F

Research Article

Fuzzy endpoint results for Ćirić-generalized quasicontractive fuzzy mappings

B. Mohammadi*

Abstract

We introduce Ćirić-generalized quasicontractive fuzzy mappings and provide the necessary and sufficient conditions of having a unique endpoint for such mappings. Then we introduce β - ψ -quasicontractive fuzzy mappings, establishing an endpoint result for them. Finally, we provide some results as an application.

AMS(2010): 47H10; 54H25.

Keywords: Fuzzy endpoint; Ćirić-generalized; Quasicontractive fuzzy mappings; Fuzzy approximate endpoint property.

1 Introduction and preliminaries

The concept of fuzzy set was introduced initially by Zadeh [12] in 1965. In 1981, Heilpern [6] established the fuzzy contraction and proved a fuzzy fixed point theorem, which was a generalization of Nadler's fixed point theorem for multi-valued mappings (see [9]). In 2001, Estruch and Vidal [5] utilized the result of Heilpern to fuzzy fixed point with fixed degree α for some $\alpha \in [0, 1]$, which was later generalized by many authors (see, for instance, [1,3,11]). Recently, Abbas and Turkoglu [11] proved the existence of a fuzzy fixed point for a generalized contractive fuzzy mapping. On the other hand, In 2010, Amini-Harandi [2] proved that some multi-valued mappings $T: X \to CB(X)$ have a unique endpoint if and only if they have the approximate endpoint property. Afterwards, considering the same properties, Moradi and Khojasteh [8] generalized Amini-Harandi's result. In this paper, in the sense of [8], we prove

Received 2 March 2017; revised 8 July 2019; accepted 17 July 2019

Babak Mohammadi

Department of Mathematics, Marand Branch, Islamic Azad University, Marand, Iran. e-mail: bmohammadi@marandiau.ac.ir

^{*}Corresponding author

186 B. Mohammadi

that some fuzzy mappings have a unique fuzzy endpoint if and only if they have the fuzzy approximate endpoint property.

Definition 1.(see [6]) Let X be a space of points with generic element x and I = [0, 1]. A fuzzy set in X is a function that associates any point of X with a number in interval [0, 1]. If A is a fuzzy set in X and $x \in X$, then A(x) is called the grade of membership of x in A.

Definition 2.(see [6]) Let (X, d) be a metric space and let A be a fuzzy set in X. For $\alpha \in [0, 1]$, the α -level set of A denoted by $[A]_{\alpha}$, is defined as

$$[A]_{\alpha} = \{x | A(x) \ge \alpha\} \quad if \quad \alpha \in (0, 1]$$

and

$$[A]_0 = \overline{\{x|A(x) > 0\}},$$

where \overline{B} denotes the closure of the nonfuzzy set B.

Definition 3.(see [6]) Let X be a nonempty set. For $x \in X$, we write $\{x\}$ the characteristic function of the ordinary subset $\{x\}$ of X. For $\alpha \in (0,1]$, the fuzzy point x_{α} of X is the fuzzy set in X given by

$$x_{\alpha}(y) = \begin{cases} \alpha, & y = x, \\ 0, & y \neq x. \end{cases}$$

Define

$$W_{\alpha}(X) = \{ C \in I^X : [C]_{\alpha} \text{ is nonempty and compact} \}.$$

Throughout this paper, I^X denotes the collection of all fuzzy sets in X. For $A, B \in I^X$, it is called that A is more accurate than B (denoted by $A \subset B$) whenever $A(x) \leq B(x)$ for all $x \in X$. For $x \in X$, $S \subseteq X$, $A, B \in W_{\alpha}(X)$, and $\alpha \in (0, 1]$, we define

$$\begin{split} d(x,S) &= \inf \{ d(x,a) : a \in S \}, \\ p_{\alpha}(x,A) &= \inf \{ d(x,a) : a \in [A]_{\alpha} \}, \\ p_{\alpha}(A,B) &= \inf \{ d(a,b) : a \in [A]_{\alpha}, b \in [B]_{\alpha} \}, \\ D_{\alpha}(A,B) &= H([A]_{\alpha},[B]_{\alpha}) = \max \{ \sup_{x \in A} p_{\alpha}(x,B), \sup_{y \in B} p_{\alpha}(y,A) \}, \end{split}$$

where H is the Hausdorff distance. It is easily seen that D_{α} is the Hausdorff metric on $W_{\alpha}(X)$ induced by the metric d. Hereafter, we denote by $D_{\alpha}(x, A)$ the amount $D_{\alpha}(\{x\}, A) = H(\{x\}, [A]_{\alpha})$ for all $x \in X$ and $A \in W_{\alpha}(X)$.

Definition 4.(see [5]) Let X be a nonempty set, let $T: X \to I^X$, and let $\alpha \in (0,1]$. A fuzzy point x_{α} is called a fuzzy fixed point of T if $x_{\alpha} \subset Tx$ (or equally $x \in [Tx]_{\alpha}$). This means that the fixed degree of x is at least α . If $\{x\} \subset Tx$, then it is called that x is a fixed point of T.

2 Main results

Now, we are ready to state and prove the main results of this study. Firstly, we give the following definition:

Definition 5. Let X be a nonempty set, let $T: X \to I^X$, and let $\alpha \in (0,1]$. We say that a point $x \in X$ is a fuzzy endpoint of T if $\{x\} = [Tx]_{\alpha}$. This means that x is the only point in X that the fixed degree of x is at least α . If $\{x\} = [Tx]_1$, we say that x is an endpoint of T.

Now, we give the following definition of fuzzy approximate endpoint property in the sense of Amini-Harandi [2].

Definition 6. Let (X,d) be a metric space, let $T:X\to I^X$, and let $\alpha\in(0,1]$. We say that T has the fuzzy approximate endpoint property whenever

$$\inf_{x \in X} \sup_{y \in [Tx]_{\alpha}} d(x, y) = 0$$

or equally

$$\inf_{x \in X} D_{\alpha}(x, Tx) = 0.$$

Definition 7. Let (X,d) be a metric space, let $\alpha \in (0,1]$, and let $T: X \to W_{\alpha}(X)$. We say that T is a Ćirić-generalized quasicontractive fuzzy mapping whenever there exists an upper semicontinuous (u.s.c) mapping $\psi: [0,+\infty) \to [0,+\infty)$ such that $\psi(t) < t$, for all t > 0 and $\liminf_{t\to\infty} (t-\psi(t)) > 0$ satisfying

$$D_{\alpha}(Tx, Ty) \le \psi(M(x, y))$$
 for all $x, y \in X$, (1)

where

$$M(x,y) = \max\{d(x,y), D_{\alpha}(x,Tx), D_{\alpha}(y,Ty), D_{\alpha}(x,Ty), D_{\alpha}(y,Tx)\}.$$

Theorem 1. Let (X,d) be a complete metric space, let $\alpha \in (0,1]$, and let $T: X \to W_{\alpha}(X)$ be a Cirić-generalized quasicontractive fuzzy mapping. Then, T has a unique fuzzy endpoint if and only if T has the fuzzy approximate endpoint property.

Proof. If T has a fuzzy endpoint, obviously, it has the fuzzy approximate endpoint property. Conversely, let T has the fuzzy approximate endpoint property. Then, there exists a sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} D_{\alpha}(x_n, Tx_n) = 0$. Now for any $n, m \in \mathbb{N}$, we have

188 B. Mohammadi

$$M(x_{n}, x_{m}) = \max\{d(x_{n}, x_{m}), D_{\alpha}(x_{n}, Tx_{n}), D_{\alpha}(x_{m}, Tx_{m}), D_{\alpha}(x_{m}, Tx_{n})\}$$

$$\leq D_{\alpha}(x_{n}, Tx_{n}) + D_{\alpha}(x_{m}, Tx_{m}) + D_{\alpha}(Tx_{n}, Tx_{m})$$

$$\leq D_{\alpha}(x_{n}, Tx_{n}) + D_{\alpha}(x_{m}, Tx_{m}) + \psi(M(x_{n}, x_{m})).$$
(2)

Therefore, from the above inequality, we have

$$\lim_{n,m\to\infty} \inf \left(M(x_n, x_m) - \psi(M(x_n, x_m)) \right) = 0.$$

From the property of ψ , we can conclude that $\limsup_{n,m\to\infty} M(x_n,x_m) < \infty$. Thus from (2) and by upper semicontinuity of ψ , we have

$$\limsup_{n,m\to\infty} M(x_n,x_m) \le \limsup_{n,m\to\infty} \psi(M(x_n,x_m))
\le \psi(\limsup_{n,m\to\infty} M(x_n,x_m)).$$

So we have $\limsup_{n,m\to\infty} M(x_n,x_m)=0$ and so $\{x_n\}$ is a Cauchy sequence. Since X is complete, there exists $x^*\in X$ such that $\lim_{n\to\infty} d(x_n,x^*)=0$. We shall show that $\{x^*\}=[Tx^*]_{\alpha}$. To see this, we have

$$D_{\alpha}(x^*, Tx^*) \le d(x^*, x_n) + D_{\alpha}(x_n, Tx_n) + D_{\alpha}(Tx_n, Tx^*)$$

$$\le d(x^*, x_n) + D_{\alpha}(x_n, Tx_n) + \psi(M(x_n, x^*)).$$
(3)

Limiting from both sides of (3), we get

$$D_{\alpha}(x^*, Tx^*) \le \limsup_{n \to \infty} \psi(M(x_n, x^*)). \tag{4}$$

On the other hand,

$$M(x_n, x^*) = \max\{d(x_n, x^*), D_{\alpha}(x_n, Tx_n), \\ D_{\alpha}(x^*, Tx^*), D_{\alpha}(x_n, Tx^*), D_{\alpha}(x^*, Tx_n)\} \\ \leq d(x_n, x^*) + D_{\alpha}(x_n, Tx_n) + D_{\alpha}(x^*, Tx^*),$$

which implies

$$\limsup_{n \to \infty} M(x_n, x^*) \le D_{\alpha}(x^*, Tx^*). \tag{5}$$

Consequently, from right upper semicontinuity of ψ , (4) and (5) yield

$$D_{\alpha}(x^*, Tx^*) \le \psi(D_{\alpha}(x^*, Tx^*))$$

and so $H(\{x^*\}, [Tx^*]_{\alpha}) = D_{\alpha}(x^*, Tx^*) = 0$. This means that $\{x^*\} = [Tx^*]_{\alpha}$. The uniqueness of endpoint is concluded from (1).

Definition 8. Let (X,d) be a metric space, $\alpha \in (0,1]$, and $T: X \to W_{\alpha}(X)$. We say that T is a Ćirić-generalized β - ψ -quasicontractive fuzzy mapping whenever there exists an upper semicontinuous (u.s.c) mapping ψ :

 $[0, +\infty) \to [0, +\infty)$ such that $\psi(t) < t$, for all t > 0 and $\liminf_{t \to \infty} (t - \psi(t)) > 0$ and a function $\beta: X \times X \to [0, \infty)$ satisfying

$$\beta(x,y)D_{\alpha}(Tx,Ty) \le \psi(M(x,y)) \quad \text{for all } x,y \in X,$$
 (6)

where

$$M(x,y) = \max\{d(x,y), D_{\alpha}(x,Tx), D_{\alpha}(y,Ty), D_{\alpha}(x,Ty), D_{\alpha}(y,Tx)\}.$$

Theorem 2. Let (X,d) be a complete metric space, let $\alpha \in (0,1]$, and let $T: X \to W_{\alpha}(X)$ be a Cirić-generalized β - ψ -quasicontractive fuzzy mapping. Moreover suppose that

- (i) there exists a sequence $\{x_n\}$ in X such that $\beta(x_n, x_m) \geq 1$ for all $n, m \in \mathbb{N}$ with n < m and $\lim_{n \to \infty} D_{\alpha}(x_n, Tx_n) = 0$,
- (ii) for any sequence $\{x_n\}$ in X which $\beta(x_n, x_m) \ge 1$ for all $n, m \in \mathbb{N}$ with n < m and $x_n \to x$, we have $\beta(x_n, x) \ge 1$, for all $n \in \mathbb{N}$.

Then, T has a fuzzy endpoint.

Proof. For any $n, m \in \mathbb{N}$, we have

$$M(x_{n}, x_{m}) = \max\{d(x_{n}, x_{m}), D_{\alpha}(x_{n}, Tx_{n}), D_{\alpha}(x_{m}, Tx_{n}), D_{\alpha}(x_{m}, Tx_{n})\}$$

$$\leq D_{\alpha}(x_{n}, Tx_{n}) + D_{\alpha}(x_{m}, Tx_{m}) + \beta(x_{n}, x_{m})D_{\alpha}(Tx_{n}, Tx_{m})$$

$$\leq D_{\alpha}(x_{n}, Tx_{n}) + D_{\alpha}(x_{m}, Tx_{m}) + \psi(M(x_{n}, x_{m})).$$
(7)

Similar to Theorem 1, we conclude that $\limsup_{n,m\to\infty} M(x_n,x_m) = 0$ and so $\{x_n\}$ is a Cauchy sequence. Let $\lim_{n\to\infty} d(x_n,x^*) = 0$. We show that $\{x^*\} = [Tx^*]_{\alpha}$. To see this, we have

$$D_{\alpha}(x^*, Tx^*) \le d(x^*, x_n) + D_{\alpha}(x_n, Tx_n) + \beta(x_n, x^*) D_{\alpha}(Tx_n, Tx^*)$$

$$\le d(x^*, x_n) + D_{\alpha}(x_n, Tx_n) + \psi(M(x_n, x^*)).$$
(8)

Consequently, as in Theorem 1, we obtain

$$D_{\alpha}(x^*, Tx^*) \leq \psi(D_{\alpha}(x^*, Tx^*)),$$

which implies $H(\lbrace x^* \rbrace, [Tx^*]_{\alpha}) = D_{\alpha}(x^*, Tx^*) = 0$. This means that $\lbrace x^* \rbrace = [Tx^*]_{\alpha}$.

Let \subset be the partial order on $W_{\alpha}(X)$ defined by $A \subset B$ if and only if $A(x) \leq B(x)$ for all $x \in X$. In the following result, we restrict the contraction condition only for $x, y \in X$ with $Tx \subset Ty$.

190 B. Mohammadi

Corollary 1. Let (X,d) be a complete metric space, $\alpha \in (0,1]$, and $T: X \to W_{\alpha}(X)$ be a fuzzy mapping such that there exists an upper semicontinuous (u.s.c) mapping $\psi : [0,+\infty) \to [0,+\infty)$ with $\psi(t) < t$, for all t > 0 and $\liminf_{t\to\infty} (t-\psi(t)) > 0$ satisfying

$$D_{\alpha}(Tx, Ty) \le \psi(M(x, y))$$
 for all $x, y \in X$ with $Tx \subset Ty$, (9)

where

$$M(x,y) = \max\{d(x,y), D_{\alpha}(x,Tx), D_{\alpha}(y,Ty), D_{\alpha}(x,Ty), D_{\alpha}(y,Tx)\}.$$

Moreover suppose that

- (i) there exists a sequence $\{x_n\}$ in X such that $\{Tx_n\}$ is a nondecreasing sequence in $W_{\alpha}(X)$ and $\lim_{n\to\infty} D_{\alpha}(x_n, Tx_n) = 0$,
- (ii) for any sequence $\{x_n\}$ in X which $\{Tx_n\}$ is a nondecreasing sequence in $W_{\alpha}(X)$ and $x_n \to x$, we have $Tx_n \subset Tx$, for all $n \in \mathbb{N}$.

Then, T has a fuzzy endpoint.

Proof. Define the mapping $\beta: X \times X \to [0, \infty)$ by $\beta(x, y) = 1$, whenever $Tx \subset Ty$ and $\beta(x, y) = 0$ otherwise. Then apply Theorem 2.

Corollary 2. Let (X,d) be a complete metric space, let $x^* \in X$ be a fixed element, let $\alpha \in (0,1]$, and let $T: X \to W_{\alpha}(X)$ be a fuzzy mapping such that there exists an upper semicontinuous (u.s.c) mapping $\psi: [0,+\infty) \to [0,+\infty)$ with $\psi(t) < t$, for all t > 0 and $\liminf_{t \to \infty} (t - \psi(t)) > 0$ satisfying

$$D_{\alpha}(Tx, Ty) \leq \psi(M(x, y))$$
 for all $x, y \in X$ with $Tx(x^*) = Ty(x^*)$, (10)

where

$$M(x,y) = \max\{d(x,y), D_{\alpha}(x,Tx), D_{\alpha}(y,Ty), D_{\alpha}(x,Ty), D_{\alpha}(y,Tx)\}.$$

Moreover suppose that

- (i) there are a sequence $\{x_n\}$ in X and $\lambda \in [0,1]$ such that $Tx_n(x^*) = \lambda$ is fixed for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} D_{\alpha}(x_n, Tx_n) = 0$,
- (ii) for any sequence $\{x_n\}$ in X that $Tx_n(x^*) = \lambda$ is fixed for all $n \in \mathbb{N}$ and $x_n \to x$, we have $Tx(x^*) = \lambda$, for all $n \in \mathbb{N}$.

Then, T has a fuzzy endpoint.

Proof. Define the mapping $\beta: X \times X \to [0,\infty)$ by $\beta(x,y) = 1$, whenever $Tx(x^*) = Ty(x^*)$ and $\beta(x,y) = 0$ otherwise. Then applying Theorem 2 completes the proof.

Acknowledgement

This study was supported by Marand Branch, Islamic Azad University, Marand, Iran.

References

- 1. Abbas, M., Turkoglu, D. Fixed point theorem for a generalized contractive fuzzy mapping, J. Intell. Fuzzy Systems. 26 (2014), 33–36.
- 2. Amini-Harandi, A. Endpoints of set-valued contractions in metric spaces, Nonlinear Anal. 72 (2010), 132–134.
- 3. Azam, A., Beg, I. Common fixed points of fuzzy maps, Math. Comput. Modelling. 49 (2009), 1331–1336.
- 4. Ćirić, L.B. A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267–273.
- Estruch, V.D., Vidal, A. A note on fixed fuzzy points for fuzzy mappings, Rend Istit. Mat. Univ. Trieste. 32 (2001), 39-45.
- Heilpern, S. Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl. 83 (1981), 566–569.
- Mohammadi, B., Rezapour, SH., Shahzad, N. Some results on fixed points of α-ψ-Ciric generalized multifunctions, Fixed Point Theory Appl. (2013):24.
- 8. Moradi, S., Khojasteh, F. Endpoints of multi-valued generalized weak contraction mappings, Nonlinear Anal. 74 (2011), 2170–2174.
- Nadler, S.B. Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475–488.
- 10. Samet, B., Vetro, C., Vetro, P. Fixed point theorems for α - ψ -contractive type mappings, Nonlinear Anal. 75 (2012), 2154–2165.
- 11. Turkoglu, D., Rhoades, B.E. A fixed fuzzy point for fuzzy mapping in complete metric spaces, Math. Commun. 10 (2005), 115–121.
- 12. Zadeh, L.A. Fuzzy sets, Inf. Control. 8 (1965), 103–112.