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Approximate solution of a system of
singular integral equations of the first
kind by using Chebyshev polynomials
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Abstract

The aim of the present work is to introduce a method based on the Cheby-
shev polynomials for numerical solution of a system of Cauchy type singular
integral equations of the first kind on a finite segment. Moreover, an esti-
mation error is computed for the approximate solution. Numerical results
demonstrate the effectiveness of the proposed method.
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1 Introduction

Let us consider a system of singular integral equations of the form

2D it [ K= F0, 1<i<1)

A)®(t) + B(t) /

1T

where
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K(t,7) = [K(t,71)], i,j=1,2,...,N,
)= [f1(t), fa(t),. N ()],
q)(t) = [(bl(t)? ¢2(t)7 RN d)N(t)]T?
A(t) = [a;;(1)], i,5=1,2,...,N,
B(t) = [b;;(t)], 4,7=1,2,...,N.

Here, {Ki;}]\;—, and {f;}}L, are given real-valued Hélder functions and
{¢; }j\'zl are the unknown functions. The matrices A and B are known such
that S = A+ B and D = A — B are nonsingular for all ¢t € [—1,1]. In some
familiar physical problems, the entries of the matrices A and B are constants.

The singular integral equations play important roles in physics and the-
oretical mechanics, particularly in the areas of elasticity, aerodynamics, and
unsteady aerofoil theory. They are highly effective in solving boundary value
problems occurring in the theory of functions of a complex variable, potential
theory, the theory of elasticity, and the theory of fluid mechanics. A general
theory of the system of equations (1) has given in [12].

We study the system (1) in the case that A(t) = 0 and B(t) is a constant
matrix. Therefore, the ith equation of system (1) takes the form

N - N
;bij/_l?(TzdT*;/_lKﬁ(t’TWj(T)dT:fi(t), —l<t<1. (2)

Studies on this singular integral equation can be found in some literatures
(see [1,3,6,7]). Chakrabarti and Berghe [3] proposed a method for solving (2),
using polynomial approximation and collocation points have chosen to be the
zeros of the Chebyshev polynomials of the first kind for all cases. Kashfi and
Shahmorad [7] constructed another approximate solution of this equation
by using the Chebyshev polynomials of the first and second kinds. Some
other methods for solving this equation can be found in [1,6]. A convergence
analysis of Galerkin and collocation methods for (2) has been given by Miel
[11].

A special type of (2) is the famous Cauchy singular integral equation

b o(r)

—=dr=f(t), —-l<t<l, (3)
47—t

which has the following analytical solutions in four special cases based on
boundedness of the unknown function ¢ at the endpoints of the interval
[—1, 1]; see [3,9,13].

Case 1. If the function ¢ is unbounded at the endpoints 7 = £1, then

(1)

t, —l<r1<1,
t—T1

_a 1 /1 \/17t2f(t)d
VI 21-72 ),
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where ag is an arbitrary constant.
Case 2. If the function ¢ is bounded at the endpoints 7 = +1, then

o(r) = - m/

dt, —-1<71<1,

m th)

and a necessary and sufficient condition of existing this solution is

[ =

Case 3. If the function ¢ is bounded at the endpoint 7 = —1 and unbounded
at the endpoint 7 = 1, then

]_ —
,/ R ! tf)dt, —-1l<7r<1.
1—71

Case 4. If the function ¢ is bounded at the endpoint 7 = 1 and unbounded
at the endpoint 7 = —1, then

1/ / 1+tf)dt —-1<7r<1.
1+7

An application of (3) were given in [2] by reducing a system of dual integral
equations to Cauchy type singular integral equations, and more methods for
solving this equation have given in [5,8,13,15].

In the next section, we investigate approximate solutions for system (1)
in the above four cases.

2 Approximate solution

To find approximate solutions for system (1) in the cases 1,2,3,4, for v €
{1,2,3,4}, we set

¢j(7) =~ P,(r), j=12,...,N, (4

bua(7) 1= ﬁ ;Bﬂ

and
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M
Kij(t,7) =Y %) Pop(r), i,j=1,2,...,N, (5)
k=0

where

Tj(@) = cos(j),  v=1,

sin((j 0
ERETTCR

Pij (.’,U) = cos((j+1)6
‘/J(m) = 521(32)) )a v =3,

sin((j+1)6
Wj (Z‘) = gl(i(g)) )7 - 47

are the Chebyshev polynomials of the first to fourth kinds and

1, v=1,
1—-t2, v=2,
Av(t) = 1+t, v=3,
1—1¢, v =4,

in which = cos(f). The roots of Chebyshev polynomials P, pr41(x) are
given by

Ty = (6)
(2n—1)m o
cos 2M+3), v =3,
cos (23}]10 , v =4,
where n = 1,2,... ,M + 1. These roots are used as the nodes of Gauss—

Chebyshev quadrature rules.

Lemma 1. [10] The Chebyshev polynomials satisfy the orthogonality prop-
erty
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Theorem 1. [10] As the Cauchy principle value of a singular integral, we

have
Uj-1(t), v=1,
PVJ( ) - j+1(t)v v=2,
—— : dr == (8)
vl—T T W;t), v=3,
-V;(t), v=4.

Now we describe details of finding approximate solution in cases 1-4.

Case 1. For v = 1, the relations (4)—(5) take the forms

1 &
Qﬁj(T):SOl,j(T) :ﬁz leT’l(T)a j:1a27"'aNa (9>
=0

and
M

=" Th(r),  ij=1,2,....N, (10)
k=0

where 8;; (j=1,2,...,N, 1=0,1,..., M) are unknown coefficients and
the symbol (") denotes that the first term in the summation is halved. The
functions

K (8, 7)Ti( -
it / ByOOTT) y i1 9 N k=o0.1,...

M
V1i-72

) )

can be determined exactly or may be approximated by using the Gauss—
Chebyshev quadrature rule, that is,

M+1
2

’Yijk(t) = M Z Kz] t x1 é)Tk(xl 5)
s=1

where x; 5 obtain from (6).
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Substituting from (9)—(10) into (2) and using (7)—(8) for v = 1, gives the
System

N M
Zzbuﬁlel 1 + ZZ ’72]]@ /Bjk? - fl(t)7 i = 17277N(11)

7j=1k=0

DO =

If the given functions f; and ~;j; are square integrable on [—1, 1] with

respect to the weight function \;‘11(%, then they can be expanded as

Vi) = S G Uin(t), 4,5 =1,2,... N, k=0,1,... , M,

(12)
L) =Mt eaUi(t),  i=1,2,...,N,
where the coefficients
Gij = 2 f V1 =256 () Ui(t)dt
= Ff—1 f_1 11 f?Kw(t ) Ui(t) Ty.(7)drdt
i,7=1,2,....,.N, k=0,1,....M, 1=0,1,...,M —1,

cp = f V1-2)U@)dt, i=1,2,...,N,1=0,1,...,. M — 1,
can be approximately determined from

Gijkl ~ Grine Sl S (1 — 3 ) Ko (w0, 21,0) Ul (@20 Tk (21,0),
(13)
M
Cyi = m Zr:1(1 - x%r)fi(x?,T)Ul(xlr)-

Using (12) in (11), we have

M-1 N (M1 N M M-1
0D biBiuenyUi(t) + 3 SN GigmBiUi(t) = Y ca Uit
1=0 j=1 1=0 j=1k=0 1=0

which leads to the linear system

N M
1L, ,
Z bzgﬁj{l+1}+§z Gijk:l/Bjk: :Cilal:1a27"'aNal:O717"'>M_1a
j=1 k=0
(14)

for the unknown values 8;, (j = 1,2,...,N, &k = 0,1,...,M). Tak-
ing B11,...,Bn1 arbitrary, the remaining coefficients 3;; are uniquely found
from the linear system (14) which determine the elements of the vector func-
tion @ via (9).
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Case 2. We set v =2 in (4)—(5) and substitute them in (2) to get

N M | NoM
_;gbwﬁjﬂ}ﬂ + 5;kzzow )Bjk = fi(t), i=1,2,...,N(15)

where we used the formulas (7)—(8). Then, we expand the functions f; and
Yijk @S

Vi) = S0 G T(t), 4,5 =1,2,...,N, k=0,1,..., M
1 M :
Efi(t):Zl:O CilTl(t), ’LZl,Q,...,N,
where the coefficients are determined by
Gijrr = 2 [1) iy (DT () dt, i,j=1,2,... N, k1=0,1,.... M,
= 4 [ AR K () Ti() U(r) drdt
Czl:%filﬁfl(t)ﬂ(t)dt’ i:]-vza"'va l:O,].,...,M,
or approximated by
M+1 ~M+1
Gkt = DT Loret osmt (1= @3 ) Kij (1,5, 22,6) Ty (@1, ) Un(22,5),

M+1
Gy = m > Jilere) (@)

Using the last expansions in (15), returns the following linear system of equa-
tions

N M .
%Zj;] EkZOGijklﬁjk:Cilv Zle"val:Oa

Zjvzl {*bijﬂj{z—n + éZﬁiO Gz‘jklﬂjk} =cy,i=1,...,N,l=1,..., M,

for the unknown values g;; (j =1,2,...,N, 1 =0,1,...,M). Then ele-
ments of the vector function ®(t) obtam fr m (4).

Cases 3,4. Similar to cases 1 and 2, we get the linear systems

N M
Z{bijﬂjl—’_ZGijklﬁjk}:Cib 1=1,2,....,N, [=0,1,..., M, (16)

j=1 k=0

and
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N M
Z{—bijﬁjl‘f‘ZGijklﬁjk}:Cil, Z':1,27...,N, l:0,17...,M,(17)
j=1 k=0

respectively for v = 3 and v = 4, and then we determine the elements of
corresponding vector ® via (4).

3 An estimation error and numerical results

In this section, we describe an estimation error for the approximate solution.
Let

be the vector of approximate solution of the system (1) and let E(t) = ®(¢) —

®(t) be the associated vector valued error function. Due to the approximation
O(t), for A(t) = 0, system (1) may be written as

B(t)/ll;I)(T)th—i—/_llK(t,T)(I)(T)dT:F(t)+H(t), l<t<1, (18)

where the perturbation term H(t) obtains from

2 s [ K@ F0), a<i<n

17—

H(t) = B(t) /

Subtracting (18) from (1) yields a system of error equations as

' B(r)

_1T—t

B(t) dr + /1 K(t,m)E(t)dr=H(t), -l<t<]l,

which is solvable approximately like system (1).

The following examples illustrate application of the method.

Example 1. Let

A(t) =0, B(t)[(l)(l)], K(t,T)[:_tT+i], F(t)

)

and find the solution of system (1) in case 1.

By the above information, the system (1) is reduced to

LD dgr oy [N (= )gi(ndr + [ tga(r)dr =7, 1<t <],
(19)
fil L:S) dr + fil T¢1(T)dT + fil(T +t)po(T)dr = 27t, —1 <t < 1,
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and since the matrices S = A+ B = I, and D = A— B = —I are nonsingular,
then system (19) has a unique solution. The kernels Kq;(t,7), Koj(t,T)
(j = 1,2), and the functions f; and f2 are polynomials of degree at most 1,
so we set

0,(7) = s B Do) + Ba Ta(r) + B Tar)} . G =12, (20)
and
Kij(t,7) = 7o) To(r) + vipn ()T (7)), 45 = 1,2,
Fi(t) = enlUo(t) + e Ui (1), i=1,2,
where

Y110(t) = —3U1(t), M11(t) = Up(t), m20(t) = 3UL(t), M121(t) =0,
Y210(t) =0, y211(t) = Uo(), v220(t) = 5U1(t), Y21 (
Clo(t) = 1, Cll(t) = 0, Cgo(t) = 0, Czl(t) =1.

Substituting these expansions into (19) and using (7)—(8), for v = 1, we
obtain

B11U(t) + B12U1(t) — 2B10U1(t) + 3 B11Uo(t) + 2 B20U1 (t) = Up(t),
Ba1Uo(t) + B22Ui(t) + 5B11U0(t) + 3 B20U1(t) + 582100 (t) = Us(t).
Then the linear independency of {Uy(t), Ui (t)} implies

%511 =1,

—3B10+ Bz + 5820 =0,
1811+ 5821 =0,

1820 + B22 = 1.

A nonunique solution of this system for the arbitrary values of S19 and Ba
is given by

2 2

Bio, B = 3 Bi2 = % (Bio — B20), P20, Po1 = —g B2 =1— %520-

For example, if f19 = B20 = 2, then 12 = P22 = 0 and so we find from (20)
that

2r+2 —27 42
¢1(1) = \;%7 ¢2(T):%,

(see Figure 1 for the behavior of these solutions).

Example 2. Solve the problem of Example 1 in the case 3.
In this case, we set
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0
Tvalues

Figure 1: The plots of approximate solutions of Example 1 for M=2.

B(1) =\ Tt B () + i}, =12 (@)

and
Kij(t,7) = %ij00)Vo(r) + v (OVA(T), 0,5 =1,2,
fz(t) = Ci()WO(t) + Cilwl(t)7 Z = 1, 27
where
m10(t) = Wo(t) — sWa(t),  mn(t) = 7210( ) = 7211(t) = Y221 (t) = 3Wo(t),
sWi(t), a1 (t) = Yo20(t) = Wi (t),

20(t) = —5Wo(t) ﬂ;

co(t) =1,  enlt cao(t) = e (t) = 1.

Substituting these expansions into (19) and using (7)—(8) for v = 3, result

BroWo (t) + BriWi(t) + BroWo(t) — 3B10Wa(t)
+2 811 Wo(t) — 2 BaoWo(t) + 2 B20Wi(t) = Wo(2),

BaoWo(t) + Ba Wi (t) + 2 B10Wo(t) + 2811 Wo ()
+3B20Wi(t) + 5821 Wo () = —Wo(t) + Wa(t),

and from the linear independency of {Wy(t) and Wy (t)}, we get the algebraic
System

2810+ 2811 — B0 =1
—2B10 4 B11 + 3620 = 0,

1810+ 3511 + Boo + 5P21 = —1,
3820+ Bo1 =1,

which has the unique solution
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y values

S~— |
|

Figure 2: The plots of approximate solutions of Example 2 for M=2.

10 28 22 20
510——?7, ﬂu—ﬁ, 520——5, 521—5,

and the solutions of (19) can be found via (21). The graphs of these solutions
plotted in Figure 2.

Example 3. Solve the following system in the case 3 [16]:

3 1, 2@ gr 4 1 20 gr — (12 4 1)sin2t, 1<t < 1,

2fil¢;1—£?d7+fil¢f—$)d7':tcos%, -1<t<l1.

In this case, we will approximate the unknown functions as
M

0i(7) = i(r) = V1 =723 By Us(r),  i=1,2,
§=0

where the exact solutions are

¢1(T) _ _‘/1Tr_2-,—2 fll (t2+1) sin 2t—t cos 2t dt

V1—t2(t—T1) ’
_ \/1 7—2 3t cos 2t—2(t +1)sm2t
Pa(T) = I 1 \/ﬁ(t = dt.

We define the error functions as

Ei(T> = ‘(bz(T) - Spi<7—)‘7 =12,

where the exact solutions ¢; and ¢- are calculated by using the Maple code
int (expression,x=a..b, CauchyPrincipalValue).



42 S. Ahdiaghdam and S. Shahmorad

Table 1: Comparison of our results (E;) with the results of [16] (¢;) for M=8.

T $1(7) @2(T) Ei(r)  Ea(r) ei(r) e2r)

—0.96 —0.2164694659571311  0.5107921932649533 le—8 2e—8 8e—5 2e—4
—0.70 —0.5394637532569845 1.185306580331174 3e—T7 6e—T7 4e—5 le—4
—0.25 —0.5831756914063946 1.129312022840245 4e—T7 9e—7 9e—6 2e—5

0.25 —0.5831756914063946 1.129312022840245 4e—7 9e—T7 9e—6 2e—5
0.75 —0.5394637532569845 1.185306580331174 3e—T7 6e—T7 4e—5 le—4
0.96 —0.2164694659571311  0.5107921932649533 le—8 2e—8 8e—5 2e—4

Table 2: The approximated values @i(7) for M = 15 by using 16-digits arithmetic.

T w1(7) w2(T) Ei(1)  Ea(r) e(r) e2(7)

—0.96 —0.2164694659571311  0.5107921932649527 0 6e—16 - -
—0.70 —0.5394637532569844 1.185306580331173 le—16 le—15 - -
—0.25 —0.5831756914063935 1.129312022840244 le—15 1le—15 - -

0.25 —0.5831756914063935 1.129312022840244 le—15 1le—15 - -
0.75 —0.5394637532569844 1.185306580331173 le—16 1le—15 - -
0.96 —0.2164694659571311  0.5107921932649527 0 6e—16 - -

In Table 1, we compared our numerical results (absolute errors F; and
E5) with those reported in [16] (absolute errors 1 and e3). Table 2 shows
our results for M = 15, which were not reported in [16].

Example 4. Consider the singular integral equation

1 1
¢(T)75 dr Jr/ elo(r)dr =1— 22 +it + §eﬂt, -l<t<1, (22
17— 1

V1i—72

™

with the exact solution ¢(7) = (27 — i) in the complex plane, where

i=v-1
By taking ¢1 := Re{¢} and ¢o := Im{¢}, equation (22) is reduced to the
system of singular integral equations

fil @72) dr + fil cos(t)p1(7) dr — fil sin(t)go (1) dr =1 — 2% + %sint, -1<t<1,
f_ll qbfii? dr + f_ll sin(t)¢1 (1) dr + f_ll cos(t)pa(T)dr =t — %cost, -1<t<1.

Similar to Examples 1 and 2, by setting
M
0i(7) = i(r) = V1 =723 By Us(r),  i=12,
§=0

we get the exact solutions for M = 1.

Example 5. Consider the system of singular integral equations [14]
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1000 1 Ar) gy 10 (1 22) g — £y (8) Figa(t), —1 < t < 1,

1 77—t
(23)
1 2 .
500t Aur) g g 200 1 82(T) g — £ (4) 4 iga(t), —1 < ¢ < 1,
where
fl (t) — —990t8 + 1089t7 + 937t6 _ 2627504 t5 _ 3;13(1)81 t4 + 73%837 t3 + 1761 t2 543050101t _ 5230902097

_ 8 7 _ 8971,6 _ 119047.,5 , 163961 44 279198 3 30873 2 | 69533 1130501
g1(t) = 990¢° — 1189¢" — 10t t 100 ¢t t+ Tso0 t — 7 = ot” + “4ooo t T 20000

F2(t) = —300¢% + 330t7 + 215¢5 — 2%7]&5 _ 8160007t4 + 7%5]53 17253 2+ 24905040115 _ 1140700017

_ 8 7 6 | 1462,5 | 9419,4 _ 27549,3 _ 183,2 _ 7957 57583
g2(t) = 300t° — 380t — 197t° + 2=t + F5ot” — S50t — 100t — 3006t T 000 -

It is easy to see that system (23) is equivalent to the following disjointed
singular integral equations,

1 fl R€{¢1 T)} dr — 20)‘11(;?50({2@)7 —l1<t<l,

L2, el g = Befgp© <t

(24)

1 f X Re{¢a(n)} 4. 2f2(t) fl( ) 1<t< 1,

T—1 ’

1 f . Im{d2(m)} g — 292()—g1(¢)

T—t 390 ’

-1<t<1.

The exact solution of system (23) was reported in [14] for the case r = 4.
By applying our method for the equation in (24), we get the real parts of
unknown functions exactly but, for the imaginary parts, we obtain the error
functions

Bi(r) = [Im{6:()} ~ Im{pi(n)}| = \/ T =ha(r). i = 1.2,

hi(7) = 5.128205128205128 x 1078(1 +7),  —1<7 <1,
ha(7) = 5.128205128205128 x 10~6(1 +7),  —l<7<1.

where

The plots of h; and ho and the regular parts of the error functions, are
shown in Figure 3. As shown in these plots, the absolute errors increase
when 7 approaches to 1, because in case 4, the singularity for the integral
part happens at 7 = 1.

Example 6. Consider the problem of a half plane containing a crack parallel
to the boundary, which is illustrated in Figure 4 and formulated as the system
(4]



44 S. Ahdiaghdam and S. Shahmorad

The plot of h_1(1) The plot of h 2(1)

1.x1079 0.0000107
8. x 10781 0.0000081
6.x 10784 0.0000061
4.x107% 0.0000041
2.x 10784 0.0000024

0 . . . ) 0¥ . . . )

-1 -05 0 05 1 -1 -05 0 05 1

T T

Figure 3: The plots of the regular parts of the error functions in Example 5.

S 89 ar 4 N K (7 (7) + Kaa(t, 7)éa(7)dr] = 0,

T—1
(25)
L@ g 4 Kot Koot dr| =
e T Ko (t, 7)1 (7) + Koo(t, T)do(T)dT | =,
with
_ _—_— 8h2(T—t) 4h2(7'7t)[12h27('r*t)2]
Kll(taT) = T (r—t)2+4n? + [(7—t)2+4h2]? - [(7—t)2+4h2]? ’

8h?[4h*—3(r—t)?]

Kua(t, 1) = Kai(t,7) = I (R

_ Tt 8h2(7—t) 4n? (r—t)[12h% — (1 —t)?]
K22(t,7') = T =t +4an? [(T—t)2+4h2)? - [(T—t)2+4h2]3 ’

where h is the distance of crack from the boundary. The physical conditions
of the problem impose that the relations

/_11 p1(1)dr =0, /_11 ¢p2(T)dr =0, (26)
and

P1(t) = 1(—t),  ¢2(t) = —pa(—t)

are satisfied. Therefore the unknown functions may be expressed as

1 M 1 M
¢1(7) =~ Vi ];0 B Toj(1), ¢2(T) = Vi ; Boj Taj—1(7). (27)
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LI
ST

Figure 4: Crack parallel to a free boundary in Example 6.

For v = 1, it follows from the orthogonality condition (7) that the second
condition in (26) satisfies and the first one gives 819 = 0.

Taking 11 = B21 = 0, the remaining coefficients 3;; are uniquely deter-
mined from the linear algebraic system (14) for each values of h and M. This
leads to find the functions ¢; and ¢y from (27).

The stress intensity factors

kg = lim \/177’2(7751(7')
T—1—

and their absolute estimation errors(Est.Err.) are reported in Table 3. For
h = o0 and K;;(t,7) =0, from (27) and (13)—(14), the exact solutions of (25)

are obtained as -

7)=0, T) = —/—,
¢1( ) ¢2( ) m
which give k1 = 1 and ks = 0. This is shown in the last row of Table 3.

The table shows the rapid convergence of the results even for relatively small
values of M.

4 Conclusions

We described a new idea of using Chebyshev polynomials for the numerical
solution of the system of singular integral equations of the first kind. In
Section 3, we illustrated this idea by using system of different kind of singular
integral equations (Examples 1-5). In Example 6, we studied a crack problem
in solid mechanics and reported the numerical results (see Table 3) to show
the efficiency and rapid convergence of the proposed method for all these
kinds of problems.
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Table 3: Stress intensity factors for the crack parallel to the boundary

h M k1 Est.Err. k1 ko Est.Err. ko
0.2 6 4.878800637605022 6.3e-14 1.750099102171126 6.2e-14
7 4.788277537335018 1.1e-14 1.727809740547429 4.1e-15
8 4.760729834685963 4.8e-14 1.719782910590219 1.1e-14
0.4 3 2.607272141646415 4.3e-15 0.7745787927510580 1.6e-16
4 2.594500911475041 7.3e-15 0.7266641783709941 5.0e-15
6 2.594423234973139 4.2e-14 0.7376171346942053 3.3e-16
0.6 2 1.834057544899021 1.1e-15 0.5664257041432605 4.1e-16
5 1.960455689663461 6.1e-15 0.4297949760368867 1.6e-15
0.8 2 1.608371955353828 1.6e-15 0.3323260582700188 2.8e-16
3 1.660617572058080 8.7e-16 0.2675691556476836 4.6e-16
1.0 2 1.461157081431933 2.0e-15 0.2104682299562445 1.1e-16
4 1.485914720666516 2.1e-16 0.1796691052492212 1.1e-16
1.2 4 1.372176156193755 5.0e-16 0.1234414146531335 0.
1.5 4 1.262800608570183 1.6e-15 0.07465158121522054 1.7e-16
2.0 3 1.162112249974693 1.1e-15 0.03662808437088003 0.
3.0 2 1.077621553329114 3.3e-16 0.01274529646673066 0
10 2 1.007451045420713 2.6e-16 0.00037197952964307 0.
o) 1 1 0 0 0
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