. An example of subdivision into five curves is demonstrated in



G
al
le
y
P
ro
of

Capturing outlines of generic shapes with cubic Bézier curves ... 113

Figure 2: Error vs iteration.

Figure 3. Figure 3(a) is the curve fitting without segment subdivision and
Figure 3(b) is curve fitting after segment subdivision. The black and red
lines display the original and the approximated curves, respectively. The
subdivided points are marked by ■. All the steps of the outline capturing
system are shown in Algorithm 3.

(a) Without subdivision. (b) After subdivision.

Figure 3: Curve fitting with recursive subdivision.



G
al
le
y
P
ro
of

114 A. Ebrahimi, G. B. Loghmani and M. Sarfraz

Algorithm 3 The outline capturing system

Get a digitized image and choose an error threshold limit (ETL) ;
Extract an outline;
Detect the corner points and divide the outline into segments;
for each segment do

Compute the initial vertex points;
Perform curve fitting over the segments using the Nelder–Mead algo-

rithm;
Compute the maximum deviation error (MDE);
if MDE ≤ ETL then

break
else

Find the subdivision point and partition into two segments;
end if

end for

5 Experimental results and comparative study

The proposed algorithm explained in the Section 4 has been used to some
explanatory examples corresponding to generic shapes. Then, the outputs
have been compared with those of algorithms [17, 29, 34]. In order to allow
a fair comparison, we have tested the same shapes of the criterion as in
other papers. In this study, the results are measured based on the following
parameters:

• Number of segments: The outline of the shape is partitioned into a
number of segments using a corner detection algorithm and subdivision
points. An increase in the number of segments, leads to an increase in
the number of control points. Therefore, the number of segments must
be decreased.

• Compression ratio (CR): This is a significant criterion in the evaluation
of the amount of compression accomplished by the method. A large
compression ratio is favorable. This criterion indicates the ratio of the
number of data points in an actual outline (n) to the obtained data
points in curve fitting (nDP ). It can be computed as:

CR =
n

nDP
.



G
al
le
y
P
ro
of

Capturing outlines of generic shapes with cubic Bézier curves ... 115

• Average error: This parameter refers to all the errors generated in the
fitted outline of the shape and is given as:

Average error =
1

n

n∑
i=1

ei,

where ei is the Euclidean distance between the ith point of the outline
and the corresponding point of the parametric curve.

• Maximum deviation: This parameter calculates the maximum devia-
tion of the fitted outline from the original shape. It is calculated by the
following equation:

Maximum deviation =
n

max
i=1

{ei}

• Computation time: This parameter indicates the amount of time taken
by the algorithm for capturing the outline of the shape. It appertains
to the performance approach and the processor used.

The algorithm has been performed and compared for Figures 4 and 5,
which are Arabic words “Sabr”, and “Kanji” characters, respectively. Figure
4(a) shows the image of the Arabic word “Sabr” and its boundary is given
in Figure 4(b). Figure 4(c) shows the boundary along with the corner points
marked with a square (■). Figure 4(d) shows the captured outline based
on our approach, and the subdivision points are denoted with a circle (•).
The outline computed by means of the method presented by Masood and
Sarfraz [17] is shown in Figure 4(e). Figures 4(f) and 4(g), respectively,
represent the outline evaluated by Sarfraz and Razzak [34] at a threshold of
3 and 2. The quantitative comparison of the different methods in Figure 4
can be observed in Table 1.

The results obtained for the “Kanji” character are presented in Figure 5
and tabulated in Table 2. The image of “Kanji” character and its boundary
are shown in Figures 5(a) and 5(b), respectively. Figure 5(c) shows the
boundary along with the corner points which are marked with a square (■).
The results of the presented method for this shape are given in Figure 5(d).
The outline captured with algorithm [17] is shown in Figure 5(e). The result
obtained by Sarfraz and Khan [29] can be seen in Figure 5(f). The outline
generated by means of method [34] is given in Figure 5(g). It should be noted
that the results of Tables 1 and 2 are achieved by different systems.

Through a visual inspection of the results in Tables 1 and 2, one may
come to the following conclusions:



G
al
le
y
P
ro
of

116 A. Ebrahimi, G. B. Loghmani and M. Sarfraz

Table 1: Quantitative comparison for the Arabic word “Sabr”.

Algorithm Number of Compression Maximum Average Computation

segments ratio deviation error time

Proposed (NMSM) 28 46.43 1.92 0.44 0.79
Masood and Sarfraz [17] 27 48.15 2.21 1.38 0.83

Sarfraz and Razzak [34] at τ = 3 66 19.70 1.71 1.07 3.79
Sarfraz and Razzak [34] at τ = 2 98 13.27 1.39 0.91 2.58

Table 2: Quantitative comparison for the “Kanji” character.

Algorithm Number of Compression Maximum Average Computation

segments ratio deviation error time

Proposed (NMSM) 33 64.81 1.53 0.40 0.55
Masood and Sarfraz [17] 33 64.81 1.55 0.73 0.59
Sarfraz and Khan [29] 31 69 3.78 1.92 3.61

Sarfraz and Razzak [34] 66 33.42 1.40 1.13 3.83

• The method proposed in this study protects an appropriate equilibrium
among the compression ratio and the fitting error.

• The proposed method avoids time consuming procedures, such as least
square fitting, and uses one of the popular derivative-free free operations
(i.e., the NelderMead simplex method ) that is simple and fast.

• The average error, maximum deviation, and the computation time are
lesser than the results obtained by other methods in the current liter-
ature [17, 29,34].

• The number of segments generated by method [34] is very high because
the corner detection and the subdivision algorithms are suboptimal.
The suboptimal corner points are indicated by arrows in Figures 4(f),
4(g), and 5(g). This method also suffers from a long computation time.
This is due to the use of least squares fitting and control parameters.

• Computation of the outline by means of method [29] takes too long
and has errors. The least squares curve fitting and the noise filtering
procedure are the main causes for these disadvantages. It is shown with
an arrow in Figure 5(f).

• The average error with algorithm [17] is higher than that in the pro-
posed method, because this method does not use the standard opti-
mization process.



G
al
le
y
P
ro
of

Capturing outlines of generic shapes with cubic Bézier curves ... 117

(a) Original image. (b) Boundary of original

image.

(c) Boundary with cor-

ner points.

(d) Proposed method (NMSM). (e) Masood and Sarfraz [17].

(f) Sarfraz and Razzak [34] at τ = 3. (g) Sarfraz and Razzak [34] at τ = 2.

Figure 4: Captured shape of the Arabic word ”Sabr” with different methods.



G
al
le
y
P
ro
of

118 A. Ebrahimi, G. B. Loghmani and M. Sarfraz

(a) Original image. (b) Outline of original

image.

(c) Boundary with cor-

ner points.

(d) Proposed method (NMSM). (e) Masood and Sarfraz [17].

(f) Sarfraz and Khan [29]. (g) Sarfraz and Razzak [34].

Figure 5: Captured shape of the Kanji character with different methods.

6 Conclusion

In this study, we introduced a novel outline capturing scheme for 2D shapes
based on the Nelder–Mead simplex method. The Nelder–Mead simplex algo-
rithm is straight to perform, easy to calculate, and does not call for much time
to compute the optimization problem. The unique feature of this method is
that it does not require to consider time consuming least squares fitting. The
initial situation of the control points is obtained through the properties of



G
al
le
y
P
ro
of

Capturing outlines of generic shapes with cubic Bézier curves ... 119

the cubic Bézier curve. It increases the speed of convergence and the quality
of curve fitting. As a result, the introduced approximation scheme is much
faster than traditional approaches and helps to capture a better fit with a
desirable precision. Through a comparison of our method with previous ap-
proaches and considering the simulation results, it emerges that the method
has such advantages as appropriate equivalency between the compression ra-
tio and the fitting error, low deviation error, and low computation time.

References

1. Bézier, P. Numerical control; mathematics and applications, John Wiley
& Sons, 1972.

2. Biswas, S. and Lovell, B.C. Bézier and splines in image processing and
machine vision, Springer Science & Business Media, 2007.

3. Cabrelli, C.A. and Molter, U.M. Automatic representation of binary
images, IEEE Trans. Pattern. Anal. Mach. Intell., 12 (1990), 1190–1196.

4. Chetverikov, D. and Szabo, Z. A simple and efficient algorithm for de-
tection of high curvature points in planar curves, proc. of 23rd workshop
of Australian Pattern Recognition Group, Steyr, (1999), 175–184.

5. Conn, A.R., Scheinberg, K. and Vicente, L.N. Introduction to derivative-
free optimization, MOS-SIAM Series on Optimization, 2009.

6. Farin, G. Curves and surfaces for computer-aided geometric design: a
practical guide, Academic Press, 1997.

7. Freeman, H. On the encoding of arbitrary geometric configurations,
IEEE Trans. Comput., 2 (1961), 260–268.

8. Hassanien, A.E., Grosan, C. and Tolba, M.F. Applications of intelligent
optimization in biology and medicine: Current trends and open prob-
lems, Springer, 2015.

9. Hussain, M., Hussain, M.Z., and Sarfraz, M. Shape-preserving polyno-
mial interpolation scheme, Iran. J. Sci. Technol. Trans. A Sci., 40 (2016),
no. 1, 9–18.

10. Hussain, M.Z., Hussain, F. and Sarfraz, M. Shape-preserving positive
trigonometric spline curves, Iran. J. Sci. Technol. Trans. A Sci. 42
(2018), no. 2, 1–13.

11. Itoh, K. and Ohno, Y.A curve fitting algorithm for character fonts,
Electronic publishing , 6 (1993), no. 3, 195–205.



G
al
le
y
P
ro
of

120 A. Ebrahimi, G. B. Loghmani and M. Sarfraz

12. Khan, M.S., Ayob, A. F.M., Isaacs, A. and Ray, T. A novel evolution-
ary approach for 2d shape matching based on B-spline modeling, Proc.
Congr. Evol. Comput., (2011), 655–661.

13. Klein, K. and Neira, J. Nelder–Mead simplex optimization routine for
large-scale problems: A distributed memory implementation, Comput.
Econ., 4 (2014), 447–461.

14. Lagarias, J.C., Reeds, J.A., Wright, M.H. and Wright, P.E. Convergence
properties of the nelder–mead simplex method in low dimensions, SIAM.
J. Optim. , 9 (1998), no. 1, 112–147.

15. Marji, M. and Siy, P. A new algorithm for dominant points detection and
polygonization of digital curves, Pattern. Recognit., 10 (2003), 2239–
2251.

16. Masood, A. and Haq, S.A. Object coding for real time image processing
applications, Pattern Recognition and Image Analysis. ICAPR 2005.
Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidel-
berg.

17. Masood, A. and Sarfraz, M. An efficient technique for capturing 2d
objects, Comput. Graph., 32 (2008), no 1, 93–104.

18. Masood, A. and Sarfraz, M. Capturing outlines of 2d objects with bézier
cubic approximation, Image Vis. Comput., 6 (2009), 704–712.

19. Nelder, J. A., and Mead, R. A simplex method for function minimiza-
tion, Comput. J., 7 (1965), no. 4, 308–313.

20. Piegl, L. and Tiller, W. The NURBS book. Springer Science & Business
Media, 2012.

21. Plass, M. and Stone, M. Curve-fitting with piecewise parametric cubics,
Comput. Graph., 17 (1983), no 3, 229–239.

22. Powell, S. Applications and enhancements of aircraft design optimiza-
tion techniques, PhD thesis, University of Southampton, 2012.

23. Salomon, D. Curves and surfaces for computer graphics, Springer Sci-
ence & Business Media, 2007.

24. Sarfraz, M. Some algorithms for curve design and automatic outline
capturing of images, Int. J. Image. Graph., 2 (2004), 301–324.

25. Sarfraz, M. Computer-aided intelligent recognition techniques and ap-
plications, Wiley Online Library, 2005.

26. Sarfraz, M. Vectorizing outlines of generic shapes by cubic spline using
simulated annealing, Int. J. Comput. Math., 8 (2010), 1736–1751.



G
al
le
y
P
ro
of

Capturing outlines of generic shapes with cubic Bézier curves ... 121

27. Sarfraz, M. Capturing image outlines using simulated annealing ap-
proach with conic splines, The Proceedings of the International Con-
ference on Information and Intelligent Computing, (2011), 152–157.

28. Sarfraz, M. and Khan, M. Automatic outline capture of arabic fonts,
Inf. Sci., 3 (2002), 269–281.

29. Sarfraz, M. and Khan, M. An automatic algorithm for approximating
boundary of bitmap characters, Future. Gener. Comput. Syst., 8 (2004),
1327–1336.

30. Sarfraz, M. and Masood, A. Capturing outlines of planar images using
bézier cubics, Comput. Graph., 5 (2007), 719–729.

31. Sarfraz, M., Masood, A. and Asim, M.R. A new approach to corner
detection, Computer Vision and Graphics 32 (2006), 528533

32. Sarfraz, M. and Raza, A. Visualization of data with spline fitting: a tool
with a genetic approach, CISST, 97(2002), 99–105.

33. Sarfraz, M. and Raza, S.A. Capturing outline of fonts using genetic
algorithm and splines, Proceedings of IEEE International Conference
on Information Visualization-IV’2001-UK, USA:IEEE Computer Soci-
ety Press, (2001), 738–743.

34. Sarfraz, M. and Razzak, M. An algorithm for automatic capturing of
the font outlines, Comput. Graph., 5 (2002), 795–804.

35. Sarfraz, M., Riyazuddin, M. and Baig, M. Capturing planar shapes by
approximating their outlines, J. Comput. Appl. Math., 1 (2006), 494–
512.

36. Sohel, F.A., Karmakar, G.C., Dooley, L.S. and Arkinstall, J. Enhanced
bezier curve models incorporating local information, Proc. IEEE. Int.
Conf. Acoust. Speech. Signal. Process., 4 (2005), 253–256.

37. Tang, Y. Y., Yang, F., and Liu, J. Basic processes of chinese character
based on cubic b-spline wavelet transform, IEEE. Trans. Pattern. Anal.
Mach. Intell., 12 (2001), 1443–1448.

38. Zheng, W., Bo, P., Liu, Y., and Wang, W. Fast B-spline curve fitting
by L-BFGS, Comput. Aided. Geom. Des., 7 (2012), 448–462.

39. Zhu, F. Geometric Parameterisation and Aerodynamic Shape Optimi-
sation, PhD thesis, University of Sheffield, 2014.




