A numerical solution of parabolic quasi-variational inequality nonlinear using Newton-multigrid method

Document Type : Research Article

Authors

1 Department of Mathematics, Faculty of exact Sciences, University of EL-OUED, Algeria.

2 Institute of Informatics and Computing in Energy (IICE), Universiti Tenaga Nasional, Kajang, Selangor, Malaysia.

10.22067/ijnao.2024.86954.1395

Abstract

In this article, we apply three numerical methods to study the L∞-convergence of the Newton-multigrid method for parabolic quasi-variational inequalities with a nonlinear right-hand side. To discretize the problem, we utilize a finite element method for the operator and Euler scheme for the time. To obtain the system discretization of the problem, we reformulate the parabolic quasi-variational inequality as a Hamilton–Jacobi–Bellman equation. For linearizing the problem on the coarse grid, we employ Newton’s method as an external interior iteration of the Jacobian system. On the smooth grid, we apply the multigrid method as an interior iteration on the Jacobian system. Finally, we provide a proof for the L∞-convergence of the Newton-multigrid method for parabolic quasi-variational inequalities with a nonlinear right-hand, by giving a numerical example for this problem. 

Keywords

Main Subjects


[1] Ahmad, I., Seadawy, I., Ahmad, H., Thounthong, P. and Wang, F. Numerical study of multi-dimensional hyperbolic telegraph equations arising in nuclear material science via an efficient local meshless method, Int. J. Nonlinear Sci. Numer. Simul. 23(1) (2022), 115–122.
[2] Beggas, M. and Haiour, M. The maximum norm analysis of schwarz method for elliptic quasi-variationnal inequalities, Kragujevac Journal of Mathematics 45(5) (2021), 635–645.
[3] Belouafi, M-S. and Beggas, M. Maximum norm convergence of Newtonmultigrid methods for elliptic quasi-variational inequalities with nonlinear source terms, Adv. Math., Sci. J. 11(10) (2022), 969–983.
[4] Bencheikh, M.A. and Haiour, M. L∞-error analysis for parabolic quasivariational inequalities related to impulse control problems, Comput. Math. Model. 28 (2017), 89–108.
[5] Bencheikh, M.A., Boulaaras, S. and Haiour, M. An optimal L∞-error estimate for an approximation of a parabolic variational inequality, Numer. Func. Anal. Opt. 37(1) (2016), 1–18.
[6] Bensoussan, A. and Lions, J. Impulse control and quasi-variational inequalities, Gauthier Villars, Paris, 1984.
[7] Boulaaras, S. and Haiour, M. A new approach to asymptotic behavior for a finite element approximation in parabolic variational inequalities, Int. Sch. Res. Notices 2011 (2011).
[8] Boulaaras, S. and Haiour, M. L∞-asymptotic behavior for a finite element approximation in parabolic quasi-variational inequalities related to impulse control problem, Appl. Math. Comput. 217 (2011), 6443–6450.
[9] Boulaaras, S. and Haiour, M. The finite element approximation in parabolic quasivariational inequalities related to impulse control problem with mixed boundary conditions, J. Taibah Univ. Sci. 7(3) (2013), 105–113.
[10] Boulaaras, S. and Haiour, M. The finite element approximation of evolutionary Hamilton–Jacobi–Bellman equations with nonlinear source terms, Indag. Math. 24 (2013), 161–173.
[11] Boulaaras, S. and Haiour, M. The theta time scheme combined with a finite-element spatial, approximation in the evolutionary Hamilton–Jacobi–Bellman equation with linear source terms, Comput. Math. Model. 25(3) (2014), 423–438.
[12] Boulaaras, S. and Haiour, M. A new proof for the existence and uniqueness of the discrete evolutionary HJB equation, Appl. Math. Comput. 262 (2015), 42–55.
[13] Boulbrachene, M. and Chentouf, B. The finite element approximation of Hamilton–Jacobi–Bellman equations: The noncoercive case, J. Appl. Math. Comput. 158(2) (2004), 585–592.  1014
[14] Brandt, A. Algebraic multigrid theory: The symmetric case, Appl. Math. Comput. 19 (1986), 23–56.
[15] Brown, P.N., Vassilevski, P.S. and Woodward, C.S. On meshindependent convergence of an inexact Newton–multigrid algorithm, SIAM J. Comput. 25(2) (2003), 570–590.
[16] Ciarlet, P.G. and Raviart, P-A. Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Eng. 2(1) (1973), 17–31.
[17] Cortey-Dumont, P. Approximation numérique d’une inéquation quasi variationnelle liée à des problèmes de gestion de stock, RAIRO. Anal. numér. 14(4) (1980), 335–346.
[18] Cortey-Dumont, P. On finite element approximation in the L∞norm of variational inequalities, Numer. Math. (Heidelb.), 47(1) (1985), 45–57.
[19] Hackbusch, W. Multi-grid methods and applications, Springer- Verlag (Springer Series in Computational Mathematics, Berlin and New York, 1985.
[20] Hackbusch, W. and Mittelmann, H-D. On multi-grid methods for variational inequalities, Numer. Math. (Heidelb.) 42(1) (1983), 65–76.
[21] Haiour, M. Etude de la convergence uniforme de la methode multigrilles appliquees aux problemes frontieres libres, PhD thesis, Universite de Annaba-Badji Mokhtar, 2004.
[22] Hoppe, H.W. Multi-grid methods for Hamilton-Jacobi-Bellman equations, Numer. Math. (Heidelb.) 49(2) (1986), 239–254.
[23] Hoppe, H.W. Multigrid algorithms for variational inequalities, SIAM J. Numer. Anal. 24(5) (1987), 1046–1065.
[24] Hoppe, H.W. Une méthode multigrille pour la solution des problèmes d’obstacle, ESAIM: Math. Model. Numer. Anal. 24(6) (1990), 711–735.
[25] Nesba, N-H. Beggas, M. Belouafi, M-S. Imtiaz, A. and Hijaz, A. Multigrid methods for the solution of nonlinear variational inequalities, Eur. J. Pure Appl. 16(3) (2023), 1956–1969.
[26] Reusken, A. On maximum norm convergence of multigrid methods for elliptic boundary value problems, SIAM J. Numer. Anal. 31(2) (1994), 378–392.
[27] Reusken, A. Introduction to multigrid methods for elliptic boundary value problems, Inst. Fur. Geometrie und Praktische Mathematik, 2008. 
CAPTCHA Image