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Abstract

The hyperbolic partial differential equation (PDE) has important practical
uses in science and engineering. This article provides an estimate for solving
the Goursat problem in hyperbolic linear PDEs with variable coefficients.
The Goursat PDE is transformed into a second kind of linear Volterra in-
tegral equation. A convergent algorithm that employs Taylor polynomials
is created to generate a collocation solution, and the error using the maxi-
mum norm is estimated. The paper includes numerical examples to prove
the method’s effectiveness and precision.

AMS subject classifications (2020): 45D05, 34K28, 45L05, 30K05.

Keywords: Hyperbolic partial differential equations; Goursat problem; Volterra
integral equation; Collocation method; Taylor polynomials.

1 Introduction

Partial differential equations (PDEs) are commonly used to address problems
in various fields, such as engineering, physics, and finance. These equations
are crucial in the study of various phenomena such as electric currents, grav-
ity, heat transfer, water wave movement, fluid mechanics, electromagnetism,
elasticity, quantum mechanics, population dynamics, stock and option pric-
ing, chemical reaction-diffusion, as well as in the modeling of Schrödinger’s
equation.

A second-order linear hyperbolic PDE with two variables for ω(ϵ, η) has
the form

A
∂2ω

∂ϵ2
+B

∂2ω

∂ϵ∂η
+ C

∂2ω

∂η2
+D

∂ω

∂ϵ
+ E

∂ω

∂η
+ Fω +G = 0, (1)

where B2 − 4AC > 0, and A,B,C,D,E, F , and G are functions of the
variables ϵ and η. By a suitable change of the independent variables, we
shall show that any equation of the form (1) can be reduced to the canonical
form or normal form of the hyperbolic equation called the Goursat problem

∂2ω(t, s)

∂t∂s
= ϕ

(
t, s, ω,

∂ω(t, s)

∂t
,
∂ω(t, s)

∂s

)
. (2)
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615 Goursat problem in hyperbolic PDEs solved by taylor collocation method

Equations (1) and (2) are hyperbolic PDEs and appear frequently in the study
of ecological and cosmological phenomena [26]. To accurately simulate these
events, it is important to develop efficient and reliable methods for solving
these equations. Several numerical techniques have been proposed for this
purpose, including finite difference methods [14, 4], finite element methods
[2], Taylor matrix method [7, 6], Legendre multi-wavelet Galerkin method [28,
27], rational Chebyshev method [10], modified variational iteration method
[1], and Chebyshev wavelet scheme [13].

The numerical solution of Goursat problem (2) has been investigated by
many authors. For instance, Scott [25] considered the homogeneous Goursat
problem (3) with the coefficients depending on the same variable. Evans
and Sanugi [12] proposed a nonlinear trapezoidal formula based on geometric
means. Day [9] used the Runge–Kutta method to approximate the solution
of (2). Pandey [24] presented a novel exponential finite difference to obtain
a numerical solution of (2). Drignei [11] developed an algorithm to find the
quadruple solution to a Goursat problem in a triangular domain.

In this paper, we consider a collocation solution of the linear Goursat
problem of the second-order with variable coefficients

∂2ω(t, s)

∂t∂s
+ a(t, s)

∂ω(t, s)

∂t
+ b(t, s)

∂ω(t, s)

∂s
+ c(t, s)ω(t, s) = f(t, s), (3)

ω(0, s) = α(s), ω(t, 0) = β(t), α(0) = β(0), (t, s) ∈ [0, X]× [0, Y ],

where a, b, c, and f are smooth functions through the domain of discussion.
For the existence and uniqueness of the solution, see [15].

The Goursat PDE (3) is converted to the linear Volterra integral equation
(VIE) of the second kind

ω(τ, z) =g(τ, z) +

∫ τ

0

κ1(t, z)ω(t, z)dt+

∫ z

0

κ2(τ, s)ω(τ, s)ds

+

∫ τ

0

∫ z

0

κ3(t, s)ω(t, s)dsdt, (4)

where g, κ1, κ2, and κ3 are defined in (7). Moreover, the special case of (4) for
κ1 = κ2 = 0 is considered in [19]. We develop the collocation method intro-
duced in [3, 16, 17, 18] to solve (4). This method is based on approximating
the exact solution of a given integral equation with a suitable function be-
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longing to a chosen finite-dimensional space (8) such that the approximated
solution satisfies the integral equation on collocation points (9). An impor-
tant aspect of this method is that the number of subintervals and the degree
of Taylor polynomials can be changed to get the best possible result. It is
also easy to implement, and the approximate solution is based on iterative
formulas without needing to solve any algebraic equations.

The paper is organized as follows: In section 2, the converting of PDE
to the two-dimensional VIE. In Section 3, the approximating solution of (6)
in each collocation point by a Taylor polynomial. The convergence analysis
is investigated in section 4. Numerical examples are provided in section 5 to
illustrate the theoretical results. Finally, a conclusion is given in section 6.

2 Converting PDE to two-dimensional VIE

In this section, we study the technique that will convert PDE (3) to an
equivalent VIE (4).

Integrating both sides of (3) with respect to s yields

∂ω(t, z)

∂t
− ∂ω(t, 0)

∂t
+

∫ z

0

a(t, s)
∂ω(t, s)

∂t
ds+

∫ z

0

b(t, s)
∂ω(t, s)

∂s
ds

+

∫ z

0

c(t, s)ω(t, s)ds =

∫ z

0

f(t, s)ds,

which implies∫ z

0

f(t, s)ds =
∂ω(t, z)

∂t
− ∂ω(t, 0)

∂t
+

∫ z

0

a(t, s)
∂ω(t, s)

∂t
ds+ b(t, z)ω(t, z)

− b(t, 0)ω(t, 0)−
∫ z

0

∂b(t, s)

∂s
ω(t, s)ds+

∫ z

0

c(t, s)ω(t, s)ds.

(5)

Integrating again both sides of (5) with respect to t yields∫ τ

0

∫ z

0

f(t, s)dsdt =ω(τ, z)− ω(0, z)− ω(τ, 0) + ω(0, 0)

+

∫ τ

0

∫ z

0

a(t, s)
∂ω(t, s)

∂t
dsdt

+

∫ τ

0

b(t, z)ω(t, z)dt−
∫ τ

0

b(t, 0)ω(t, 0)dt
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617 Goursat problem in hyperbolic PDEs solved by taylor collocation method

−
∫ τ

0

∫ z

0

∂b(t, s)

∂s
ω(t, s)dsdt+

∫ τ

0

∫ z

0

c(t, s)ω(t, s)dsdt.

Hence,∫ τ

0

∫ z

0

f(t, s)dsdt =ω(τ, z)− α(z)− β(τ) + ω(0, 0)

+

∫ z

0

a(τ, s)ω(τ, s)ds+

∫ τ

0

b(t, z)ω(t, z)dt

−
∫ z

0

a(0, s)α(s)ds−
∫ τ

0

b(t, 0)β(t)dt

−
∫ τ

0

∫ z

0

∂a(t, s)

∂t
ω(t, s)dsdt

−
∫ τ

0

∫ z

0

∂b(t, s)

∂s
ω(t, s)dsdt+

∫ τ

0

∫ z

0

c(t, s)ω(t, s)dsdt,

which is equivalent to the following 2D-VIE:

ω(τ, z) =g(τ, z) +

∫ τ

0

κ1(t, z)ω(t, z)dt+

∫ z

0

κ2(τ, s)ω(τ, s)ds

+

∫ τ

0

∫ z

0

κ3(t, s)ω(t, s)dsdt, (6)

where

κ1(t, z) : = −b(t, z),

κ2(τ, s) : = −a(τ, s),

κ3(t, s) : =
∂a(t, s)

∂t
+
∂b(t, s)

∂s
− c(t, s),

g(τ, z) : = α(z) + β(τ)− ω(0, 0) +

∫ z

0

a(0, s)α(s)ds

+

∫ τ

0

b(t, 0)β(t)dt+

∫ τ

0

∫ z

0

f(t, s)dsdt. (7)

3 Taylor collocation method

In this section, we approximate solutions of 2D-VIE (6) in the space

S
(−1)
p−1 (ΠN,M ) = {v : vn,m = v|Dn,m ∈ πp−1, n = 0, 1, . . . , N−1;m = 0, 1, . . . ,M−1} (8)

of the real bivariate polynomial spline functions of degree (at most) p− 1 in
τ and z. Its dimension is NMp2. Here, ΠN = {τi = ih, i = 0, 1, . . . , N} and
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Birem, Boulmerka, Laib and Hennous 618

ΠM = {zj = jk, j = 0, 1, . . . ,M} denote, respectively, uniform partitions of
the intervals [0, T ] and [0, Z] with the step-sizes given by h = T

N and k = Z
M .

These partitions are define a grid for D

ΠN,M = ΠN ×ΠM = {(τn, zm), 0 ≤ n ≤ N, 0 ≤ m ≤M}. (9)

Set the subintervals

σn = [τn; τn+1), n = 0, 1, . . . , N − 2; σN−1 = [τN−1, τN ],

δm = [zm; zm+1),m = 0, 1, . . . ,M − 2; δM−1 = [zM−1, zM ],

and Dn,m := σn × δm for all n = 0, 1, . . . , N − 1;m = 0, 1, . . . ,M − 1.

To define the collocation solution, we use the Taylor polynomial on each
rectangle Dn,m;n = 0, 1, . . . , N − 1;m = 0, 1, . . . ,M − 1. Note that the
solution ω of (6) is known at point (0, 0): ω(0, 0) = g(0, 0).

First, we approximate ω in the rectangle D0,0 by the polynomial

v0,0(τ, z) =

p−1∑
i+j=0

1

i!j!

∂i+jω(0, 0)

∂τ i∂zj
τ izj ; (τ, z) ∈ D0,0, (10)

where ∂
i+jω(0, 0)

∂τ i∂zj
is the exact value of ∂i+jω

∂τ i∂zj
at point (0, 0).

Differentiating equation (6) j-times with respect to z and i-times with
respect to τ , we obtain

∂i+jω(τ, z)

∂τ i∂zj
=∂

(i)
1 ∂

(j)
2 g(τ, z)

+

j∑
l=0

i−1∑
η=0

(j
l

)(i− 1

η

) ∂i−1−η

∂τ i−1−η

[
∂
(j−l)
2 κ1(τ, z)

] ∂η+lω(τ, z)

∂τη∂zl

+

j−1∑
l=0

i∑
η=0

(r
l

)(i
η

) ∂i−η

∂τ i−η

[
∂j−1−l

∂zj−1−l
κ2(τ, z)

]
∂η+lω(τ, z)

∂τη∂zl

+

j−1∑
l=0

i−1∑
η=0

(j − 1

l

)(i− 1

η

) ∂i−1−η

∂τ i−1−η

[
∂j−1−l

∂zj−1−l
κ3(τ, z)

]
∂η+lω(τ, z)

∂τη∂zl
. (11)

Second, we approximate ω in the rectangles Dn,0, n = 1, . . . , N − 1 by the
polynomials

vn,0(τ, z) =

p−1∑
i+j=0

1

i!j!

∂i+j v̂n,0(τn, 0)

∂τ i∂zj
(τ − τn)

izj ; (τ, z) ∈ Dn,0, (12)
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619 Goursat problem in hyperbolic PDEs solved by taylor collocation method

where v̂n,0 is the exact solution of the integral equation:

v̂n,0(τ, z) =g(τ, z) +

∫ z

0

κ2(τ, s)v̂n,0(τ, s)ds

+

n−1∑
ξ=0

∫ τξ+1

τξ

κ1(t, z)vξ,0(t, z)dt+

∫ τ

τn

κ1(t, z)v̂n,0(t, z)dt

+

n−1∑
ξ=0

∫ τξ+1

τξ

∫ z

0

κ3(t, s)vξ,0(t, s)dsdt+

∫ τ

τn

∫ z

0

κ3(t, s)v̂n,0(t, s)dsdt,

(13)

and ∂i+j v̂n,0(τn,0)
∂τ i∂zj is the exact value of ∂i+j v̂n,0

∂τ i∂zj at point (τn, 0).

Differentiating equation (13) j-times with respect to z and i-times with
respect to τ , we obtain

∂i+j v̂n,0(τ, z)

∂τ i∂zj
=∂

(i)
1 ∂

(j)
2 g(τ, z)

+

j∑
l=0

i−1∑
η=0

(j
l

)(i− 1

η

) ∂i−1−η

∂τ i−1−η

[
∂
(j−l)
2 κ1(τ, z)

] ∂η+lv̂n,0(τ, z)

∂τη∂zl

+

j−1∑
l=0

i∑
η=0

(j − 1

l

)(i
η

) ∂i−η

∂τ i−η

[
∂j−1−l

∂zj−1−l
κ2(τ, z)

]
∂η+lv̂n,0(τ, z)

∂τη∂zl

+

j−1∑
l=0

i−1∑
η=0

(j − 1

l

)(i− 1

η

) ∂i−1−η

∂τ i−1−η

[
∂j−1−l

∂zj−1−l
κ3(τ, z)

]
∂η+lv̂n,0(τ, z)

∂τη∂zl
.

(14)

Third, we approximate ω by vn,m in the rectangles Dn,m, n = 0, 1, . . . , N −1

and m = 1, . . . ,M − 1 such that

vn,m(τ, z) =

p−1∑
i+j=0

1

i!j!

∂i+j v̂n,m(τn, zm)

∂τ i∂zj
(τ − τn)

i(z − zm)j ; (τ, z) ∈ Dn,m,

(15)
where v̂n,m is the exact solution of the integral equation:

v̂n,m(τ, z) =g(τ, z) +

n−1∑
ξ=0

∫ τξ+1

τξ

κ1(t, z)vξ,m(t, z)dt+

∫ τ

τn

κ1(t, z)v̂n,m(t, z)dt

+

m−1∑
ρ=0

∫ zρ+1

zρ

κ2(τ, s)vn,ρ(τ, s)ds+

∫ z

zm

κ2(τ, s)v̂n,m(τ, s)ds

+

n−1∑
ξ=0

m−1∑
ρ=0

∫ τξ+1

τξ

∫ zρ+1

zρ

κ3(t, s)vξ,ρ(t, s)dsdt
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+

n−1∑
ξ=0

∫ τξ+1

τξ

∫ z

zm

κ3(t, s)vξ,m(t, s)dsdt

+

m−1∑
ρ=0

∫ τ

τn

∫ zρ+1

zρ

κ3(t, s)vn,ρ(t, s)dsdt

+

∫ τ

τn

∫ z

zm

κ3(t, s)v̂n,m(t, s)dsdt,

(16)

and ∂i+j v̂n,0(τn,zm)
∂τ i∂zj is the exact value of ∂i+j v̂n,0

∂τ i∂zj at point (τn, zm).

Differentiating equation (16) j-times with respect to z and i-times with
respect to τ , we obtain

∂i+j v̂n,m(τ, z)

∂τ i∂zj
(17)

= ∂
(i)
1 ∂

(j)
2 g(τ, z)

+

j∑
l=0

i−1∑
η=0

(
j

l

)(
i− 1

η

)
∂i−1−η

∂τ i−1−η

[
∂
(j−l)
2 κ1(τ, z)

] ∂η+lv̂n,m(τ, z)

∂τη∂zl

+

j−1∑
l=0

i∑
η=0

(
j − 1

l

)(
i

η

)
∂i−η

∂τ i−η

[
∂j−1−l

∂zj−1−l
κ2(τ, z)

]
∂η+lv̂n,m(τ, z)

∂τη∂zl

+

j−1∑
l=0

i−1∑
η=0

(
j − 1

l

)(
i− 1

η

)
∂i−1−η

∂τ i−1−η

[
∂j−1−l

∂zj−1−l
κ3(τ, z)

]
∂η+lv̂n,m(τ, z)

∂τη∂zl
.

4 Convergence analysis

We consider the space L∞(D) with the norm

∥φ∥L∞(D) = inf {C ∈ R : |φ(τ, z)| ≤ C for a.e. (τ, z) ∈ D} <∞.

The following lemmas will be used in proving the convergence of the presented
method.

Lemma 1 (Taylor’s theorem for functions of two independent variables).
Let f be p times continuously differentiable on D = [a, b] × [c, d] and let
(τ0, z0) ∈ D. Then for all (τ, z) ∈ D, we have

Iran. J. Numer. Anal. Optim., Vol. 14, No. 2, 2024, pp 613–637



621 Goursat problem in hyperbolic PDEs solved by taylor collocation method

f(τ, z) =

p−1∑
i+j=0

1

i!j!

∂i+jf(τ0, z0)

∂τ i∂zj
(τ − τ0)

i(z − z0)
j

+
∑

i+j=p

1

i!j!

∂i+jf(τ1, z1)

∂τ i∂zj
(τ − τ0)

i(z − z0)
j ,

where {
τ1 = θτ + (1− θ)τ0 ∈ [a, b],

z1 = θz + (1− θ)z0 ∈ [c, d],
θ ∈ (0, 1).

Lemma 2 (Gronwall-type inequality [21]). Let ω(τ, z) and p(τ, z) be non-
negative continuous functions in Ω = [a, b] × [c, d], and let p(τ, z) be nonde-
creasing in each of the variables in Ω and satisfy the following inequality:

ω(τ, z) ≤p(τ, z) + κ

∫ τ

a

ω(t, z)dt+ κ

∫ z

c

ω(τ, s)ds

+ κ

∫ τ

a

∫ z

c

ω(t, s)dsdt, (τ, z) ∈ Ω,

where κ is positive constant. Then there exists a positive constant ν such
that

ω(τ, z) ≤ νp(τ, z).

Lemma 3 (Discrete Gronwall-type inequality [5]). Let {κj}nj=0 be a given
nonnegative sequence and let the sequence {εn} satisfyε0 ≤ p0 and

εn ≤ p0 +

n−1∑
j=0

κjεj , n ≥ 1,

with p0 ≥ 0. Then

εn ≤ p0 exp

n−1∑
j=0

κj

 , n ≥ 1.

Lemma 4 (Discrete Gronwall-type inequality of two variables [23]). Let ωn,m

be a given nonnegative sequence, and let b1, b2, b3 and β be independent of h
and k and strictly positive. If the sequence ωn,m satisfies

Iran. J. Numer. Anal. Optim., Vol. 14, No. 2, 2024, pp 613–637
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ωn,m ≤ hb1

n−1∑
ξ=0

ωξ,m + kb2

m−1∑
ρ=0

ωn,ρ + hkb3

n−1∑
ξ=0

m−1∑
ρ=0

ωξ,ρ + β, (18)

for all n = 0, 1, . . . , N,m = 0, 1, . . . ,M , then

ωn,m ≤ β exp(γ(Nh+Mk)), (19)

where γ = 1
2

(
b1 + b2 +

√
(b1 + b2)2 + 4b3

)
.

Lemma 5. Let g, κ1,κ2, and κ3 be p times continuously differentiable on
their respective domains. Then, there exists a positive number α(p) such
that for all n = 0, 1, . . . , N − 1, m = 0, . . . ,M − 1, and i+ j = 0, 1, . . . , p, we
have ∥∥∥∥∂i+j v̂n,m

∂τ i∂zj

∥∥∥∥
L∞(Dn,m)

≤ α(p),

where v̂0,0(τ, z) = ω(τ, z) for (τ, z) ∈ D0,0.

Proof. Let ai+j
n,m = ∥∂i+j v̂n,m

∂τ i∂zj ∥L∞(Dn,m).

First, we have for all i+ j = 0, 1, . . . , p,

ai+j
0,0 ≤ max

{∥∥∥∥ ∂i+jω

∂τ i∂zj

∥∥∥∥
L∞(D0,0)

, i+ j = 0, 1, . . . , p

}
= α1(p). (20)

Second, for i+ j = 0, from (13), we have for all n = 1, . . . , N − 1

a0+0
n,0 ≤c+ c1,1

n−1∑
ξ=0

∫ τξ+1

τξ

p−1∑
α+β=0

aα+β
ξ,0 dt+ c1,1

∫ τ

τn

a0+0
n,0 dt+ c2,2

∫ z

0

a0+0
n,0 ds

+ c3,2

n−1∑
ξ=0

∫ τξ+1

τξ

∫ z

0

p−1∑
α+β=0

aα+β
ξ,0 dsdt+ c3,2

∫ τ

τn

∫ z

0

a0+0
n,0 dsdt,

and for i+ j = 1, . . . , p, from (14), we have for all n = 1, . . . , N − 1,

ai+j
n,0 ≤c+ c1,2

j∑
l=0

i−1∑
η=0

aη+l
n,0 + c2,1

j−1∑
l=0

i∑
η=0

aη+l
n,0 + c3,3

j−1∑
l=0

i−1∑
η=0

aη+l
n,0 ,

where, the constants c, c1,1, c1,2, c2,1, c2,2, c3,2, and c3,3 are positive and inde-
pendent of N and M .

Hence, for all i+ j = 0, 1, . . . , p,
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ai+j
n,0 ≤c+ c1,1h

n−1∑
ξ=0

p−1∑
α+β=0

aα+β
ξ,0 + c1,2

j∑
l=0

i−1∑
η=0

aη+l
n,0 + c1,1h

j∑
l=0

a0+l
n,0

+ c2,1

j−1∑
l=0

i∑
η=0

aη+l
n,0 + c2,2k

i∑
η=0

aη+0
n,0

+ c3,2hk

n−1∑
ξ=0

p−1∑
α+β=0

aα+β
ξ,0 + c3,3

j−1∑
l=0

i−1∑
η=0

aη+l
n,0 + c3,2hka

0+0
n,0 ,

which implies that

ai+j
n,0 ≤ c+ c1h

n−1∑
ξ=0

p−1∑
η+l=0

aη+l
ξ,0 + c2

i+j−1∑
η+l=0

aη+l
n,0 , (21)

where c1 = c1,1 + c3,2k, c2 = c1,2 + c1,1h+ c2,1 + c2,2k + c3,3 + c3,2hk.

Now, we consider the sequence Γn = max{ai+j
n,0 , i + j = 0, . . . , p}, n =

0, 1, . . . , N − 1, from (21), we obtain

ai+j
n,0 ≤ c+ c1p

2h

n−1∑
ξ=0

Γξ + c2

i+j−1∑
η+l=0

aη+l
n,0 .

Using Lemma 3 with the following notations

εi+j = ai+j
n,0 , p0 = c+ c1p

2h

n−1∑
ξ=0

Γξ, kη+l = c2,

we obtain

ai+j
n,0 ≤

c+ c1p
2h

n−1∑
ξ=0

Γξ

 exp

i+j−1∑
η+l=0

c2


≤ c exp(p2c2)︸ ︷︷ ︸

c3

+ c1p
2 exp(p2c2)︸ ︷︷ ︸

c4

h
n−1∑
ξ=0

Γξ,

which implies that

Γn ≤ c3 + c4h

n−1∑
ξ=0

Γξ.

Again, using Lemma 3, for all n = 0, 1, . . . , N − 1 and i+ j = 0, . . . , p

ai+j
n,0 ≤ Γn ≤ c3 exp(ac4)︸ ︷︷ ︸

α2(p)

. (22)
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Third, for i + j = 0, from (16), we have for all n = 0, 1, . . . , N − 1, m =

1, . . . ,M − 1,

a0+0
n,m ≤c+ c1,1h

n−1∑
ξ=0

p−1∑
α+β=0

a0+0
ξ,m + c1,1ha

0+0
n,m + c2,2k

m−1∑
ρ=0

p−1∑
α+β=0

a0+0
n,ρ + c2,2ka

0+0
n,m

+ c3,2hk

n−1∑
ξ=0

m−1∑
ρ=0

p−1∑
α+β=0

a0+0
ξ,ρ + c3,2hk

n−1∑
ξ=0

p−1∑
α+β=0

a0+0
ξ,m

+ c3,2hk

m−1∑
ρ=0

p−1∑
α+β=0

a0+0
n,ρ + c3,2hka

0+0
n,m,

and for i+ j = 1, . . . , p, we have from (17) that

ai+j
n,m ≤c+ c1,2

j∑
l=0

i−1∑
η=0

aη+l
n,m + c2,1

j−1∑
l=0

i∑
η=0

aη+l
n,m + c3,3

j−1∑
l=0

i−1∑
η=0

aη+l
n,m.

Hence, for all i+ j = 0, 1, . . . , p,

ai+j
n,m ≤c+ c1,1h

n−1∑
ξ=0

p−1∑
η+l=0

aη+l
ξ,m + c1,2

i+j−1∑
η+l=0

aη+l
n,m + c1,1h

i+j−1∑
η+l=0

aη+l
n,m

+ c2,2k

m−1∑
ρ=0

p−1∑
η+l=0

aη+l
n,ρ + c2,1

i+j−1∑
η+l=0

aη+l
n,m + c2,2k

i+j−1∑
η+l=0

aη+l
n,m

+ c3,2hk

n−1∑
ξ=0

m−1∑
ρ=0

p−1∑
η+l=0

aη+l
ξ,ρ + c3,2hk

n−1∑
ξ=0

p−1∑
η+l=0

aη+l
ξ,m

+ c3,2hk

m−1∑
ρ=0

p−1∑
η+l=0

aη+l
n,ρ

+ c3,3

i+j−1∑
η+l=0

aη+l
n,m + c3,2hk

i+j−1∑
η+l=0

aη+l
n,m. (23)

Consider, the sequence Γn,m = max{ai+j
n,m, i+j = 0, . . . , p}, n = 0, 1, . . . , N−

1;m = 0, 1, . . . ,M − 1. Then by (23), we have

ai+j
n,m ≤c+ hb1,1

n−1∑
ξ=0

Γξ,m + kb1,2

m−1∑
ρ=0

Γn,ρ
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+ hkb1,3

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + b1,4

i+j−1∑
η+l=0

aη+l
n,m, (24)

where b1,1 = (c1,1 + c3,2k)p
2, b1,2 = (c2,2 + c3,2h)p

2, b1,3 = c3,2p
2

and b1,4 = c1,2 + c1,1h+ c2,1 + c2,2k + c3,3 + c3,2hk.

Using Lemma 3 with the following notations

εi+j = ai+j
n,m,

p0 = c+ hb1,1

n−1∑
ξ=0

Γξ,m + kb1,2

m−1∑
ρ=0

Γn,ρ + hkb1,3

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ,

kη+l = b1,4,

we obtain from (24) that

ai+j
n,m ≤ c exp(pb1,4)︸ ︷︷ ︸

b4

+h b1,1 exp(pb1,4)︸ ︷︷ ︸
b1

n−1∑
ξ=0

Γξ,m + k b1,2 exp(pb1,4)︸ ︷︷ ︸
b2

m−1∑
ρ=0

Γn,ρ

+ hk b1,3 exp(pb1,4)︸ ︷︷ ︸
b3

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ.

It follows that, for all n = 0, 1, . . . , N − 1;m = 0, 1, . . . ,M − 1,

Γn,m ≤b4 + hb1

n−1∑
ξ=0

Γξ,m + kb2

m−1∑
ρ=0

Γn,ρ + hkb3

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ.

Using Lemma 4, we obtain, for all n = 0, 1, . . . , N − 1,m = 0, 1, . . . , N − 1,
that

Γn,m ≤ b4 exp(γ1(Nh+Mk)) ≤ b4 exp(γ1(a+ b))︸ ︷︷ ︸
α3(p)

, (25)

where γ1 = 1
2

(
b1 + b2 +

√
(b1 + b2)2 + 4b3

)
.

Hence, from (20), (22), and (25), by setting

α(p) = max {α1(p), α2(p), α3(p)} ,

the proof of Lemma 5 is completed.
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Theorem 1. Let g, κ1, κ2, and κ3 be p times continuously differentiable
on their respective domains. Then equations (10), (12), (15) define a unique
approximation v ∈ S

(−1)
p−1 (ΠN,M ), and the resulting error function e(τ, z) =

ω(τ, z)− v(τ, z) satisfies

∥e∥L∞(D) ≤ C(h+ k)p,

where C is a finite constant independent of h and k.

Proof. Define the error e(τ, z) on Dn,m by en,m(τ, z) = ω(τ, z) − vn,m(τ, z)

for all n = 0, 1, . . . , N − 1 and m = 0, 1, . . . ,M − 1 .

The proof is split into three steps.

Claim 1. There exists a constant C1 independent of h and k such that

∥e0,0∥L∞(D0,0) ≤ C1(h+ k)p.

Let (τ, z) ∈ D0,0. By using Lemma 1, we obtain from (10) that

|e0,0(τ, z)| ≤
∑

i+j=p

1

i!j!

∥∥∥∥ ∂i+jω

∂τ i∂zj

∥∥∥∥hikj .
Hence, by Lemma 5, we have

|e0,0(τ, z)| ≤ α(p)
∑

i+j=p

1

i!j!
hikj =

α(p)

p!︸ ︷︷ ︸
C1

(h+ k)p. (26)

Claim 2. There exists a constant C2 independent of h and k such that

∥en,0∥L∞(Dn,0) ≤ C2(h+ k)p,

for all n = 1, . . . , N − 1. Let (τ, z) ∈ Dn,0, we have from (13) that
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627 Goursat problem in hyperbolic PDEs solved by taylor collocation method

ω(τ, z)− v̂n,0(τ, z) =

∫ z

0

κ2(τ, s)(ω(τ, s)− v̂n,0(τ, s))ds

+

n−1∑
ξ=0

∫ τξ+1

τξ

κ1(z, t)eξ,0(t, z)dt

+

∫ τ

τn

κ1(z, t)(ω(t, z)− v̂n,0(t, z))dt

+

n−1∑
ξ=0

∫ τξ+1

τξ

∫ z

0

κ3(t, s)eξ,0(t, s)dsdt

+

∫ τ

τn

∫ z

0

κ3(t, s)(ω(t, s)− v̂n,0(t, s))dsdt.

Hence,

|ω(τ, z)− v̂n,0(τ, z)| ≤
n−1∑
ξ=0

hκ∥eξ,0∥L∞(Dξ,0) +

n−1∑
ξ=0

hkκ∥eξ,0∥L∞(Dξ,0)

+ κ

∫ τ

τn

|ω(t, z)− v̂n,0(t, z)|dt

+ κ

∫ z

0

|ω(τ, s)− v̂n,0(τ, s)|ds

+ κ

∫ τ

τn

∫ z

0

|ω(t, s)− v̂n,0(t, s)|dsdt,

where κ = max{∥κi∥L∞(D), i = 1, 2, 3}. Then by Lemma 2, we have

|ω(τ, z)− v̂n,0(τ, z)| ≤

n−1∑
ξ=0

hκ∥eξ,0∥L∞(Dξ,0) +

n−1∑
ξ=0

hkκ∥eξ,0∥L∞(Dξ,0)

 ν

≤
n−1∑
ξ=0

hκ(1 + b)ν︸ ︷︷ ︸
λ1

∥eξ,0∥L∞(Dξ,0),

which implies, by using Lemma 1, that

∥en,0∥L∞(Dn,0) ≤ ∥ω − v̂n,0∥+ ∥v̂n,0 − vn,0∥

≤
n−1∑
ξ=0

hλ1∥eξ,0∥L∞(Dξ,0) +
∑

i+j=p

1

i!j!

∥∥∥∥∂i+j v̂n,0
∂τ i∂zj

∥∥∥∥hikj .
Hence, by Lemma 5, we obtain
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∥en,0∥L∞(Dn,0) ≤
n−1∑
ξ=0

hλ1∥eξ,0∥L∞(Dξ,0) +
α(p)

p!
(h+ k)p.

Then, by Lemma 3, we have

∥en,0∥L∞(Dn,0) ≤
α(p)

p!
exp(Tλ1)︸ ︷︷ ︸
C2

(h+ k)p.

Claim 3. There exists a constant C3 independent of h and k such that

∥en,m∥L∞(Dn,m) ≤ C3(h+ k)p,

for all n = 0, 1, . . . , N − 1 and m = 1, . . . ,M − 1. Let (τ, z) ∈ Dn,m. Then
from (16) we have

|ω(τ, z)− v̂n,m(τ, z)| ≤
n−1∑
ξ=0

hκ∥eξ,m∥+
m−1∑
ρ=0

kκ∥en,ρ∥

+

n−1∑
ξ=0

m−1∑
ρ=0

hkκ∥eξ,ρ∥+
n−1∑
ξ=0

hkκ∥eξ,m∥+
m−1∑
ρ=0

hkκ∥en,ρ∥

+ κ

∫ τ

τn

|ω(t, z)− v̂n,m(t, z)|dt

+ κ

∫ z

zm

|ω(τ, s)− v̂n,m(τ, s)|ds

+ κ

∫ τ

τn

∫ z

zm

|ω(t, s)− v̂n,m(t, s)|dsdt.

Then by Lemma 2,

|ω(τ, z)− v̂n,m(τ, z)| ≤
n−1∑
ξ=0

hκ(1 + k)ν︸ ︷︷ ︸
λ2

∥eξ,m∥+
m−1∑
ρ=0

k κ(1 + h)ν︸ ︷︷ ︸
λ3

∥en,ρ∥

+

n−1∑
ξ=0

m−1∑
ρ=0

hk κν︸︷︷︸
λ4

∥eξ,ρ∥,

which implies, by using Lemma 1, that
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∥en,m∥L∞(Dn,0) ≤∥ω − v̂n,m∥+ ∥v̂n,m − vn,m∥

≤
n−1∑
ξ=0

hλ2∥eξ,m∥+
m−1∑
ρ=0

kλ3∥en,ρ∥+
n−1∑
ξ=0

m−1∑
ρ=0

hkλ4∥eξ,ρ∥

+
∑

i+j=p

1

i!j!

∥∥∥∥∂i+j v̂n,m
∂τ i∂zj

∥∥∥∥hikj .
Hence, by Lemma 5, we obtain

∥en,m∥ ≤
n−1∑
ξ=0

hλ2∥eξ,m∥+
m−1∑
ρ=0

kλ3∥en,ρ∥+
n−1∑
ξ=0

m−1∑
ρ=0

hkλ4∥eξ,ρ∥

+
α(p)

p!
(h+ k)p.

(27)

Using Lemma 4, we obtain

∥en,m∥ ≤ α(p)

p!
exp(γ3(T + Z))︸ ︷︷ ︸

C3

(h+ k)p, (28)

where γ3 = 1
2

(
λ2 + λ3 +

√
(λ2 + λ3)2 + 4λ3

)
.

Thus, the proof is completed by taking C = max{C1, C2, C3}.

5 Numerical examples

The method presented in this paper is used to find numerical solutions to
some illustrative examples. Our results are compared with the exact solu-
tions by calculating the absolute error function |en,m| = |ω − vn,m| for all
n = 0, 1, . . . , N − 1 and m = 0, 1, . . . ,M − 1, where ω and v are the exact
and approximate solution, respectively. The values of errors are computed
for different values of p,N,M and collected in Tables 1, 3, and 4, which are
displayed in Figure 1 for Example 1. In Table 5, the presented method is
compared with the numerical results obtained by using the Chelyshkov poly-
nomials method (2D-CPs) [20] and the two-dimensional block-pulse functions
method (2D-BPFs) [22]. Moreover, the exact and approximate solution over
the region ([0, 1] × [0, 1]) are displayed in Figure 2 for Example 2. The re-
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sults in these examples confirm the theoretical estimates and suggest that
the experimental order of convergence (EOC) is p (see Table 2).

Example 1. Considering the Goursat problem, which is linear and homoge-
neous in hyperbolic PDE [9],

3
∂2ω(t, s)

∂s∂t
=
∂ω(t, s)

∂t
+
∂ω(t, s)

∂s
+ ω(t, s), (t, s) ∈ [0, 1]× [0, 1],

with initial conditions ω(t, 0) = et and ω(0, s) = es. This equation is equiv-
alent to the linear two-dimensional VIE defined as follows:

ω(τ, z) =
2

3
(eτ + ez)− 1

3

+
1

3

(∫ τ

0

ω(t, z)dt+

∫ z

0

ω(τ, s)ds+

∫ τ

0

∫ z

0

ω(t, s)dsdt

)
. (29)

The exact solution is ω(τ, z) = eτ+z.
The numerical results for p = 3, 4 and h = k = 0.05, 0.025 of the Taylor

collocation method are presented in Table 1 and Figure 1.

Table 1: Comparison between the approximate and the exact solution for Example 1

(τ, z) N =M = 20,p = 3 N =M = 20,p = 4 N =M = 40, p = 3

(0.1, 0.1) 1.62e− 05 1.57e− 05 4.05e− 06

(0.2, 0.2) 3.82e− 05 3.65e− 05 9.47e− 06

(0.3, 0.3) 6.67e− 05 6.37e− 05 1.66e− 05

(0.4, 0.4) 1.05e− 04 9.89e− 05 2.59e− 05

(0.5, 0.5) 1.56e− 04 1.44e− 04 3.80e− 05

(0.6, 0.6) 2.21e− 04 2.01e− 04 5.35e− 05

(0.7, 0.7) 3.04e− 04 2.74e− 04 7.34e− 05

(0.8, 0.8) 4.11e− 04 3.66e− 04 9.86e− 05

(0.9, 0.9) 5.48e− 04 4.82e− 04 1.30e− 04

(1.0, 1.0) 1.99e− 03 6.39e− 04 3.38e− 04

CPU time/sec 30.81 47.25 742.68

Example 2. Consider the linear nonhomogeneous Goursat problem [8]

∂2ω(t, s)

∂s∂t
= 4ts− t2s2 + ω(t, s), (t, s) ∈ [0, 1]× [0, 1],

Iran. J. Numer. Anal. Optim., Vol. 14, No. 2, 2024, pp 613–637
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Figure 1: Plot of the absolute error function for Example 1; left: h = k = 0.05, right:h =

k = 0.025.

Table 2: EOC for Example 1

(N,M) (2, 2) (4, 4) (8, 8) (16, 16) (32, 32) (64, 64)

p = 2 / 1.45 1.71 1.85 1.94 1.96

p = 3 / 2.40 2.69 2.84 2.92 2.96

with initial conditions ω(t, 0) = et and ω(0, s) = es. This equation is equiv-
alent to the linear two-dimensional VIE defined as follows:

ω(τ, z) = eτ + ez + τ2z2 − τ3z3

9
+

∫ τ

0

∫ z

0

ω(t, s)dsdt.

The exact solution is ω(τ, z) = τ2z2 + eτ+z.
The numerical results for p = 3 and h = k = 0.05, 0.025 of the Taylor

collocation method are presented in Table 3 and Figure 2.

Example 3. Consider the PDE with variable coefficients

∂2ω(t, s)

∂s∂t
=(t+ s2)

∂ω(t, s)

∂t
+ (t2 + s)

∂ω(t, s)

∂s

+ tsω(t, s) + f(t, s), (t, s) ∈ [0, 1]× [0, 1],

with initial conditions ω(t, 0) = cos(t)+et and ω(0, s) = cos(s)+1+s2. This
equation is equivalent to the linear two-dimensional VIE:
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Table 3: Comparison between the approximate and the exact solution for Example 2

(τ, z) N =M = 20,p = 3 N =M = 40, p = 3

(0.1, 0.1) 3.64e− 07 4.80e− 08

(0.2, 0.2) 1.77e− 06 2.29e− 07

(0.3, 0.3) 4.77e− 06 6.13e− 07

(0.4, 0.4) 1.00e− 05 1.28e− 06

(0.5, 0.5) 1.83e− 05 2.32e− 06

(0.6, 0.6) 3.07e− 05 3.93e− 06

(0.7, 0.7) 4.85e− 05 6.21e− 06

(0.8, 0.8) 7.32e− 05 9.36e− 06

(0.9, 0.9) 1.06e− 04 1.36e− 05

(1.0, 1.0) 1.76e− 03 2.28e− 04

CPU time/sec 27.71 701.59

(a) Exact solution (b) Approximate solution

Figure 2: Numerical results of Example 2.

ω(τ, z) =g(τ, z) +

∫ τ

0

(t2 + z)ω(t, z)dt+

∫ z

0

(τ + s2)ω(τ, s)ds

+

∫ τ

0

∫ z

0

(−2− ts)ω(t, s)dsdt,

where g(τ, z) is chosen so that the exact solution is ω(τ, z) = cos(τ + z) +

eτ + z2.
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The numerical results for p = 3 and h = k = 0.05, 0.025 of the Taylor
collocation method are presented in Table 4.

Table 4: Comparison between the approximate and the exact solution for Example 3

(τ, z) N =M = 20,p = 3 N =M = 40, p = 3

(0.1, 0.1) 1.32e− 05 1.66e− 06

(0.2, 0.2) 2.84e− 05 3.73e− 06

(0.3, 0.3) 4.72e− 05 6.54e− 06

(0.4, 0.4) 7.13e− 05 1.05e− 05

(0.5, 0.5) 1.03e− 04 1.62e− 05

(0.6, 0.6) 1.46e− 04 2.44e− 05

(0.7, 0.7) 2.07e− 04 3.64e− 05

(0.8, 0.8) 2.98e− 04 5.47e− 05

(0.9, 0.9) 4.44e− 04 8.47e− 05

(1.0, 1.0) 1.04e− 03 1.89e− 04

CPU time/sec 62.96 1207.40

Example 4. Consider the linear nonhomogeneous Goursat problem

∂2u(t, s)

∂s∂t
= −∂u(t, s)

∂t
− ∂u(t, s)

∂s
− u(t, s) + f(t, s), (t, s) ∈ [0, 1]× [0, 1],

with initial conditions u(t, 0) = et and u(0, s) = e2s. This equation is equiv-
alent to the nonlinear two-dimensional VIE of the first kind [22]:

1

9
(eτ+z − eτ+4z − e7τ+z + e7τ+4z) =

∫ τ

0

∫ z

0

2eτ+zω3(t, s)dsdt.

It is also equivalent to the following linear 2D-VIE of the second kind:

u(τ, z) = g(τ, z)−
∫ τ

0

u(t, z)dt−
∫ z

0

u(τ, s)ds−
∫ τ

0

∫ z

0

u(t, s)dsdt,

where u = ω3 and g(τ, z) is chosen such that the exact solution is u(τ, z) =
eτ+2z.

In Table 5, the numerical results for p = 3 and N = M = 64 of the
Taylor collocation method are compared with the numerical results obtained
by using 2D-CPs [20] and 2D-BPFs [22].
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Table 5: Comparison of the absolute errors of Example 4

(2−i, 2−i) 2D-BPFs [22] 2D-CPs [20] Present method
i = 1 1.0e− 1 3.5e− 5 6.1e− 6

i = 2 4.6e− 2 2.0e− 6 2.6e− 6

i = 3 2.9e− 2 1.5e− 5 1.3e− 6

i = 4 2.3e− 2 1.2e− 5 7.2e− 7

i = 5 2.0e− 2 5.9e− 5 3.7e− 7

i = 6 3.1e− 2 9.6e− 5 1.9e− 7

6 Conclusion

In this paper, a collocation approach was presented that involves utilizing
Taylor polynomials to find the solution to a two-dimensional linear VIE of
the second kind, which is a conversion of a hyperbolic linear PDE Goursat
problem. The method’s convergence and error were investigated, and several
numerical examples were provided to demonstrate its efficiency and accuracy.
The results showed that the method is convergent with a high level of preci-
sion, and the numerical results match the theoretical estimates. It is recog-
nized that this approach can be expanded and used to solve three-dimensional
Goursat problems in linear hyperbolic equations of the third-order

∂3ω

∂τ1∂τ2∂τ3
+

3∑
i,j=1,i<j

ψi,j
∂ω

∂τi∂τj
+

3∑
i=1

ψi
∂ω

∂τi
+ ψω = F,

where ψi,j , ψi, , i < j, i, j = 1, 2, 3, ψ and F are given real functions.
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