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An adaptive nonmonotone trust region
method for unconstrained optimization
problems based on a simple
subproblem

Z. Saeidian and M.R. Peyghami*

Abstract

Using a simple quadratic model in the trust region subproblem, a new
adaptive nonmonotone trust region method is proposed for solving uncon-
strained optimization problems. In our method, based on a slight modifica-
tion of the proposed approach in (J. Optim. Theory Appl. 158(2):626-635,
2013), a new scalar approximation of the Hessian at the current point is
provided. Our new proposed method is equipped with a new adaptive rule
for updating the radius and an appropriate nonmonotone technique. Under
some suitable and standard assumptions, the local and global convergence
properties of the new algorithm as well as its convergence rate are investi-
gated. Finally, the practical performance of the new proposed algorithm is
verified on some test problems and compared with some existing algorithms
in the literature.

Keywords: Trust region methods; Adaptive radius; Nonmonotone tech-
nique; Scalar approximation of the Hessian; Global convergence.

1 Introduction

In this paper, we deal with the following unconstrained optimization problem:

min f(z) (1)

where f : R™ — R is a twice continuously differentiable function. Two popu-
lar classes of optimization techniques for solving (1) are line search and trust
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region methods; see, e.g., [9,17,18]. Line search methods refer to a procedure
in which one moves along a (descent) direction as long as a sufficient reduc-
tion in the objective is achieved. On the other hand, in the classical trust
region methods, a trial step is computed by minimizing a (quadratic) model
of the objective function at the current point over a region around this point.
Then, using the so-called trust region ratio, the trial step is accepted /rejected
and the new point as well as the radius is updated accordingly. It has been
shown that trust region methods have appropriate global and local conver-
gence properties. These methods have been widely studied in the literature;
see, e.g., [9,12,17,19,24,25].

Here, let us briefly describe one step of the classical trust region method.
Given xy, the trial step dj is computed by solving the following subproblem:

1
min g (d) = gf d + idTBkd st ||d|l < A, (2)

where g = Vf(x1,), By, is a n x n symmetric matrix which is V2 f(xy) or its
approximation, Ay > 0 is the so-called trust region radius, and ||.|| refers to
the Euclidean norm. Due to the so-called trust region ratio

f(zr) — fog +di)
qr(0) — qr(dy)

one decides whether the trial step is accepted or rejected; given p € (0, 1),
if 7, > p, then the trial step is accepted and the new point is introduced by
Tk4+1 = x + di. Otherwise, the trial step is rejected and the current point
remains unchanged for the next iteration. In both cases, the trust region
radius is updated appropriately.

In the monotone trust region methods, the sequence of the objective val-
ues is monotonically decreasing. This may cause slow convergence rate in
some problems. In order to overcome this disadvantage, the concept of non-
monotone strategies have been introduced in the framework of trust region
methods, see, e.g., [13,14]. A nonmonotone line search method was first
proposed by Chamberlain et al. in [8]. Grippo et al. in [13] introduced a
nonmonotone technique for Newton’s method and developed it for uncon-
strained optimization in [14]. Nevertheless many advantages of the Grippo’s
technique, it suffers from some drawbacks [2,3,27]. In order to overcome
these difficulties, recently, Ahookhosh and Amini in [2] and Ahookhosh et al.
in [3] proposed a new nonmonotone term as below:

3)

Ty =

Ry = exfoy + (1 — €x) fi, (4)

where fi = f(zx), €& € [€min, €max] C [0,1] and fy() is the Grippo’s non-
monotone term which is defined by

fek) Ogjﬁé%(k)fk j (5)
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where M (0) = 0 and, for k > 1, M (k) = min{k, M}, for given positive inte-
ger M. They employed (4) in the trust region ratio (3) and suggested non-
monotone trust region methods which are globally convergent. The reported
numerical results on test problems confirm the efficiency and robustness of
these methods in practice too.

The radius updating strategy is a crucial point in trust region methods
[1,21,28]. In the classical trust region methods, this parameter is simply
enlarged, shrunk or stayed unchanged based on the magnitude of ry. Sev-
eral strategies have been introduced in the literature for radius updating and
initial radius choosing; see e.g. [11,21-23,29]. Zhang et al. in [29] proposed
the radius update according to A, = ¢?||gx || By "|l, where ¢ € (0,1), p is
a nonnegative integer and Bj, = By + il is a positive definite matrix, for
some i € N. Although, Zhang’s method uses more information of the ob-
jective function for updating the radius, it requires an estimation of HB,; Ly,
which is costly. To reduce the computational cost of Zhang’s updating rule,
a simple adaptive rule was proposed by Shi and Wang in [23] according to

3 ~
AL = c”%, where ¢ € (0,1), By, is a positive definite matrix and p is a
i Brgk
nonnegative integer. Despite Zhang’s method that only updates the radius
based on the current point information, some updating rules based on the
information of the last two iterates have been introduced; see, e.g., [15,29,30].

Among them, Li [15] proposed an adaptive trust region method in which the

dy—
le=tl gy, where y1 = gx — gk

radius is updated according to Ay =
and dp_1 = X — Tp—1-

The advantages of nonmonotone and adaptive techniques have been simulta-
neously employed in the framework of trust region methods. Using the adap-
tive strategy proposed in [15], Sang et al. in [20] introduced a nonmonotone
adaptive trust region method based on a simple subproblem for large-scale
unconstrained optimization problems which makes full use of information in
the last two iterates. The idea of simple subproblem is originated from the
fact that solving the subproblem (2) is costly especially when By is a large-
scale and dense matrix. Therefore, the skills of the quasi-Newton method is
used for correcting By, by a real diagonal matrix ABy_; from By_1. Recently,
Zhou et al. in [30] constructed a simple subproblem according to the modifi-
cation of the secant condition of Wei in [26] and introduced a nonmonotone
adaptive trust region method based on the simple subproblem. Later, Biglari
and Solimanpur in [7] proposed another simple subproblem with some supe-
rior properties to that of [30] in which the approximation of the Hessian at
the current point x; is computed by

A(fr—1 — fr) + 391 dp—1 + giL_1di—1
dgfldk—l .

(6)

Y= y(2k) =

In this paper, we proposed a new nonmonotone adaptive trust region method
based on simple subproblem for unconstrained optimization problems. Our
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approach is equipped with the nonmonotone technique as proposed in [2,3],
and uses a slight modification of the secant condition in [7] for constructing
an approximation of the Hessian at the current point. Moreover, a modified
version of the adaptive strategy in [20] is employed in the framework of the
proposed algorithm. It is worth mentioning that the scalar approximation
of the Hessian based on modified secant condition in [6] has superior to the
standard Barzilai-Borwein method and its modifications. Under some stan-
dard assumptions, the global convergence property, as well as its superlinear
convergence rate, is established. Numerical results show the efficiency of the
proposed approach in practice comparing with some existing methods in the
literature.

The rest of the paper is organized as follows: In Section 2, we present the
structure of the new nonmonotone adaptive trust region method in details.
The global convergence property, as well as its rate of convergence, is estab-
lished in Section 3. Preliminary numerical results of applying the proposed
algorithm on some test problems are given in Section 4. Finally, we end up
the paper by some concluding remarks in Section 5.

2 The new algorithm

In this section, we propose a new adaptive nonmonotone trust region method
for solving unconstrained optimization problems. Our algorithm combines
the nonmonotone technique as proposed in [2] with an improved scalar ap-
proximation of the Hessian according to the modified secant equation as
proposed in [6].

Let us describe one step of our new algorithm here: For given xy, the trial step
dy, is computed by (approximately) solving the following simple subproblem:

. 1
min gx(d) = ngd—i— ngv(xk)d s.t.|ld]| < Ag, (7)

where 7, := y(x) is a scalar approximation of the Hessian matrix. Since
Ak, as defined by (6), may become negative in some iterations, we slightly
modify (6) and define v; as below:

C Afr1 = fr) + B+ np) gl de—1 + gf_ydi—a
a dg—ldkfl 7

(®)

Yk

where 7, is computed by:

9eTdn_1 ) if &k <0,

A(fr—fe—1)—398 d—1—g}_1dp—_1+6
N = .
0, Otherwise,
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where § is a small positive number. By this definition, it is obviously seen
that v, > 0. Now, using dj, the nonmonotone ratio is computed by:

_ Ry — f(zg +dy)
=T Predr ®)

Tk

where Ry is defined by (4) and Predy, = qi(0) — qx(dy). For given
uw € (0,1), the trial step is accepted whenever r, > p; otherwise it is
rejected. In both cases, the radius is adaptively updated according to

Ay = min{yk“;‘i—i“,Amax}, where Ap.x > 0 is a threshold value for the
radii and v is updated by:

OV, T < 1,
Vi1 = { Vk, 1 <1 < pa, (10)
min{o| vk, Vmax } TR > 2,

where 0 < 0pg < 1 < 01, 0 < p1 < pz <1 and vyax > 0 are given numbers.
By the way, the new point is given by zy+1 = xr + di as long as r, > p;
otherwise, we set zp11 = xy.

The procedure of the new proposed nonmonotone trust region algorithm is
outlined in Algorithm 1:

Algorithm 1: A new nonmonotone adaptive trust region algorithm

Input: 2o e R", 0 < pu<pu <pe <1,0<00<1<01,0 < é€nin < €max <
17 evgvManaX7Amax >07 0<91 <92 and 6 > 0.

Step 0: Set £k = 0, v := y(zo) = 1, go = g(xo), vo = 1 and Ay =
min {Voui’/—g”7 Amax}.

Step 1: If ||gx|| < e, Then Stop.

Step 2: Determine dy by solving (7) and compute 74 using (9).

Step 3: If r; < p, Then set Ap = oAk, and goto Step 2.

Step 4: Set xp11 = ) + d.

Step 5: Compute 11 using (8). If i1 < €, Then set v = 6;. If
Vi1 > T, Then set ypq1 = 0.

Step 6: Update ;41 using (10) and set Agyq = min{Vk+1%,AmaX}.
Set k =: k 4+ 1 and goto Step 1.
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Remark 1. Step 5 of Algorithm 1 implies that «; is a bounded positive
number for all k. More precisely, we have min{e, 61} < v < max {%, 02}.

Remark 2. The subproblem (7) can be easily solved by using the following
procedure [20]: Let wy = 25, If [Jwgl| < Ay, then we set the trial step as

di, = —wy. Otherwise, we choose a € (0, 1) so that ||aws|| = Ag. It can be
easily verified that o = m In this case, we set d = —awr = —mwk =
_Ag '

[FARLS

Remark 3. From Remark 2, one can easily see that, for all k, there ex-
ists a positive constant x so that ||dx| < kllgk|-

3 Convergence analysis

In this section, our aim is to analyze the local and global convergence prop-
erties of Algorithm 1. For this purpose, the following assumption is imposed
on the problem:

A1l. The set = {z € R"|f(z) < f(xo)} is a closed and bounded set and
f(x) is a twice continuously differentiable function over Q. Moreover,
V f(z) is a Lipschitz continuous function over 2.

Lemma 1. Assume that di is a solution of the problem (7). Then, one has:

1 .
Predy, := q;(0) — gi(dg) > §Hgk|| min {Ak, W} . (11)

Proof. We proceed the proof in the following two possible cases for dj:

Case I. | — %|| < Ay, and therefore, dj, = —g—’;: In this case one can easily
obtain the following relations:

2x(0) — qr.(dx) = qx(0) — qx (—gk>

T
o7 9 1 9k Ik
=9 \ — ) 35| —— Ve | ——
Yk 2 Vi Tk
2 2 2
k 1 gk k 1 . k
lad? Lol oel? 1 o
Yk 2 v 2k 2 Vi

Case II. || — ,’;—’;H > Ay, and therefore, dj, = —”?—:Hgk: In this case, we have:
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qx(0) — qx(dx) Qk(O)Qk< L3 )

- gk
gl

ot () =3 (o) o (7o)
- - - 1 Yk - 3 -7 Y9k k - 1 Yk
A Nl 2\ gl [N

1 1
Agllgell — §%Ai > Agllgrll — §Ak||9k||

1 L d ]
= A > = Ay, LKL
sAulaul > gl min { &, 121

where the first inequality is obtained from the fact that v, Ar < || gk|l-

Considering the above mentioned cases, the proof is completed. O

Lemma 2. Let di, be computed by the procedure as mentioned in Remark 2.
Then, for all k, one has:

|f(xn) = flzx + di) — Predy| < O(|lde[|®), (12)

where Predy, is defined by (11).

Proof. Using Taylor’s expansion and the fact that 4 is bounded due to Re-
mark 1, one can easily conclude the result. O

The following lemma states some appealing properties of the sequences
{fur)} and {Ri}, which are defined by (5) and (4), respectively. One can
find its proof in [2].

Lemma 3. Suppose that Assumption A1 holds and the sequence {xy} is
generated by Algorithm 1. Then, the following statements hold:

i) For all k, we have fr < R < for)-

ii) The sequence { fyry} is a decreasing and convergent sequence.
iii) limp oo fory = limg oo fr-

iv) limg_ oo R = limg oo fi-

Lemma 4. Let Assumption A1 hold and the sequence {xy} be generated by
Algorithm 1. Assume that there exists a constant ¢ € (0,1) so that ||gk|| > C,
for all k. Then, for any k, there exists a nonnegative integer p so that Tpqpi1
is a successful iteration point, i.e., Tpipy1 > U

Proof. Suppose that, on the contrary, there exists an iteration k so that, for
all nonnegative integer p, the point x4 p+1 is an unsuccessful iteration point,
ie.,

7"]@+p</,é, p:071a2a"" (13)

In this case, from Step 3 of Algorithm 1, we have
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Apiprr < of T A
This inequality together with the definition of Ay imply that:

lim Ak+p+1 =0. (14)

p—>00

Therefore, from Lemma 1, Remark 1 and (12), we have

F@rip) = f(@hip + disp) 1’ B ’f(:L‘k:+p> — f(@ksp + ditp) — Prediyp
Predyp Predrs,
O(lldn )
Y gktpll min{ Ay, nyiziﬂ}
< Ol Ak+p!1*)

L mi o
5¢ min {Ak+l’a max{ 1021 }

This implies that f<xk+p);fé§:j§+dk+p) — 1’ — 0, as p = oo. Thus, for

sufficiently large p, using Lemma 3, we have

f(@rap) = f(@ryp + dryp)
Predjyp

Ryqp — f(karp + dk+p)
Predjp

>

Tk+p = =1,
which contradicts 7,4, < p. This completes the proof of the lemma. O
Lemma 4 implies that the inner loop in Steps 2-3 of Algorithm 1 will be
terminated after finite number of iterations, and therefore, Algorithm 1 is
well-defined.

The following theorem provides the global convergence property of Algo-
rithm 1 under some suitable and standard assumptions.

Theorem 1. Suppose that Assumption A1 holds and {x} is the sequence
generated by Algorithm 1. Then, Algorithm 1 either stops at a stationary
point or

liminf ||gx|| = 0. (15)
k—oo

Proof. Suppose that Algorithm 1 does not stop at a stationary point. We
show that (15) holds for the infinite sequence {zy}. Assume that, on the
contrary, there exists a positive constant ¢ so that

lgkll > ¢ >0, VEk. (16)

Using Lemma 4, Algorithm 1 is well-defined and the inner loop in Steps 2—-3
is terminated after finite number of iterations. Therefore, we may assume
that 7, > pu. Now, from (9) and Lemma 1, we have
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1 : gl
Ry — fr41 = pPredy, > §NHng min {Ak; v
k

>

DN =

max{%,(%

u{min{Ak,C}} > 0. (17)

By taking limit from both sides of this inequality, as k¥ — oo, and using
Lemma 3, we conclude that

Ak = VkM — 0. (18)
Yk

Now, using Remark 1 and (16), (18) implies that
v — 0. (19)

Therefore, from (16) and Lemmas 1 and 2, we have

fae) — floe +di) 1| = f(x) — f(xr + di) — Predy
preds Predy,
0 (I4)?)
el min { Ay, 221}
2
< 0 (Ak) kif 07
L¢ min {Ak, {ca}}
which lmphes that
TR = Ry — f(or +dy) S flaw) = flz, +dp) . "

Predy, - Predy,

This shows that, for sufficiently large k, we have successful iterations. There-
fore, there exists a positive constant v* so that, for sufficiently large k,
v > v*. This contradicts (19). O

Under some extra assumptions on the problem and using the same proof line
of Theorem 3.7 in [30], one can construct the superlinear convergence rate of
the sequence {xy}, generated by Algorithm 1, to its limit point z*.

4 Numerical results

In this section, we focus on providing some computational results of applying
Algorithm 1, denoted by FATRA, along with the following algorithms on
some test problems in order to compare their performances:
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e NATRM: Algorithm 2.1 in [30];

e NATRA: Algorithm 2.1 in [30] in which the nonmonotone term in com-
puting the trust region ratio 7 is replaced by Ry, as given by (4);

e FATRM: Algorithm 1 in which the nonmonotone term in computing
the trust region ratio ry is replaced by fyx), as given by (5);

All the algorithms are implemented in MATLAB 7.10.0 (R2010a) environ-
ment on a PC with CPU 2.0 GHz and 4GB RAM memory and double pre-
cision format. The following parameters are considered in the relevant algo-
rithms:

p=0.1,p1 = 0.25, up = 0.75, €min = 107, €rpax = 10%, Aoy = 100, M = 10,

00 =cy=0.5,00 =1 =4, Vax = 01,9 = 0.25,e = = 10755 = 107F.

Moreover, in Step 5 of Algorithm 1, if 411 < €, then we set 7 = ¢; if
Yi+1 > %, then we set 0y = % The simple subproblem at each iteration
is solved by the procedure as mentioned in Remark 2. All the algorithms
are being stopped either |lgx| < 1075, or the number of iterations and/or
function evaluations exceeds 50000. In the latter case, we declare that the
algorithm is failed. The considered test problems are those in [30] as well as
some large-scale problems taken from [16] and [4]. We have also utilized the
advantages of the performance profile of Dolan and Moré in [10] to compare
the performances of considered algorithms.

Numerical results are given in Table 1. In this table, Prob stands for the
problem name, and n;, ny and fy,: denote the number of iterations, the
number of function evaluations and the optimum value of the objective func-
tion, respectively. It should be noted that the number of gradient evaluations
are almost the same as n;.

Figures 1 and 2 show the performance profiles of the results in Table 1
based on the number of iterations and function evaluations, respectively. At a
glance to Figure 1, we can find out that, in terms of n;, FATRA solves all the
considered test problems successfully, while the other algorithms have at least
one failure in their runs. Moreover, FATRA and FATRM algorithms solve
roughly 67% and 61% of the problems at the lowest value of n;, respectively.
This percentage for NATRM and NATRA algorithms are 49% and 47%,
respectively. Figure 2 is drawn based on ny of the results in Table 1. From
this figure, it is revealed that FATRA solves all the problems successfully
while FATRM has one failure in its run. Moreover, NATRM and NATRA
algorithms solve roughly 96% and 98% of the test problems successfully. On
the other hand, FATRA and FATRM algorithms solve about 58% and 60% of
test problems in the lowest value of ny while these percentages for NATRM
and NATRA algorithms are about 34% and 22%.

Besides the performance profiles of the considered algorithms based on n;
and ny, we have stored the average CPU time in 20 runs for each algorithms
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and drew the performance profile of the considered algorithms based on CPU
time in Figure 3. The result shows that FATRA works well in this regard
too. Based on the above mentioned arguments, one can easily realize that
FATRA is competitive with FATRM, NATRM and NATRA algorithms in
terms of n;, ny and CPU time. Moreover, the performance of FATRM is
very close to FATRA.
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Figure 3: Performance profile of considered algorithms based on CPU time

5 Conclusion

In this paper, a new nonmonotone adaptive trust region method for solv-
ing unconstrained optimization problems based on a simple subproblem is
presented. The new proposed algorithm uses the advantage of the adaptive
trust region method, as proposed in [5], with the nonmonotone term, as sug-
gested in [2]. The global convergence property of the new proposed method
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is established under some standard assumptions. Numerical results on some
large-scale test problems confirm the efficiency and effectiveness of the new
proposed algorithm in comparison with some other existing algorithms in the
literature.
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