Mathematical analysis and forecasting of controlled Spatio-temporal dynamics of the EG.5 Virus

Document Type : Research Article

Authors

1 Laboratory of Analysis, Modeling and Simulation, Department of Mathematics and Computer Science, Faculty of science Ben M’sik, University Hassan II, Casablanca, Morocco.

2 Laboratory of Fundamental Mathematics and Their Applications , Department of Mathematics Faculty of Sciences El Jadida, Chouaib Doukkali University, El Jadida, Morocco.University, El Jadida, Morocco.

Abstract

In this article, we propose a mathematical approach that connects an innovative spatio-temporal model to the problem of the EG.5 variant of COVID-19 in a human population. We demonstrate the existence and uniqueness of the global positive solution for our suggested system. The implementation and analysis of an applicable optimal control issue are as follows. The methods of optimal control theory are applied in this work to demonstrate the existence of optimal control, and with necessary op-timality conditions, we discover the explicit expression of optimal control that minimizes the negative impacts of this infectious disease on countries. We provide numerical simulations at the conclusion to demonstrate the efficacy of our chosen strategy.

Keywords

Main Subjects


[1] Abbasi, Z., Zamani, I., Mehra, A.H.A., Shafieirad, M. and Ibeas, A. Optimal control design of impulsive SQEIAR epidemic models with ap-plication to COVID-19. Chaos Solit. Fractals. 139 (2020) 110054.
[2] El Alami Laaroussi, A. and Rachik, M. On the regional control of a reaction-diffusion system SIR. Bull. Math. Biol. 82 (2020) 1–25.
[3] Aldila, D., Padma, H., Khotimah, K., Desjwiandra, B. and Tasman, H. Analyzing the MERS disease control strategy through an optimal control problem. Int. J. Appl. Math. Comput. Sci. 28(1) (2018) 169–184.
[4] Athans, M. and Falb, P.L. Optimal control: An introduction to the theory and its applications., Dover Publications, 2006.
[5] Brezis, H., Ciarlet, P.G. and Lions, J.L. Analyse fonctionnelle: théorie et applications, vol 91. Dunod, Paris, 1999.
[6] Chinchuluun, A., Pardalos, P.M., Enkhbat, R., and Tseveendori. I, Eds., Optimization and optimal control: Theory and applications, vol. 39, Springer, 2010.
[7] Drosten, C., Seilmaier, M., Corman, V.M., Hartmann, W., Scheible, G., Sack, S., Guggemos, W., Kallies, R., Muth, D., Junglen, S. and Müller, M.A. Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. Lancet. Infect. Dis. 13 (2013) 745–751.
[8] Guery, B., Poissy, J., El Mansouf, L., Séjourné, C., Ettahar, N., Lemaire, X., Vuotto, F., Goffard, A., Behillil, S., Enouf, V. and Caro, V. Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: A report of nosocomial transmission. Lancet 381(9885) (2013) 2265–2272.
[9] Khajji, B., Kada, D., Balatif, O. and Rachik, M. A multi-region discrete time mathematical modelling of the dynamics of Covid-19 virus prop-agation using optimal control. J. Appl. Math. Comput. 64(1-2) (2020) 255–281.
[10] Kim, Y., Lee, S., Chu, C., Choe, S., Hong, S. and Shin, Y. The charac-teristics of Middle Eastern respiratory syndrome coronavirus transmis-sion dynamics in South Korea. Osong Public Health Res. Perspect. 7(1) (2016) 49–55.
[11] Kouidere, A., Khajji, B., El Bhih, A., Balatif, O. and Rachik, M. A mathematical modeling with optimal control strategy of transmission of covid-19 pandemic virus. Commun. Math. Biol. Neurosci., 2020 (2020), Article ID 24.
[12] Laaroussi, A.E.A., Ghazzali, R., Rachik, M. and Benrhila, S. Modeling the spatiotemporal transmission of Ebola disease and optimal control: a regional approach. Int. J. Dynam. Control, 7 (2019) 1110–1124.
[13] Liberzon, D. Calculus of Variations and Optimal Control Theory. A Concise Introduction, Princeton University Press, Princeton, NJ, USA, 2012.
[14] Madubueze, C.E., Dachollom, S. and Onwubuya, I.O. Controlling the spread of covid-19: Optimal control analysis. Comput. Math. Methods Med. (2020) Article ID 6862516.
[15] El Mehdi, M., Said, M., Bouchaib, K., Omar, B. and Mostafa, R. Math-ematical Study Aiming at Adopting an Effective Strategy to Coexist with Coronavirus Pandemic. J. Math. Comput. Sci. 11(1) (2021) 44–60.
[16] Perkins, T.A. and España, G. Optimal control of the COVID-19 pan-demic with non-pharmaceutical interventions. Bull. Math. Biol. 82(9) (2020) 118.
[17] Pontryagin, L.S. Mathematical theory of optimal processes, John Wiley and Sons, London, UK, 1962.
[18] Sari, R.A., Habibah, U. and Widodo, A., Optimal control on model of SARS disease spread with vaccination and treatment. J. Exp. Life Sci. 7(2) (2017) 61–68
[19] Smoller, J. Shock waves and reaction-diffusion equations, Grundlehren der mathematischen Wissenschaften, 258, (GL, volume 258) Springer-Verlag, New York, 1994.
[20] Stengel, R.F, Optimal control and estimation, Dover, New York, NY, USA, 1994.
[21] Tahir, M., IS, A.S., Zaman, G. and Khan, T. Prevention strategies for mathematical model MERS-Corona virus with stability analysis and op-timal control. J. Nanosci. Nanotechnol. Appl. 1(1) (2019) 1.
[22] Vrabie, I.I. C0-semigroups and applications, North-Holland Mathematics Studies, 191, North-Holland Publishing Co., Amsterdam, Volume 191 (2003) 1–373.
[23] Yang, C. and Wang, J. A mathematical model for the novel coronavirus epidemic in Wuhan, China. Math. Biosci. Eng. 17(3) (2020) 2708–2724.
[24] Zine, H., Adraoui, A.E. and Torres, D.F. Mathematical analysis, fore-casting and optimal control of HIV/AIDS spatiotemporal transmission with a reaction diffusion SICA model. AIMS Mathematics 7(9) (2022) 16519–16535.
CAPTCHA Image