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Abstract

In this article, we explore the discontinuous Galerkin finite element method
for two-parametric singularly perturbed convection-diffusion problems with
a discontinuous source term. Due to the discontinuity in the source term,
the problem typically shows a weak interior layer. Also, the presence of
multiple perturbation parameters in the problem causes boundary layers
on both sides of the boundary. In this work, we develop the nonsymmetric
discontinuous Galerkin finite element method with interior penalties to
handle the layer phenomenon. With the use of a typical Shishkin mesh, the
domain is discretized, and a uniform error estimate is obtained. Numerical
experiments are conducted to validate the theoretical conclusions.
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1 Introduction

In this article, we consider a two-parametric singularly perturbed problem
with a discontinuous source term−ε1u

′′ + ε2b(x)u
′ + c(x)u = f, x ∈ Ω = (0, 1),

u(0) = u(1) = 0,
(1)

where 0 < ε1, ε2 ≪ 1. In addition, the coefficient functions, b(x) and c(x),
are assumed to sufficiently smooth such that b(x) ≥ b0 > 0, c(x) ≥ c0 > 0,
and

γ2 = c(x)− 1

2
ε2b

′(x) ≥ γ0 > 0, (2)

where b0, c0, and γ0 are positive constants and the source function, f(x),
has discontinuity of type I at some interior point say x = d. Moreover, we
also assume that [f ](d) ≤ C, where [f ](d) = f(d+) − f(d−). Problems of
these types have several real-world applications, like transport phenomena
in chemistry, biology, financial mathematics, and so on. Several numerical
techniques are available in the literature on finite difference methods and
finite element methods; for example, see [1, 10, 14] for the finite element
method (FEM) and [3] for the finite difference method (FDM). Moreover, few
articles [7, 4] are available that deal with two-parametric singularly perturbed
boundary value problems, in which the authors have used various difference
schemes to establish uniform convergence. In [11], authors have studied the
superconvergence of non-symmetric interior penalty Galerkin FEM for two-
parametric singularly perturbed boundary value problems.

The FEM is one of the efficient numerical methods among all other nu-
merical methods to compute numerical solutions of differential equations.
Kadalbajoo and Yadaw [5] established a second-order convergence of FEM
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in maximum norm on Shishkin mesh for two-parametric convection-diffusion
problem. Brdar and Zarin [2] achieved uniform convergence of FEM in the
energy norm on Bakhvalov mesh, while Zarin [12] has proved uniform con-
vergence on exponentially graded mesh with FEM. In spite of these works,
no one has considered the two-parametric convection-diffusion problem with
discontinuous coefficients or source terms, which also predominately appears
in the modeling of real-world problems.

On the other way, the nonsymmetric interior penalty Galerkin (NIPG)
method uses penalty parameters to enforce both the continuity of the solution
and boundary conditions. Another interesting factor about the NIPG method
is to handle the unstructured mesh, discontinuous coefficients, and local mesh
refinements. Furthermore, an NIPG method can be made stable and coer-
cive in the sense of convergence by taking some user-chosen penalty param-
eters. Moreover, in other variants of the discontinuous Galerkin method like
symmetric interior penalty Galerkin method and incomplete interior penalty
Galerkin method, we have to choose penalty parameters, and it is a herculean
task to establish its coercivity.

Therefore, in this present work, we consider a two-parametric convection-
diffusion problem with a discontinuous source term and establish a second-
order convergence (superconvergence) of the NIPG method in the norm ∥·∥ε
induced by the corresponding bilinear form.

The article is arranged in the following way: In Section 2, we study the
continuous problem and the bounds for different components of the exact
solution. Section 3 is all about the bilinear form with respect to the NIPG
method, its properties, and the existence and uniqueness of the weak solution.
Construction of the Shishkin-type mesh, error analysis, and establishment
of convergence results are introduced in Section 4. The numerical results
and discussions are kept in Section 5 that which supports our theoretical
conclusions.

Note: Throughout this paper, we have taken C as a generic constant,
which is free from perturbation parameters ε1, ε2, and the discretization
parameter, N .
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2 The continuous problem and bounds for the solutions

This section is designed to discuss the solution of the continuous problem
(1), their smooth and layer components, and their respective bounds. In
general, the solution to the reduced problem (1) does not satisfy the boundary
conditions. Therefore we have boundary and interior layers in the solution.
To handle these boundary and interior layers, let p0 and p1 be two solutions
of the characteristic equation:

−ε1p
2(x) + ε2b(x)p(x) + c(x) = 0.

Moreover, p0(x) < 0 and p1(x) > 0 describe the boundary layers at x = 0

and x = 1, respectively. Let

λl = − max
x∈[0,1]

p0(x), λr = min
x∈[0,1]

p1(x),

where λl and λr are defined as

λl = min
x∈[0,1]

−ε2b(x)−
√

ε22b(x)
2 + 4ε1c(x)

2ε1
,

λr = min
x∈[0,1]

−ε2b(x) +
√

ε22b(x)
2 + 4ε1c(x)

2ε1
.

In that case, the problems are categorized on the basis of the relationship
between the perturbation parameters:

Case I. When ε1 ≪ ε2 = 1, then λl = O(ε−1
1 ) and λr = O(1). It is

the case of singular perturbation problem with a only one perturbation pa-
rameter.

Case II. When ε1 ≪ ε2 ≪ 1, then λl = O(ε2ε
−1
1 ) and λr = O(ε−1

1 ).
Clearly one can see that λl < λr, which results a stronger boundary layer at
x = 1 than the boundary layer at x = 0.

Case III. When ε22 ≪ ε1 ≪ 1, then λl and λr both are of order O(ε
−1/2
1 ),

and problem behaves like reaction diffusion problems.
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Further details about the category of the problems can be found in [11].
In this work, we discuss the a posteriori error estimation for the problem that
falls under the category of case II.

Theorem 1. Let p ∈ (0, 1) be arbitrary and let

ε2m ∥b′∥L∞(Ω) ≤ k(1− p).

Then, the following bounds for the derivatives of the exact solution holds:∣∣uk(x)
∣∣ ≤ C

(
1 + λk

l e
−pλlx + λk

l e
−pλl(d−x) + λk

re
−pλr(x−d) + λk

re
−pλr(1−x)

)
,

x ∈ Ω, for 0 ≤ k ≤ m.

Proof. The proof can be found in [6].

This motivates us to decompose the exact solution u of (1) into smooth
and layer components in the following way:

u = S + El,1 + El,2 + Er,1 + Er,2

such that the bounds satisfy the following relations:

|Sk(x)| ≤ C, (3a)

|Ek
l,1(x)| ≤ Cλk

l e
−pλlx, (3b)

|Ek
l,2(x)| ≤ Cλk

l e
−pλl(d−x), (3c)

|Ek
r,1(x)| ≤ Cλk

re
−pλr(x−d), (3d)

|Ek
r,2(x)| ≤ Cλk

re
−pλr(1−x), (3e)

for x ∈ Ω and 0 ≤ k ≤ m.

3 The NIPG method

Let TN = Ij = (xj−1, xj), j = 1, 2, · · · , N be a partition of the domain
Ω. Define the broken Sobolev space of order k, Hk(Ω, TN ) :=

{
v : v ∈

L2(Ω), v
∣∣
Ij

∈ Hk(Ij), for all Ij ∈ TN
}
. Definitions of the Sobolev norm and

seminorm are as follows:
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∥v∥k,TN
:=

( N∑
j=1

∥v∥2k,Ij

)1/2

|v|k,TN
:=

( N∑
j=1

|v|2k,Ij

)1/2

.

We define the finite element space V N that are related to the partition TN
as follows:

V N =
{
v : v ∈ L2(Ω), v

∣∣
Ij

∈ P 1(Ij), for all Ij ∈ TN
}
.

Here, P 1(Ij) is the space of all polynomials of degree at most one on Ij . It is
to note that the elements in V N are allowed to be discontinuous across the
boundaries of each element Ij .

The corresponding weak formulation of (1) can be read as follows: Find
uN ∈ V N such that

B(uN , vN ) = l(vN ), for all vN ∈ V N , (4)

where
B(u, v) = B1(u, v) +B2(u, v).

Also, B1(u, v), B2(u, v), and l(v) are defined for all u, v ∈ H1(Ω, TN ) as

B1(u, v) =

N∑
j=1

∫
Ij

ε1u
′v′dx+

N∑
j=1

ε1
(
[u(xj)]{v′(xj)} − {u′(xj)}[v(xj)]

)
+

N∑
j=1

σj [u(xj)][v(xj)],

B2(u, v) =

N∑
j=1

∫
Ij

(
ε2b(x)u

′ + c(x)u
)
dx+

N−1∑
j=1

b(xj)[u(xj)]v(x
−
j ),

l(v) =

N∑
j=1

∫
Ij

fvdx.

Here, σj ’s, j = 0, 1, 2, · · · , N , are discontinuity-penalization parameters as-
sociated with the grid points xj . Jumps and averages are defined by

[v(xj)] = v(x+
j )− v(x−

j ), j = 1, 2, · · · , N − 1,

{v(xj)} =
1

2

(
v(x+

j )− v(x−
j )

)
, j = 1, 2, · · · , N − 1,
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where v(x+
j ) = lim

x→x+
j

v(x) and v(x−
j ) = lim

x→x−
j

v(x), and at the boundary nodes

these are defined as

[v(x0)] = v(x0), {v(x0)} = v(x0), [v(xN )] = −v(xN ), {v(xN )} = v(xN ).

These notations can be seen in [8, 9, 15]. For any v ∈ H2(Ω, TN ), the norm
is defined by

∥v∥2ε = ε1

N∑
i=1

hi

M∑
j=1

wjv
′(xi,j)

2+

N∑
j=1

∥γv∥2L2(Ij)
+

N∑
j=0

(
1

2
b(xj)+σj

)
[v(xj)]

2.

Here, xi,j are the Gaussian points in the elements Ij = (xj−1, xj), and wj > 0

are the weights for M points Gaussian quadrature rule. The coercivity of
bilinear form can be established by a simple calculation as in [8] as

B(v, v) = ∥v∥2ε .

Using coercivity, one can establish the result,

∥uN∥ε ≤ C ∥f∥L2(Ω) , (5)

where uN is the solution of weak formulation (4). More details can be found
in [9]. Furthermore, the result (5) implies the uniqueness of the solution of
(4). Rank-nullity theorem in a finite-dimensional space and uniqueness give
the existence of the solution.

Lemma 1. Let u and uN be the solutions of (1) and (4), respectively. Then
the bilinear form defined in (4) satisfies Galerkin orthogonality property

B(u− uN , vN ) = 0, for all vN ∈ V N . (6)

Proof. Detailed proof can be found in [11].

4 Error analysis on Shishkin-type mesh

In this section, we introduce Shishkin-type mesh for the discretizing the do-
main of definition. Then, we apply the NIPG method on the introduced
mesh to avail the convergence result theoretically. Proceeding in this way,
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the domain, Ω is divided into N subintervals as follows: Let Ωl,1, Ωl,2, Ωl,3,
Ωr,1, Ωr,2, and Ωr,3 be subdomains such that

Ωl,1 = [0, δ0], Ωl,2 = [δ0, d− δ0], Ωl,3 = [d− δ0, d], Ωr,1 = [d, d+ δ1],

Ωr,2 = [d+ δ1, 1− δ1], Ωr,3 = [1− δ1, 1].

for some δ0 and δ1 defined by

δ0 = min
{
d

8
,
δ

λl
lnN

}
, δ1 = min

{
1− d

8
,
δ

λr
lnN

}
.

Here, δ is a user defined parameter. Therefore, the mesh length of each
subdomain can be defined as

hj =



8
N

δ
λl

lnN, for Ωl,1 ∪ Ωl,3,

4(d−2δ0)
N , for Ωl,2,

8
N

δ
λr

lnN, for Ωr,1 ∪ Ωr,3,

4(1−d−2δ1)
N . for Ωr,2.

(7)

The following bounds can be obtained for the above step sizes:

hj ≤


CN−1 lnNλ−1

l , for Ωl,1 ∪ Ωl,3,

CN−1, for Ωl,2 ∪ Ωr,2,

CN−1 lnNλ−1
r , for Ωr,1 ∪ Ωr,3.

(8)

Lemma 2. Let SI be the piecewise Lagrange’s interpolation of smooth com-
ponent S of the exact solution u of (1). Then, we have∥∥S − SI

∥∥
ε
≤ CN−2.

Proof. Using the definition of jump for the smooth part of the solution, as
S − SI is continuous across interelement boundaries. So, [(S − SI)(xj)] = 0,
it gives

∥∥S − SI
∥∥2
ε
= ε1

N∑
i=1

hi

M∑
j=1

(
(S − SI)′(xi,j)

)2
+

N∑
j=1

∫
Ij

γ2(S − SI)2dx. (9)

Now, we have to calculate the bounds for the two factors separately. We
make the use of result on interpolation error estimate in [13]
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ε1

N∑
i=1

hi

M∑
j=1

(
(S − SI)′(xi,j)

)2 ≤ Cε1

N∑
j=1

h3
j |S|2H2(Ij)

≤ C

N∑
j=1

h5
j

≤ C
(
N(N−1 lnNλ−1

l )5 +N−4
)
. (10)

Here, we have used λ−1
r ≤ λ−1

l and bounds on the mesh lengths from (8). To
establish the result in Lemma 2, we have to find out the essential bound for
second term in (9)

N∑
j=1

∥∥γ(S − SI)
∥∥
L2(Ij)

≤ C

N∑
j=1

h2
j

∫ xj

xj−1

|S′′(x)|dx ≤ C

N∑
j=1

h3
j

≤ C
(
N(N−1 lnNλ−1

l )3 +N−2
)
, (11)

using (10) and (11) in (9).

Lemma 3. Let El,i and Er,i for i = 1, 2 be the piecewise Lagrange’s inter-
polations of left and right layer components El and Er, respectively. Then,
we have the following estimation:∥∥(El,i − EI

l,i)
s
∥∥
L∞(Ω\Ωl,i)

≤ Cλs
lN

−2, i = 1, 2, s = 0, 1, 2.∥∥(Er,i − EI
r,i)

s
∥∥
L∞(Ω\Ωr,i)

≤ Cλs
rN

−2, i = 1, 2, s = 0, 1, 2.

Proof. We will prove only the estimation for El,1−EI
l,1, and other estimations

for remaining part will be same.
Making the use of the Cauchy–Schwarz inequality gives us∥∥(El,1 − EI

l,1)
s
∥∥
L∞(Ω\Ωl,1)

≤ ∥(El,1)
s∥L∞(Ω\Ωl,1)

+
∥∥(EI

l,1)
s
∥∥
L∞(Ω\Ωl,1)

≤ 2 ∥(El,1)
s∥L∞(Ω\Ωl,1)

.

Here, we have used the stability property for special interpolant from Lemma
3.2 in [15]. Now we have to bound only ∥(El,1)

s∥L∞(Ω\Ωl,1)
.

∥(El,1)
s∥L∞(Ω\Ωl,1)

≤ Cλs
l max
x∈[0,δ0]

e−pλlx ≤ Cλs
lN

−pδ ≤ Cλs
lN

−2.

Here we have used pδ ≥ 2, which is the required estimate, we had to prove.
For estimations in the second part of the Lemma 2, we apply the same path
of approach as above. So we have done the proof of lemma.
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Theorem 2. Let EI denote the piecewise Lagrange’s interpolations of layer
components of solution E. Therefore, the interpolation error of the layer
component satisfies ∥∥E − EI

∥∥
ε
≤ C(N−1 lnN)2.

Proof. To establish the bound in this theorem, we express errors in terms
of left boundary layer, right boundary layer, and interior layer components;
that is,∥∥E − EI

∥∥
ε
≤

∥∥El,1 − EI
l,1

∥∥
ε
+
∥∥El,2 − EI

l,2

∥∥
ε
+
∥∥Er,1 − EI

r,1

∥∥
ε
+
∥∥Er,2 − EI

r,2

∥∥
ε
.

(12)
We derive the bounds for all the four terms in the right hand side of (12).
Taking the first term from (12) and using coercivity of bilinear form from
Section 3, we have

∥∥El,1 − EI
l,1

∥∥2
ε
= ε1

N∑
i=1

hi

M∑
i=1

(
(El,1−EI

l,1)
′(xi,j)

)2
+

N∑
j=1

∫
Ij

γ2(El,1−EI
l,1)

2dx.

(13)
Now, we estimate the first term from (13) over the fine mesh region Ωl,1,
using classical result on interpolation error estimates

ε1

N/8∑
i=1

hi

M∑
j=1

(
(El,1 − EI

l,1)
′(xi,j)

)2 ≤ Cε1

N/8∑
j=1

h3
j

(∫ xj

xj−1

|E′′′
l,1|dx

)2

≤ Cε1

N/8∑
j=1

h3
j

(∫ xj

xj−1

|E′′′
l,1|2dx

)(∫ xj

xj−1

dx

)

≤ Cε1

N/8∑
j=1

h4
j

∫ xj

xj−1

λ4
l e

−2pλlxdx

≤ C(N−1 lnN)4. (14)

N/8∑
j=1

∫
Ij

γ2(El,1 − EI
l,1)

2dx ≤ C

N/8∑
j=1

h4
j

∫ xj

xj−1

|E′′
l,1|2dx

≤ C

N/8∑
j=1

h4
j

∫ xj

xj−1

λ4
l e

−2pλlxdx
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≤ C(N−1 lnN)4. (15)

Using (14) and (15), we have established the first part of (12) for the finer
part of the domain Ωl,1. In the same manner, we can establish the bound for∥∥∥El,2 − EI

l,2

∥∥∥
ε
,
∥∥Er,1 − EI

r,1

∥∥
ε
, and

∥∥Er,2 − EI
r,2

∥∥
ε
over Ωl,2, Ωr,1 and Ωr,2,

respectively. Therefore, we can obtain∥∥El,2 − EI
l,2

∥∥
ε,Ωl,2

≤ C(N−1 lnN)2, (16a)∥∥Er,1 − EI
r,1

∥∥
ε,Ωr,1

≤ C(N−1 lnN)2, (16b)∥∥Er,2 − EI
r,2

∥∥
ε,Ωr,2

≤ C(N−1 lnN)2. (16c)

Now, we estimate
∥∥∥El,1 − EI

l,1

∥∥∥
ε
over Ω \Ωl,1. In this domain, we will derive

the bound for the error in maximum norm. Using the result in Lemma 3

ε1

N∑
i=N/8+1

hi

M∑
j=1

wj(El,1 − EI
l,1)

′(xi,j)
2 ≤ Cε1

N∑
j=N/8+1

hjλ
2
lN

−4 ≤ CN−4.

Again, bound on the second term may be calculated using triangular inequal-
ity and stability property as∥∥El,1 − EI

l,1

∥∥2
L2(Ω\Ωl,1)

≤ ∥El,1∥2L2(Ω\Ωl,1)
+ ≤

∥∥EI
l,1

∥∥2
L2(Ω\Ωl,1)

≤ 2 ∥El,1∥2L2(Ω\Ωl,1)

≤ C

N∑
j=N/8+1

∫ xj

xj−1

e−2pλlxdx ≤ CN−4.

With the help of above two estimations a conclusion can be made∥∥El,1 − EI
l,1

∥∥2
ε,Ω\Ωl,1

≤ CN−4. (17)

Similar to (17), we can estimate the other remaining terms, and using (14)–
(17), we conclude the bound in Theorem 2.

Theorem 3. Let uI be the piecewise Lagrange’s interpolation of the exact
solution u of (1) on Gaussian points. Then interpolation error ζ = u − uI

satisfies
∥ζ∥ε ≤ C(N−1 lnN)2.
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Proof. Using the solution decomposition and the estimations from Lemma 2
and Theorem 2, we can conclude that

∥ζ∥ε ≤
∥∥S − SI

∥∥
ε
+

∑
k=l,r

2∑
i=1

∥∥Ek,i − EI
k,i

∥∥
ε
≤ C(N−1 lnN)2.

Now, we conclude the bound for closeness error by means of Galerkin
orthogonality and coercivity. Therefore, we need the following theorem.

Theorem 4. Let u and uN be the exact and discrete solution of (1) and its
weak formulation (4), respectively. For uI , the piecewise Lagrange’s interpo-
lation of u, let χ = uI − uN satisfies

∥χ∥ε ≤ C(N−1 lnN)2.

Proof. Coercivity and Galerkin orthogonality give us

∥χ∥2ε = B(χ, χ) = −B(ζ, χ). (18)

From the definition, ζ is continuous on interelement boundaries. That is,
[ζ(xj)] = 0. So, B1(ζ, χ) can be reduced to

B1(ζ, χ) =

N∑
j=1

ε1

∫ xj

xj−1

ζ ′χ′dx−
N∑
j=1

ε1{ζ ′(xj)}[χ(xj)]. (19)

Now, we estimate the first term in (19),

N∑
j=1

ε1

∫ xj

xj−1

ζ ′χ′dx ≤
( N∑

j=1

ε1

∫ xj

xj−1

(ζ ′)2dx

)1/2( N∑
j=1

ε1

∫ xj

xj−1

(χ′)2dx

)1/2

≤ C(N−1 lnN)2 ∥χ∥ε .

Second term in (19) can be estimated using Cauchy–Schwarz inequality and
the exact choice of discontinuity-penalization parameter σj = N ,

N∑
j=1

ε1{ζ ′(xj)}[χ(xj)] ≤
( N∑

j=0

ε1
σj

{ζ ′(xj)}2
)1/2( N∑

j=0

σj [χ(xj)]
2

)1/2

≤ C(N−1 lnN)2 ∥χ∥ε .
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Using both these inequalities in (19), gives us

B1(ζ, χ) ≤ C(N−1 lnN)2 ∥χ∥ε . (20)

Last but not the least is to estimate B2(ζ, χ),

N∑
j=1

∫ xj

xj−1

(
ε2b(x)ζ

′ + c(x)ζ
)
χdx =

N∑
j=1

ε2

∫ xj

xj−1

b(x)ζχ′dx

+

N∑
j=1

∫ xj

xj−1

(
c(x)− ε2b

′(x)
)
ζχdx.

We estimate the two terms of right side of above equation separately,∣∣∣∣ N∑
j=1

ε2

∫ xj

xj−1

b(x)ζχ′dx

∣∣∣∣
≤ C

( 3∑
i=1

∥ζ∥L∞(Ωl,i)
∥χ′∥L1(Ωl,i)

+

3∑
i=1

∥ζ∥L∞(Ωr,i)
∥χ′∥L1(Ωr,i)

)
≤ C(N−1 lnN)2 ∥χ∥ε .

Here, we have used

∥χ′∥L1(Ωl,i)
≤ C(λ−1

l lnN)1/2 ∥χ′∥L2(Ωl,i)
≤ C(ε−1

1 λ−1
l lnN)1/2 ∥χ∥ε

and results of Lemma 3.

Finally, the last term can be bounded as∣∣∣∣ N∑
j=1

∫ xj

xj−1

(
c(x)− ε2b

′(x)
)
ζχdx

∣∣∣∣ ≤ C ∥ζ∥L2(Ω) ∥χ∥L2(Ω) ≤ C(N−1 lnN)2 ∥χ∥ε .

Keeping in view of above two inequalities, we have

B2(ζ, χ) ≤ C(N−1 lnN)2 ∥χ∥ε . (21)

From (18), (20) and (21), we get the result of Theorem 4.

Theorem 5. Let u and uN be the solutions of continuous problem (1) and
the discrete problem (4), respectively. Then the discretization error satisfies
the following estimates:
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∥u− uN∥ε ≤ C(N−1 lnN)2.

Proof. Applying triangular inequality on the estimation from Theorems 3
and 4, we get the desired result.

5 Numerical results and their assessments

In this section, we consider two test problems to validate the theoretical
estimation established in the previous section.

Example 1. In this context, we have the first test problem:

−ε1u
′′ + ε2(3x

2 + 2)u′ + 7u = f(x),

u(0) = u(1) = 0,

where f(x) is defined by

f(x) =

 3x2 + 2, x ≤ d,

0.5x, x > d,

and d = 0.7.

The above test problem is a singularly perturbed convection-diffusion
problem with two parameters and discontinuity of type I in the source term
at an interior point x = d of the domain. The solution of the above test
problem exhibits boundary layers at both end points x = 0, 1. In addition, a
layer at the point of discontinuity of source term x = d in the interior of the
domain is recorded. The curve of the computed solution along with the exact
solution is provided in Figure 1. The solutionprofile shows both the bound-
ary layers at x = 0 and x = 1 and also the interior layer at x = 0.7. Here,
0.7 is the point of discontinuity for f(x) in Example 1. The exact choice of
discontinuity-penalization parameter used for this is σj = N , for all j, which
are discussed in Section 4.

Error and rate of convergence are examined for various values of dis-
cretization parameter N and the singular perturbation parameter ε1. Two
parameters ε1 and ε2 are related to each other by the relation ε1 ≤ ε22. For
the sake of convenience in our computation, we take the general case ε1 = ε22.
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The exact solution to the above test problem is not known. Hence for the
computational purpose, we determine errors for DG-norm by ∥uN − u2N∥DG.
We apply the double mesh principle to deduce the rate of convergence and
errors. Therefore, the following formula is applied

RN
ε = log2

(
∥uN − u2N∥DG
∥u2N − u4N∥DG

)
,

and the consequence is mentioned in Tables 1 and 2. From these tables, it
is clear that the scheme is convergent with an order of convergence up to
2. In the study of [11], we see that if we change our domain discretization
from Shishkin mesh to Bakhvalov mesh and Bakhvalov mesh to exponential
mesh, then the rate of convergence increases gradually. In this regard, we
achieve comparatively better order of convergence, and numerically it will be
achieved to 2.

Figure 1: Computed and exact solution for Example 1 for N = 2048 and
ε = 10−6.

Table 2: Convergence rates RN
ε for Example 1.

Number of intervals (N)
ε2 128 256 512 1024 2048

10−2 0.8902 0.9406 0.9705 0.9855 0.9928
10−3 1.1069 0.8868 0.9140 0.9545 0.9774
10−4 1.7920 1.5795 1.0695 0.9100 0.9347
10−5 1.4870 1.8389 1.8514 1.5312 1.0518

Example 2. The second test problem in this context is taken as

−ε1u
′′ + ε2(7x+ 5)u′ + 3u = f(x),

u(0) = u(1) = 0,

where f(x) is defined by

f(x) =

{
x, x ≤ d,

2− x, x > d,

and d = 0.7.

The test problem given above in Example 2 is also regarded as two-
parametric convection-diffusion problem with discontinuous source term.
Due to the lack of an exact solution to the above problem, we use the double
mesh principle to conclude the error and rate of convergence of the obtained
numerical solutions. The rate of convergence is obtained by the following
formula:

13

Figure 1: Computed and exact solution for Example 1 for N = 2048 and ε = 10−6.

Table 1: ∥uN − u2N∥DG errors for Example 1

Number of intervals (N)
ε2 64 128 256 512 1024 2048

10−2 2.7829E-03 1.3574E-03 6.7059E-04 3.3331E-04 1.6617E-04 8.2964E-05
10−3 3.7937E-03 1.8284E-03 8.9695E-04 4.4416E-04 2.2100E-04 1.1023E-04
10−4 5.3400E-03 2.5120E-03 1.2140E-03 5.9633E-04 2.9548E-04 1.4707E-04
10−5 7.7506E-03 3.5276E-03 1.6647E-03 8.0656E-04 3.9677E-04 1.9676E-04
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Table 2: Convergence rates RN
ε for Example 1

Number of intervals (N)

ε2 128 256 512 1024 2048

10−2 0.8902 0.9406 0.9705 0.9855 0.9928

10−3 1.1069 0.8868 0.9140 0.9545 0.9774

10−4 1.7920 1.5795 1.0695 0.9100 0.9347

10−5 1.4870 1.8389 1.8514 1.5312 1.0518

Example 2. The second test problem in this context is taken a

−ε1u
′′ + ε2(7x+ 5)u′ + 3u = f(x),

u(0) = u(1) = 0,

where f(x) is defined by

f(x) =

 x, x ≤ d,

2− x, x > d,

and d = 0.7.

The test problem given above in Example 2 is also regarded as two-
parametric convection-diffusion problem with discontinuous source term.
Due to the lack of an exact solution to the above problem, we use the double
mesh principle to conclude the error and rate of convergence of the obtained
numerical solutions. The rate of convergence is obtained by the following
formula:

PN
ε = log2

(
∥uN − u2N∥DG
∥u2N − u4N∥DG

)
.

The same choice of discontinuity penalization parameter as in the previous
example is imposed here. The best possible relation between ε1 and ε2 is
ε1 = ε22. Now, the error ∥uN − u2N∥DG and the rate of convergence PN

ε for
the computed solution for the test problem in Example 2 with different values
of discretization parameter N are given below in Tables 3 and 4, respectively.
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The second-order convergence appears to be achieved up to the logarithmic
factor from Table 4.

Table 3: ∥uN − u2N∥DG errors for Example 2

Number of intervals (N)
ε2 64 128 256 512 1024 2048

10−2 9.8446E-03 3.0845E-03 9.9633E-04 3.3445E-04 1.1108E-04 3.9958E-05
10−3 4.0731E-02 2.0132E-02 8.8730E-03 3.5715E-03 1.4107E-03 5.3149E-04
10−4 4.1807E-02 2.0444E-02 8.8440E-03 3.5894E-03 1.3849E-03 5.3839E-04
10−5 4.1841E-02 2.0351E-02 8.8344E-03 3.5877E-03 1.4237E-03 5.2625E-04

Table 4: Convergence rates PN
ε for Example 2

Number of intervals (N)

ε2 128 256 512 1024 2048

10−2 1.6742 1.6303 1.5748 1.5901 1.4751

10−3 1.8166 1.8819 1.6128 1.3401 1.4083

10−4 1.9320 1.8089 1.3009 1.3739 1.5630

10−5 1.9397 1.8239 1.6000 1.5333 1.5359

5.1 Discussion

Several articles are available in the literature that deal with the convergence
and superconvergence of numerical solutions for problems with one and two
small parameters. However, in all the articles, problems with continuous
coefficients and source terms are discussed. In [11], authors have established
the superconvergence result of the discontinuous Galerkin method for a two-
parametric singular perturbation problem in which all the coefficients are
assumed to be continuous. In that, authors have used three types of meshes
usual Shishkin mesh, Bakhvalov mesh, and exponentially graded mesh for
domain discretization and shown their rate of convergence of order two by
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talking linear elements in its finite element space. The convergence results
on both the Bakhvalov mesh and exponentially graded mesh have a sharper
rate of convergence, that is O(N−2), than the rate of convergence obtained
on the usual Shishkin mesh. In the present work, we attempt to obtain
the convergence result for two-parametric problem in which the source term
is discontinuous. The discontinuous Galerkin method is applied, and the
second-order convergence has been obtained up to the logarithmic factor.

6 Conclusion

In this article, we proposed and discussed uniformly convergent discontinuous
Galerkin FEM for two-parametric singularly perturbed problems with a dis-
continuous source term. The problem usually exhibits a weak interior layer
because of the discontinuous source term and the presence of the multiple
perturbation parameters gives rise to boundary layers on both sides of the
boundary. In order to address the layering phenomenon, we developed the
non-symmetric discontinuous Galerkin FEM with interior penalties through
this work. With the use of a typical Shishkin mesh, the domain is discretized,
and a uniform error estimate was obtained. The numerical experiments were
conducted to validate the theoretical conclusions.
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