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variation for image denoising problems
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Abstract

Variational models are one of the most efficient techniques for image de-
noising problems. A variational method refers to the technique of optimizing
a functional in order to restore appropriate solutions from observed data that
best fit the original image. This paper proposes to revisit the discrete total
generalized variation (T'GV') image denoising problem by redefining the op-
erations via the inclusion of a diagonal term to reduce the staircasing effect,
which is the patchy artifacts usually observed in slanted regions of the image.
We propose to add an oblique scheme in discretization operators, which we
claim is aware of the alleviation of the staircasing effect superior to the con-
ventional TGV method. Numerical experiments are carried out by using the
primal-dual algorithm, and numerous real-world examples are conducted to
confirm that the new proposed method achieves higher quality in terms of rel-
ative error and the peak signal to noise ratio compared with the conventional
TGV method.
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1 Introduction

Digital image processing (DIP) deals with performing operations on digital
images. A digital image is a numerical representation of a physical scene,
which is composed of a finite number of pixels. Digital images are produced
by means of imaging machines that cover the electromagnetic spectrum. Syn-
thetic images, electron microscopy images, and ultra-sound images are exam-
ples of digital images. Digital images were first used in the newspaper indus-
try in the 1920s. These digital images were produced from a coded tape by
a telegraph printer. The field of DIP is enriched with various applications,
including image restoration [3,17,23,25], artistic effects [19], medical visual-
ization [9,27,28,30], industrial inspection [22], law enforcement [32,33], and
so on. Image restoration is one of the most widespread applications of DIP
techniques that implements processes on digital images in order to estimate
the original image from the corrupted one. The image distortion is caused
due to different types of noise, such as Gaussian noise, white noise, salt and
pepper noise, and speckle noise. In recent decades, variational approaches
have been used as an efficient tool for image denoising problems.

A variational model is an optimization problem in which the criterion
is defined as a functional (energy), which consists of a regularization term
and a data fidelity term. Total variation (T'V') regularization is a variational
model that uses total variation as a regularization term. T'V regularization
was first proposed by Rudin, Osher, and Fatemi (ROF model) for imaging
problems; see [26]. The ROF method is edge-preserving and has a fast nu-
merical algorithm. Many different papers have shown the efficiency of TV
minimization for image restoration [1,4,5,8,10,11,13-15,18,20,21,24,29, 31].
The TV regularization has been widely used in various applications, such as
image deblurring, inpainting, image zooming, segmentation problems, inter-
polation, spectral extrapolation, and stereovision. In these methods, the TV
semi-nom is defined as

TV (u) = sup {/ u div v dx ‘ veCHQRY), ||Vl < 1},
Q

where u is a function defined on a bounded region 2 C R"™. TV based
regularization models have been proved to be efficient in image denoising
problems. However, these models suffer from the staircasing effect, which
appears as undesired patchy artifacts in slanted regions (see Figure 1). The
total generalized variation (TGV') regularization model [6] is one technique
to overcome this shortcoming, which acts as a regularization functional that
incorporates higher-order derivatives and regularizes independently on vari-
ous regularity levels. The main idea of TGV is a generalization of T'V, which
is defined as
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Figure 1: The implementation results of 1500 iterations of the ROF TV model [26]. From
left to right: The reference image, the noisy image, and the restored image using the ROF
TV. The original image has been corrupted by additive white Gaussian noise of standard
deviation 0.18 and the regularization parameter is set to A = 0.17. The ROF denoising
model leads to staircasing effect, which is observed as patchy artifacts.

TGV (u) =sup {/

Q
1=0,... k-1 }

u divky da ‘ v e CkQ, SymF(R™), ||div'v||e < N\,

where & > 1, n > 1, and \; are fixed positive parameters, and Sym”(R™)
denotes the space of symmetric tensors of order k& with arguments in R".
This paper proposes to revisit the TGV image denoising model by redefin-
ing the gradient operations via the inclusion of diagonal terms to reduce the
staircasing effect. We propose to add an oblique scheme in classical image
derivatives discretization, which we claim is aware of the alleviation of the
staircasing effect superior to the conventional TGV method. Numerical ex-
periments are carried out using the primal-dual algorithm, and numerous
real-world experiments are conducted to confirm the effectiveness of the new
approach.

The remainder of this paper is organized as follows. First, a brief ex-
planation of some essential concepts regarding the TV and TGV schemes is
presented in section 2. In section 3, the new proposed regularization model
for image denoising problems and the corresponding theoretical results are
presented. Section 4 is devoted to numerical experiments and comparisons
that demonstrate the efficiency of the proposed method. Finally, Section 5
contains some concluding remarks.

2 Background

In this section, we present a brief review on essential concepts of TV and
TGV approaches.
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2.1 TV concept

Assume that u is a function defined on a bounded region Q@ C R". The
function wu is said of bounded variation (BV function) if it is integrable and
there exists a Radon measure Du such that

/udivudx:—/uDudx,
Q Q

for allv € CH(R",R"), where C}(R",R") is the space of continuously differ-
entiable vector functions v of compact support and Du is the distributional
(weak) derivative of w. The TV seminorm of u is defined as

TV (u) == sup{ /Qu div v dx ‘ v e CHORY), ||V < 1} = /Q |Du|dez,

where |.| is the Euclidean norm. In the case that u is a smooth function, we
have Du = Vu; therefore TV (u) is the integral of its gradient magnitude

TWM:AWWm

2.2 TGV concept

In this subsection, we review the essential concepts of TGV regularization
from [6].

Definition 1. Let £ > 1, Q € R" be a bounded region, and A, ..., Ax_1 be
fixed positive parameters. For u € L}, (£2), the total generalized variation of

order k with weight A € R¥ is defined by the functional

TGV (u) = sup { /

u divky dx ’ v e CF(Q, SymF(R™)), ||div'v||e < N,
Q

l:Q“wk—I}

where A = (Ao, ..., \k_1), CF(Q, Sym*(R™)) is the space of k-times contin-
uously differentiable functions with compact support from Q to Sym*(R™)
and Sym*(R") is the vector space of symmetric k-tensors defined as

SymF(R") = {77 R'"x - - xR" =R ‘ 1 is k-linear and symmetric}.
—_—
k times

For the case when k = 2, the TGV functional is a special case of TGVf
functional, which is defined as

TGV (u) = sup {/ u div?v dx ‘ v e C3Q, Sym*(R™), ||Vl < Mo,

Q
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div v]]oe < At} (1)

where A = (Mg, A1) and

(div v);

Z/Z] d’l:'l)zl/ = a V” Z 88V’LJ

z;0x;

HM&

i=1 @}

Remark 1. The Euclidean space RV**"2 ig equipped with the inner product

N1 Ns
N1 X N:
(u, S>RN1><N2 = E E Ui jSi5, U,S€E R 772,

i=1 j=1

For u € RN**M2 the second order TGV semi-norm (1) can be discretized
as

TGV (u) = max {(u,div2V>RleN2 ve (RYN N2y — (Vll V12) 7

Vi2 V22

vig € RNN (1,5 = 1,9), (vl < Mo lldiv vl < N f, (2)

where A = (Ag, A1). The discrete version of the infinity norm for the vector
field z, where z = div v, is defined as

n 1/2
||z|oo:sup{ < Zzl(x)2> ‘xeﬂ}

Moreover, the discrete version of the infinity norm for matrix v is defined as

1/2
||V|Oosup{<zyn +2ZVU > ‘SCEQ}

i<J

3 The new proposed method

In this section, we present a new variant of the TGV model for the alleviation
of the staircasing effect in image denoising problems by redefining the oper-
ators via the inclusion of a diagonal term. In the conventional TGV model
presented in [6], the discretization operators are based on finite differences
in the direction of the horizontal and vertical axes. Here, we reconstruct the
discretization operators in [6] via the inclusion of a diagonal term. For this
purpose, we introduce the versions of the discretization operators in parts (a-
e). The indexes z, y, and o indicate that the corresponding finite-differences
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are established in the direction of the horizontal, vertical, and diagonal axis,
respectively.

a. For u € RV*M2 we define the discretization operator § : RNV N2
(R3)N1xN2 54

(i=1,...,Ny1, j=1,...,Ny) , where

)‘ Uity T Uy if 1Si<N1,
i = 0 if i = Ny,

vy Juige —wy i 1< < N,
Oy )iy = { 0 if j =Ny,

(OF )y, = | WitLat — Uig if 1<i<Np, 1<) <Ny,
o Wij = 0 if i=Ny,j = No.

p1
b. For p= | p2 |, p; € RM*N2 (4 =1,2,3), the discretization operator

b3
¢ (R})NXN2 y RNXN2 g defined as

¢(p) = 05 (p1) + 9 (p2) + 05 (p3),

where . .
(P1)ij — (P1)i—1,; if 1 <i< Ny,
(07 p1)ij = (p1)i; if =1,
—(p1)i—1,; if i= Ny,
(p2)i,; — (P2)ij—1 if 1< j < Ny,
(0 p2)ij = (p2)iy if j=1,
—(p2)ij—1 if j= No,
(p3)ij — (P3)i—1,j—1 if 1 <i< Ny, 1<j <Ny,
(a;p:%)z‘,j =
(p3)iy if i=1,7=1
p1
c. Forp=|pa|,pi € RM*M (4 = 1,2 3), the discretization operator
b3

£ (RHN1xN2  (RY)N1XN2 g defined as
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9 (p1) 305 (p2) + 0 (p1)) 3(95 (p3) + 95 (p1))
&(p) = | 3(97 (p2) + 9 (1)) 3y (p2) 30y (ps) + 05 (p2)) |
305 (p3) + 05 (1)) 5(9y (p3) + 05 (p2)) 9, (p3)
where 0,7, 0,7, and J, are defined as in part (b).
V11 V12 V13
d. Forv = |vig v a3 |, vij € RN XNz (i,5 = 1,2,3), the discretiza-
V13 V23 V33

tion operator ¢ : (R?)N1*N2 5 (R?*)N1XN2 jg defined as

97 (11) + 0 (v12) + 05 (113)
C(v) = | OF (v12) + O (v22) + O (v23) |
9F (v13) + 0y (v23) + 97 (v33)

where 9, 9, and 9} are defined as in part (a).

V11 Vi2 V13
e. Forv= [viagvaare |, vy € RNV XNV (1,5 = 1,2,3), the discretiza-
V13 V23 V33
tion operator ¢2 : (R?)N1*N2 — RN1*M2 i defined as

CQ(I/) = a;a;r(l/n) + 8;8;(1/22) + 8;8:(1/33) + 6;8;(1/12) + 8;8j(1/13)

—&—6;8;(1/12) + ay_aj(l/gg,) + 60_8;_(1/13) + 80_8;(1/23).
where 9, 9,f, 0, 0., 0, , and 9, are defined as in parts (a) and (b).

The next step, we aim to solve the following variational image denoising
problem
min %HU_UOH%"'Lk(u)a (3)
u

RN1><N2 RNIXN2

where ug € is the noisy image, u € is the image to be
reconstructed, A = (Ag, A1) (Ao, A1 are the regularization parameters), and
L (u) is the new proposed regularization functional, which is defined as

0 Vi1 V12 V13
L)\(’U,) = max {<U s <2(V)>RN1><N2 Ve (R )N1><N2’ V= | V12 V22 V23 |,

V13 V23 V33

vig € RYN (5,5 = 1,2,3), [l < Aoy (K@)l <1} (4)
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3.1 Theoretical results

We apply the over-relaxed Chambolle-Pock algorithm described in [16] for
solving (3). Since this algorithm solves jointly the primal and dual formu-
lations of minimization problem (3), we need to obtain the Fenchel dual
formulation of functional (4). The analytical process for establishing this
formulation of (4) is stated in Theorem 2, in which we follow the steps of [7]
for its proof. Before studying this theorem, the reader needs to be familiar
with the concept of Legendre-Fenchel duality and Fenchel duality theorem
from [2].

Definition 2. Given some convex, proper, and lower semi-continuous func-
tion f(p) defined for p € H, where H is a Hilbert space with inner product
(.,.) g, its Legendre-Fenchel dual function is defined as

f*(¢) =max {{p,q); — f(p) | p € H}
for all g € H.

Theorem 1. Assume that X and Y are real Banach spaces, that f1 : X —
(—00,400) and fo : Y — (—o0,400) are proper, convex, and lower semi-
continuous functions, and that A : X — Y is a linear continuous operator.
If there exists xg € X such that fi1(x9) < oo and fo is continuous at Axy,
then

min {f1(z) + fa(A(z)) | v € X} = max {—f3(y") = f{(-=A"Y") | y" €Y},

p1 w1
Remark 2. For p= | py | € (R*)M*N2 and w = | wy | € (R*)NV1*N2 the

b3 w3
Euclidean space (R3)N 1XN2 s equipped with the inner product

N1 N2

(p, w>(R3)N1XN2 = Z Z(pl)i,j(wl)i,j + (p2)i.j(w2)ij + (p3)ij(ws)i ;-

i=1 j=1

Theorem 2. The discrete second order total generalized variation functional
(4) is equivalent to the following Fenchel dual formulation

L(u) = min Ao|[§(p)[|1 + A1]|6(w) — pl|1,
p € (RN,

where & and § are defined as in parts (¢) and (a), respectively.

Proof. We prove in the lines of [7]. Based on (4), we have
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La(w) = max { (u, )y evy | v € BN oo < ho, K0l < M

:ma"{<u’<2(”)>RleNz =L 1se <203 () = L] oo <21} (C(¥)) ‘ ve (RQ)N“N?}

ve (RQ)leNQ}’

= —min{f{|\.\|w90}(V) + I o <1 1 (CW)) = (4, P (1)) gvy x Vo

where £ ] A
- 01 V|loo < Ao,
Hiesry ) = {oo it 1]l > Ao,
_ 0 [[(C))loo < Aty
L1 sniy (€)= {oo it [[(C)lloe > Au.
‘We choose

1) = I e <o (), F2(C(0)) = I 1w <aar (C(0)) = (u, (1)) gvy xvs -

Based on the principles of Theorem 1, it follows that

L) = —min { fi(v) + £2(CW)) | v € RV )

= min { f{(=§(p) + /5 (p)| p € (R?)NN ),

where p = ((v). Based on the duality principle of definition 2, it yields
1 (=€) = Xoll€(P)l]1, and

*

5(p) = max {(p,w) oy — folw) | w € (RH)VXN2)

= max {{p,0) sy = Ll () + { C(w)) o | w € (R M),

Since ¢* = —4, it yields
13 (p) = max {{8(u), ) ey = (o w) oy | [[Wlloo < Ay w € (REMN)
= max {(J(u) — p, w>(R3)leN2 ’ [w]lso < A1, w € (RE)N1¥ N2,
Choosing k = d(u) — p, it follows that

2 Nz Ni

F3(0) = max { 303w, 0) huisd) | wlloe < Ary w € (RN N2}

s=1j=1 i=1

Av [[6(u) = plfs-

3.2 Primal-dual algorithm

This section contains the primal-dual algorithm described in [16] for solving
(3). Primal-dual methods apply proximity operators, which can be defined for
proper, lower semi-continuous, convex, and extended real-valued functions.
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The followings are the proximity operators, which are used in this algorithm,

U+ Tug 'Y
prox.p (u) = T3, Protem (p)=p— 7] )
max(—-, 1
X( T)\l ’ )
v
ProXeq(v) = ]
max(—, 1
x( o )

Algorithm 1 to solve (3)

1. Set k = 0, choose parameters 7, o, p, and the initial estimates
u©) c RNIXNQ, p(o) c (RS)leNQ, (0 c (R9)N1><N2_

2. Calculate v+ p(k+1) and p(*+1) ysing the following equations:

Py = prox, g, (u®) — ¢(r¢ (M),

Py := prox, g, (p™*™ 4+ 7¢(v™)),

Py = prozgg(v*) + 0 £(6(2 p1 —u®) — (2 p2 — p))),

u D = ®) 4 (py — u®)),

P = p®) +p (py —p™)),

v+ = R 4 p (pg — vR),

3. Stop or set k := k+ 1 and go back to step 2.

4 Numerical experiments

In this section, we test the performance of the proposed method on several
sample images to remove noise (see Figure 2). Each image is corrupted by ad-
ditive white Gaussian noise of standard deviation 0.18. We compare the new
proposed method with the anisotropic TV, the isotropic TV, the upwind TV
n [12], and the TGV method in [6] (see Figures 3,4,5,6,7,8,9,10,11,12,13,14
for the restored images). For the selection of the optimal regularization pa-
rameter, the algorithms corresponding to the anisotropic TV, the isotropic
TV, the upwind TV, the TGV method, and the proposed method are imple-
mented with many different choices for A, and the A value corresponding to
the best peak signal to noise ratio (PSNR) (least relative error) is chosen as
the optimal \ value.

Using the anisotropic TV, it performs well in removing noise but small
details become unclear, and this TV scheme suffers from the staircasing ef-
fect, which appears as undesired patchy artifacts in slanted regions. The
upwind 7'V has nice performance in preserving details but it has a remark-
able drawback because some small white particles of noise will be remained
in restored images, which indicates that the upwind 7'V is not capable of
removing white noise. Moreover, the upwind T'V suffers from the staircasing
effect. The isotropic TV performs to some extent better than the anisotropic



A new regularization term based on second order total generalized variation ... 151

TV and the upwind TV in noise removal but still some details are not recon-
structed during the denoising process, and this 7'V scheme is not capable of
alleviating the staircasing effect. Using the TGV method, it still suffers from
the remaining of the staircasing effect, which indicates that it is not powerful
enough to handle the severe noise. The proposed method outperforms the
anisotropic T'V, the isotropic TV, the upwind 7'V, and the TGV method both
in the reconstruction of fine structures and the elimination of the staircasing
effect. The numerical experiments illustrate that the new proposed method
achieves higher quality in terms of PSNR and relative error (see Table 1).
For example in the case of bird image, Table 1 illustrates that the proposed
method achieves a PSNR value, which is about 0.187585 higher than the
PSNR value of TGV model. If we notice the other quantities in Table 1,
we observe that the PSNR value corresponding to the TGV model is about
0.129112 higher than the PSNR value corresponding to isotropic TV, and this
PSNR difference is less than the PSNR difference of the proposed method
and the TGV method.

The iteration numbers of optimization algorithm for both bird and bike
images in each model is 1500. Figures 15,16,17, and 18 illustrate the PSNR,
and the relative error of various methods versus iteration numbers. For ex-
ample, in the case of bike image, Figures 17 and 18 illustrate that after 600
iterations, the proposed method has smaller PSNR and higher relative er-
ror in comparison with the TGV model (TGV: PSNR=23.038355, Relative
error=0.092436, proposed: PSNR=22.980077, Relative error=0.093058). If
we increase the number of iterations to 1500, the TGV model achieves better
quantities (T'GV: PSNR=23.060928, Relative error=0.092196) in compari-
son with 600 iterations, and the proposed model achieves the best PSNR
value (proposed: PSNR = 23.080060, Relative error=0.091993) in compari-
son with other methods. Even if we increase the iteration numbers again, very
few changes are observed, and the proposed method will still have the best
PSNR value and the least relative error in comparison with other methods.



152 E. Tavakkol, S.M. Hosseini and A.R. Hosseini

IS0 400

Figure 2: The test images used in our numerical experiments. Left: bird (490x674 in
experiments); right: bike (640x512 in experiments).
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Figure 5: From left to right: restored bird images by TGV and the new proposed method.
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Figure 6: Zoomed-in regions of bird image. From left to right: noisy image, restored by
anisotropic T'V.

Figure 7: Zoomed-in regions of bird image. From left to right: restored by isotropic TV
and upwind TV.

Figure 8: Zoomed-in regions of bird image. From left to right: restored by TGV and the
new proposed method.
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Figure 9: From left to right: noisy bike image, restored bike image by anisotropic TV

Figure 10: From left to right: restored bike images by isotropic TV and upwind TV.
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Figure 11: From left to right: restored bike images by TGV and the new proposed
method.

Figure 12: Zoomed-in regions of bike image. From left to right: noisy image, restored
by anisotropic T'V.
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Figure 13: Zoomed-in regions of bike image. From left to right: restored by isotropic
TV and upwind TV.

Figure 14: Zoomed-in regions of bike image. From left to right: restored by TGV and
the new proposed method.
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Table 1: Performance comparison of restoration results in terms of relative error and
the PSNR. The new proposed method achieves higher quality in terms of the PSNR and

relative error.

Image Method Iterations | Optimal A | Relative error PSNR
Bird Anisotropic TV 1500 0.14 0.064262 27.313069
Bird Isotropic TV 1500 0.17 0.063141 27.466009
Bird Upwind TV 1500 0.21 0.065420 27.158004
Bird TGV 1500 (0.3, 0.16) 0.062209 27.595121
Bird proposed 1500 (0.3, 0.13) 0.060880 27.782706
Bike Anisotropic TV 1500 0.11 0.092527 23.029824
Bike Isotropic TV 1500 0.13 0.092511 23.031338
Bike Upwind TV 1500 0.155 0.097285 22.594246
Bike TGV 1500 (0.21, 0.13) 0.092196 23.060928
Bike proposed 1500 (0.14, 0.1) 0.091993 23.080060

5 Conclusion

This paper proposes to revisit the discreteT’GV image denoising problem by
redefining the operations via the inclusion of a diagonal term to reduce the
staircasing effect, which is the patchy artifacts usually observed in slanted
regions of the image. Numerical experiments confirm that the new proposed
method achieves higher quality in terms of relative error and the PSNR com-
pared with the conventional TGV method. The more direction analysis of
first-order-derivative by using more oblique terms is considered as our future
researches.
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