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Abstract

In the present paper, we precisely conduct a quantum calculus method
for the numerical solutions of PDEs. A nonlinear Schrödinger equation is
considered. Instead of the known classical discretization methods based
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331 Quantum NLS equation

on the finite difference scheme, Adomian method, and third modified ver-
sions, we consider a discretization scheme leading to subdomains according
to q-calculus and provide an approximate solution due to a specific value
of the parameter q. Error estimates show that q-calculus may produce effi-
cient numerical solutions for PDEs. The q-discretization leads effectively to
higher orders of convergence provided with faster algorithms. The numer-
ical tests are applied to both propagation and interaction of soliton-type
solutions.

AMS subject classifications (2020): Primary 35C08, 35Q55; Secondary 65L80,

81Q05.

Keywords: NLS equation; Quantum calculus; Numerical solution; Error
estimates.

1 Introduction

The present paper is devoted essentially to the development of a numeri-
cal scheme to approximate the solution of a Nonlinear Schrödinger (NLS)
equation in a quantum calculus framework. The aim crosses in fact the
restriction to the resolution of such an equation and goes further to show
that q-calculus may provide a good framework for numerical solutions of
PDEs in general. It is well known that a major literature on the numerical
solutions of PDEs is based on classical methods, such as finite difference,
finite elements and volumes, Fourier analysis, and recently wavelets. See
[7, 5, 9, 10, 11, 12, 16, 19, 28].

The NLS equation is strongly linked to the modeling of real physical
phenomena, such as Newton’s laws and energy conservation in classical me-
chanics, the behavior of dynamical systems, the description of a particle in a
nonrelativistic setting in quantum mechanics, and so on.Therefore, the NLS
equation attracted researchers from both theoretical and applied mathemat-
ics and physics. See [16, 19, 22, 28].

Originally, Schrödinger’s stated a linear form describing a moving particle
according to the model equation
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Arfaoui and Ben Mabrouk 332

∆ψ +
8π2m

h̄2
(E − V (x))ψ = 0, (1)

where ψ is known as a wave function, m is the particle mass, h̄ is the Planck’s
constant, E is the energy, and V is a potential (see [13, 20, 23, 25, 29]).

Based upon the analogy between mechanics and optics, Schrödinger ap-
plied a perturbation method to show an equivalence between his wave func-
tion in mechanics and Heisenberg’s matrix. This gave rise next to the time
dependent model

ih̄ψt = − h̄2

2m
∆ψ + V (x)ψ − γ|ψ|2ψ in RN , (2)

known as the cubic NLS equation. Next, different variants and forms have
been developed and investigated by researchers in different fields (see [1, 4,
17, 24, 26]).

The present paper is devoted to the development of a numerical method
based on q-calculus to approximate the solution of a reduced NLS equation
in R written on the form

iut +∆u+ f(u) = 0, (x, t) ∈ Ω× (t0,+∞),

u(x, t0) = u0(x), x ∈ Ω,

∂u

∂n
(x, t) = 0, (x, t) ∈ ∂Ω× (t0,+∞).

(3)

We consider a domain Ω in R, and t0 is a real parameter fixed as the initial
time, ut is the first order partial derivative in time, ∆ is the Laplace operator,
and ∂

∂n
is the outward normal derivative. Moreover, ∂Ω is the boundary of Ω.

Also, u = u(x, t) and u0 = u0(x) are complex valued functions. In addition,
f is a nonlinear function of u assumed to be at least continuous.

In [15], the stationary solutions of problem (3) have been studied using
direct methods issued from the equation on the whole space. See also [14]. In
[6], a Lyapunov–Sylvester method has been applied to solve numerical NLS
and Heat equations.

The organization of the present work will be as follows. In section 2,
the q-calculus essential tools will be reviewed. Section 3 is devoted to the
presentation of our main method. The discrete quantum version of a cubic
NLS equation will be developed with the necessary analysis of convergence,
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333 Quantum NLS equation

stability, solvability, and consistency. Section 4 is the subject of numerical
experimentation due to our theoretical part. We conclude afterward.

2 Quantum calculus toolkit

One of the interesting fields of extensions of real analysis is the so-called q-
theory, which provides some discrete and/or some refinement of continuous
analysis in subspaces such as Rq, which is composed of the discrete grid ±qn,
n ∈ Z, q ∈ (0, 1). Recall that for all x ∈ R∗, there exists a unique n ∈ Z such
that qn+1 < |x| ≤ qn, which guarantees some density of the set Rq in R.

This section aims to introduce some basic concepts of q-theory. We
present some definitions, notations, and properties of q-derivatives, which
will be useful later. Backgrounds on q-theory may be found in [3, 21] and
the references therein.

For 0 < q < 1, denote

Rq = {±qn, n ∈ Z} and R̃+
q = R+

q

⋃
{0}.

We propose in this section to recall two basic functions that are applied
almost everywhere in q-theory and its applications. See, for example, [18].

Definition 1. The q-derivative of a function is defined by

Dqf(x) =


f(x)− f(qx)

(1− q)x
, x ̸= 0,

f ′(0) , else,

provided that f is differentiable at 0.

The operator Dq is the q-analogue of the classical derivative, as indeed,
if f is differentiable, we get

lim
q−→1

Dqf(x) =
df(x)

dx
.

Many concepts of derivatives and integration rules have been extended for
the case of q-calculus.

The only drawback of the q-calculus is the fact that they remain applied
and investigated especially in harmonic functional analysis for the major part
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Arfaoui and Ben Mabrouk 334

of the literature. A first step ahead has been conducted by Koornwinder
and Swarttouw when studying Jackson’s third q-Bessel function. Their work
motivates researchers to develop different q-differential operators. Recently,
q-calculus returns to take place in PDEs. Indeed, consider, for example, an
elliptic equation

∆u+ f(u, x) = 0, (4)

where f is a suitable function, generally nonlinear in u. We may search for
a numerical q-approximation by considering a grid points in Rq instead of
finite difference/finite elements used usually. In q-theory, we already have a
q-analog of the Laplace operator expressed as

∆qu(x) =
qu(q−1x)− (1 + q)u(x) + u(qx)

x2
.

For x = qn in R+
q , we get from (4),

un+1 − (1 + q)un + qun−1 = −(1− q)2qq2nfn,

where un = u(qn) and fn is some discretization of f(u, x). We thus obtain a
recursive equation permitting to compute un recursively. More about appli-
cations of q-calculus in partial differential equations may be found in [3]. A
widely known example in q-theory is the Bessel type equation∆qu(x) = −λ2 u(x),

u(0) = 1, u′(0) = 0,

(λ ∈ C), which has as unique solution a modified q-Bessel function. In the
present paper, we will exploit the q-calculus to develop numerical solutions
of some PDEs.

3 The discrete NLS equation

In this section, we develop the details of our numerical method. For this aim,
we fix Ω = [0, 1] and t0 = 0. Fix also a time step lk = (1 − q)qk, and for
k ∈ N, we denote tk the kth instant. For n ∈ N, we denote xn = qn, and
hn = (1 − q)qn the nonuniform space step. Denote also ukn = u(tk, xn) the
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335 Quantum NLS equation

net function and Uk
n its numerical approximation (the solution of the discrete

problem). We discretize problem (3) as follows,

i
Uk+1
n − Uk

n

lk
+

2q

1 + q

qUk
n−1 − (1 + q)Uk

n + Uk
n+1

h2n
+ f(Uk

n) = 0. (5)

By setting for n, k ∈ N,

δkn =
2q

1 + q

lk
h2n
, and σk

n =
2q

1 + q

lk
h2n
i = δkni,

the discrete problem (5) becomes

Uk+1
n = qσk

nU
k
n−1 + (1− (1 + q)σk

n)U
k
n + σk

nU
k
n+1 + F k

n , (6)

where F k
n = ilkf(U

k
n). Now, denote for k ∈ N,

Uk = (Uk
n)n∈N,

the infinite vector of the numerical solution at the time k. Denote also

βk
n = 1− (1 + q)σk

n.

We get the following dynamical infinite matrix-vector system:

Uk+1 = AkU
k + F k, (7)

where Ak is the infinite tridiagonal matrix with elements

Ak =



1− σk
0 σk

0 0 . . . . . . . . . . . . . . . . . .

qσk
1 βk

1 σk
1 0

. . . . . . . . . . . . ...

0 qσk
2 βk

2 σk
2 0

. . . . . . . . . ...

0 0 qσk
3 β

k
3 σk

3 0
. . . . . . ...

... . . . . . . . . . . . . . . . . . . . . . ...

... . . . . . . . . . qσk
n β

k
n σ

k
n

. . . ...
... . . . . . . . . . . . . . . . . . . . . . ...


.

Infinite (especially tridiagonal) matrices are met in many fields and have been
applied widely. Finite forms are met in PDEs, such as finite difference meth-
ods, in numerical analysis. See, for instance, [2, 8]. In mathematics, infinite
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tridiagonal matrices are initially related to the so-called Jacobi operators (see
[27]).

Note in problem (7) that a main difference with classical methods, such
as the finite difference method, is the possibility to relax one assumption on
boundary conditions. We only need such an assumption for one extremity of
the domain Ω.

Now, observe that, for each k, we get

|1− σk
0 |2 = 1 + |δk0 |2 > |δk0 |2 = |σk

0 |2,

and similarly,

|βk
n|2 = 1 + (1 + q)2|δkn|2 > (1 + q)2|δkn|2 = (1 + q)2|σk

n|2,

which means that the matrix Ak is a dominant-diagonal matrix, which guar-
antees the solvability of our discrete scheme and leads to the following theo-
rem.

Theorem 1. The numerical problem (7) is uniquely solvable, for k ≥ 2n+1.

In terms of the classical numerical schemes, such as the finite difference,
the assumption k > n replaces the assumption l = o(h2), where l and h are
the time and space steps for the finite difference scheme.

To investigate the stability of the numerical scheme, we propose to apply
the Lyapunov criterion for stability, which states that a dynamical system
L(Uk, Uk−1, . . . ) = 0 is stable in the Lyapunov sense if, for any bounded
initial solution U0, the solution Un remains bounded for all n ≥ 0 uniformly
on n. Here, we will precisely prove the following result.

Lemma 1. The solution Uk is bounded independently of k whenever the
initial solution U0 is bounded.

Proof. We will proceed by recurrence on k. Assume firstly that ∥U0∥ ≤ η,

for some η positive. It follows from the assumption k ≥ 2n+ 1 that

|σk
n| ≤

2q

(1 + q)(1− q)
.

Therefore, using system (6), for k = 0, we obtain
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337 Quantum NLS equation

U1
n = qσ0

nU
0
n−1 + (1− (1 + q)σ0

n)U
0
n + σ0

nU
0
n+1 + F 0

n .

As U0 is bounded, and the nonlinear function f is continuous, we deduce that
U1 is bounded. So, assume that Uk is bounded independently of k. Using
system (6), we get

|Uk+1
n | ≤ 1 + 3q

1− q
|Uk

n |+ |F k
n |.

Using the recurrence hypothesis and again the continuity of the nonlinear
function F , we deduce that

|Uk+1
n | ≤ 2(1 + q)

1− q
C,

where C > 0 is a constant independent of k.

The consistency of the proposed method is evaluated by means of the
local truncation error arising from the discretization scheme. Assuming that
the solution u is sufficiently regular, we get the principal part as

L(u)(x, t) = ilk
2
utt +

(1− q)hn
3q

uxxx + o(lk + hn). (8)

It is clearly observable that the truncation operator L(u) goes to 0 as n, k
go to ∞. This yields that the quantum numerical scheme is consistent at a
minimum order 1 in time and space.

To finish with the convergence of the numerical method, we apply the
Lax–Richtmyer equivalence criterion, which states that for consistent nu-
merical approximations, stability and convergence are equivalent. We thus
obtain the following lemma.

Lemma 2. As the numerical scheme is consistent and stable, it is then
convergent.

Indeed, recall here that we have already proved in (8) that the used scheme
is consistent. Next, Lemma 1 yields the stability of the scheme. Consequently,
the Lax equivalence theorem guarantees the convergence.
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4 Numerical implementations

We propose in this experimental part to develop numerical examples to val-
idate the theoretical results developed in the previous sections. We will use
an L2 discrete norm to evaluate the error between the exact solutions and
the numerical ones as

∥X∥2 =
(∑

i

|Xi|2
)1/2

,

for any vector (series) X = (Xi) eventually in L2(C). Denote uk the net
function u(x, tk) and Uk the numerical solution. We propose to compute the
discrete error

Er = max
k

∥Uk − uk∥2 (9)

on the grid (xn), n ≥ 0.
We take for the rest f(u) = |u|2u, which gives the original cubic NLS

equation. We next take the classical soliton-type solution

u(x, t) =

√
2a

qs
exp

(
i
(1
2
cx− θt+ φ

))
sech

(√
a(x− ct) + ϕ

)
,

where a, qs, c, θ =
c2

4
− a, φ and ϕ are some appropriate constants. For

t fixed, this function decays exponentially as |x| → ∞. It is a soliton-type
disturbance, which travels with speed c and with a-governed amplitude. See
[5, 6, 10, 11, 12, 20, 22, 28, 29].

4.1 Propagation of a single soliton

In the first experimentation, we focus on a single-soliton-type particle. The
computations are done for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1. We fix the q parameter
to many different values according to the closeness to 0 or to 1. So, let
q ∈ {qi = i

8 , i = 1, . . . , 7}. We also fix the soliton parameters a = 0.01,
qs = 1, c = 0.1, and the phase parameters φ = ϕ = 0. Figures 1 and 2
illustrate two cases of the numerical solution for the propagation of a single
soliton issued from our quantum numerical scheme.
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339 Quantum NLS equation

Figure 1: Propagation of a single soliton, for q = 1
8
.

Figure 2: Propagation of a single soliton, for q = 3
8
.

Tables 1 and 2 illustrate the error estimates between the numerical solu-
tion and the exact one for different values of the quantum parameter q, and
for different values of the maximal time index K. The space grid is fixed to
N number of points. Truncating in an order N for practice feasibility of the
system (7), we denote TrUk

N the truncated vector

TrUk
N = [Uk

0 , U
k
1 , . . . , U

k
N ]T ,

and TrF k
N the truncated vector

TrF k
N = [F k

0 , F
k
1 , . . . , F

k
N ]T ,

where the upper script T is for the transpose. We denote similarly, TrAN
k

the truncated matrix
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TrAN
k =



1− σk
0 σk

0 0 . . . . . . . . .

qσk
1 βk

1 σk
1 0

. . . . . .

0 qσk
2 βk

2 σk
2 0

. . .
0 0 qσk

3 β
k
3 σk

3 0
... . . . . . . . . . . . . . . .
... . . . . . . . . . qσk

N βk
N


.

The system (7) will be approximated by

TrUk+1
N = TrAN

k TrU
k
N + TrF k

N .

Table 1: Error estimates for a single soliton for N = 20

K = 10

q q1 q2 q3 q4 q5 q6 q7

Er 1.17 10−5 1.28 10−5 2.41 10−4 2.52 10−4 2.18 10−4 3.11 10−4 2.87 10−4

K = 15

q q1 q2 q3 q4 q5 q6 q7

Er 2.01 10−6 2.32 10−6 3.01 10−5 2.84 10−5 2.71 10−5 3.01 10−5 2.77 10−5

K = 20

q q1 q2 q3 q4 q5 q6 q7

Er 1.27 10−7 1.44 10−7 1.23 10−6 2.15 10−6 2.53 10−6 2.01 10−5 2.76 10−5

Table 2: Error estimates for a single soliton for N = 50

K = 10

q q1 q2 q3 q4 q5 q6 q7

Er 1.17e− 5 1.28e− 5 2.41e− 4 2.52e− 4 2.18e− 4 3.11e− 4 2.87e− 4

K = 15

q q1 q2 q3 q4 q5 q6 q7

Er 2.01e− 6 2.32e− 6 3.01e− 5 2.84e− 5 2.71e− 5 3.01e− 5 2.77e− 5

K = 20

q q1 q2 q3 q4 q5 q6 q7

Er 1.27e− 7 1.44e− 7 1.23e− 6 2.15e− 6 2.53e− 6 2.01e− 5 2.76e− 5
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It is notable from Tables 1 and 2 that the numerical quantum discrete
scheme converges with good error estimates. This encourages to application
such a discretization idea for solving more complicated problems.

4.2 Interaction of two solitons

We consider here two solitons traveling with the same speed but in opposite
directions in order to obtain the interaction phenomenon. The computations
are done as in the previous experimentation on the space domain Ωx = [0, 1]

and a time space also It = [0, 1]. We fix the q parameter as previously to
q ∈ {qi = i

8 , i = 1, . . . , 7}. We also fix the soliton parameters as follows:

• For the first soliton, we put a = 1, qs = 2, c = 4, φ = 0, and ϕ = 15.

• For the second soliton, we put a = 2, 25, qs = 2, c = −4, φ = 0, and
ϕ = −7, 5.

As in the previous experimentation, Tables 3 and 4 illustrate the error esti-
mates between the numerical solution and the exact one for different values
of the quantum parameter q, and for different values of the maximal time
index K. The space grid is fixed to a number N of points.

Table 3: Error estimates for two-interacted solitons for N = 20

K = 10

q q1 q2 q3 q4 q5 q6 q7

Er 2.27e− 5 2.45e− 5 2.51e− 4 2.76e− 4 3.14e− 4 3.44e− 4 4.02e− 4

K = 15

q q1 q2 q3 q4 q5 q6 q7

Er 2.11e− 6 2.18e− 6 2.05e− 5 2.61e− 5 2.85e− 5 3.12e− 5 4.05e− 5

K = 20

q q1 q2 q3 q4 q5 q6 q7

Er 1.92e− 7 2.02e− 7 2.15e− 6 2.44e− 6 3.21e− 6 3.32e− 5 3.876e− 5
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Table 4: Error estimates for two-interacted solitons for N = 50

K = 10

q q1 q2 q3 q4 q5 q6 q7

Er 125e− 5 1.34e− 5 1.44e− 4 2.21e− 4 2.43e− 4 2.31e− 4 2.15e− 4

K = 15

q q1 q2 q3 q4 q5 q6 q7

Er 1.15e− 6 1.27e− 6 1.32e− 5 1.17e− 5 1.95e− 5 2.02e− 5 2.33e− 5

K = 20

q q1 q2 q3 q4 q5 q6 q7

Er 1.16e− 7 1.31e− 7 2.13e− 6 2.23e− 6 2.27e− 6 2.47e− 5 2.55e− 5

As in the previous case, we notice from Tables 3 and 4 that the numerical
quantum discretization yielded a very close approximated solution to the
exact one. This is clearly shown by the error estimates, where the maximum
error is estimated by 10−4 over all the values of the quantum parameter q in
two Tables 3 and 4. This finding motivates the use of a quantum numerical
scheme for more general and/or complicated PDEs.

Remark 1. We know that in the case of classical finite difference and finite
element methods, the error is generally estimated in the power of the space
step h = ∆x, which in turn is related to the size N of the mesh or, equiva-
lently, the number of the discretization points. In these cases, we obtain an
error to the order hα or equivalently, the order N−α, for some exponent α.
In the new q-quantum case, we obtain an error to the order of qαN , which has
the form of a geometric sequence with a ratio qα in the interval (0, 1), which
therefore converges to 0 more rapidly than the previous sequence N−α. We
then gain a quick and more precise scheme. These facts make it unnecessary
to concretely develop the numerical comparisons, as we know in advance that
the classical schemes will give higher error, lower speed of convergence, and
higher running time. Mathematically, it is easy to see that for α, β > 0, it
holds that for all ε > 0, there exisits N0 ∈ N, such that qβNNα ≤ ε, for
all N ≥ N0. This means that, the q-quantum scheme, even at a lower order
β < α is better than the classical schemes. In other words, the q-quantum
scheme does not necessitate calibrating the discretization to get higher or-
ders for convergence, consistency, and good stability, as it is done for the
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343 Quantum NLS equation

classical finite difference and finite element methods with implicit method,
Crank–Nicolson, centering/decentering method, higher regularity order finite
elements bases, and so on.

5 Conclusion

In the present paper, the principal aim was to test the efficiency of the quan-
tum calculus in the approximation of the solutions of PDEs. As a pro-
totypical example, we applied q-calculus to derive a numerical scheme for
the well-known cubic NLS equation. As expected, the q-calculus yielded
good approximations illustrated by low error estimates. The findings in the
present paper make therefore good motivation to continue to exploit quan-
tum calculus for the numerical (and also exact) solutions of different types
of PDEs. Comparisons with other models, such as finite difference, finite
volumes, and also wavelets as recent developments in mathematical analysis
are fascinating and motivating future extensions. Compared to the classical
finite difference scheme method, we may conclude theoretically that, in fact,
the present quantum scheme is more efficient, as it is based on geometric
sequences of time and space steps, which surely converge more rapidly than
arithmetic discretizations. Therefore, we expect that involving or including
hybrid schemes may induce the best results. Finally, an interesting question
raised from the present work may be formulated as follows: Given an infinite
matrix that is truncated in an order n. We know that at most in C, any
truncation has at most n eigenvalues. What can we expect for the original
linear operator defined by means of the infinite matrix? This gives rise to
possible chaotic behavior as a future study of the present case of matrices,
which are issued from parabolic, hyperbolic PDEs.
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