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Relation between intersection of
nullclines and periodic solutions in a
differential equations of p53 oscillator

F. Rangi and M. Tavakoli

Abstract

We consider a simple mathematical model that suggests emergence of
oscillations in p53 and Mdm2 protein levels in response to stress signal. In-
tracellular activity of the p53 protein is regulated by a transcriptional target,
Mdm?2, through a feedback loop. The model is classified in five cases with
respect to intersection of nullclines. In each case occurrence(or not) of the
limit cycle is investigated.
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1 Introduction

The p53 protein is suppressor tumor that plays an important role in growth,
arrest, senescence, and apoptosis in response to broad array of cellular dam-
age.In more than 50% of human cancer, the p53 is muteted[3]. Under normal,
unstressed conditions (for example calls dont suffer DNA damage or no DNA
damage) the concentration of p53 is kept at low levels by Mdm2 gene. Mdm2
plays a key role in preserving p53 levels low in normal cell while the Mdm2
transcription is induced by p53 itself[3]. Thus with negative feedback loop
(p53 — Mdm2 - p53) any increase of p53 normally leads to an increase in
Mdm?2 levels, which then pushes p53 back down to a low steady state level[7].
But In environmental stresses such as DNA damage, the concentration of p53
increase and inducing a transition to oscillations of p53 level [4]. Namely p53
arrests the cell cycle, thereby giving the cell time to correct any DNA dam-
age, activates transcription of genes which is indirectly responsible to DNA
repair, and can be the cause of apoptosis [2]

Lahava et al. in [8] measured intercellular concentration of total p53
and Mdm2 protein and observed p53 and Mdm2 protein concentration in a
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single cell oscillation in response to DNA damage, and proposed that system
behaved as a digital oscillator [2].

The generation of oscillations in the p53/Mdm2 network seems a chal-
lenge to modellers, becuase negative feedback is not sufficient for oscillatory
behaviors. For example, a negative feedback composed of only two elements,
such as pb3 — Mdm2 - p5b3, cannot oscillate. The observation of Lahava
et al. in [8] leads to several interesting model and hypotheses [3, 9]. In fact
several mathematical models have been proposed to explain the damped os-
cillations of p53, either in cell population or in a single cell, most of which
are deterministic models of ordinary differential equations [15]. Lev Bar Or
et al. considered the possibility of a negative feedback loop composed of
three components (Mdm2, p53 and putative intermediate factor), which can
oscillate (part A of Figurel) or require the simultaneous presence of negative
and positive feedbacks (part B of Figurel)[3] .
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Figure 1: Pathways to oscillations. Oscillation can be found in two different
types (A) negative feedback loops with three or more components and (B)
combinations of negative and positive feedbacks

Tyson in response the observation of Lahava which showed the digital os-
cillator behavior, assumed the steady state p53 concentration passes through
a hopf bifurcation in following DNA damage and the p53 and Mdm?2 levels
begin to oscillate [2, 15]. In [2]another protein (The Atm protein) has been
mentioned that is similar to a switch that caused the p53- Mdm2 oscillator
be into or out to oscillatory zone. By following to in[12] regions of parameters
into which the Atm protein can switch off damage signals, are determined.

Another approach to modeling the p53 dynamics make explicit use of
delays in the system corresponding to the time that it takes for transcription
and translation of proteins [10, 14, 16].

Consider two types of motifs, as illustrated in Figurel, which are discussed
in [3]. Case ii in part B of Figurel has autocatalysis in p53, whereas in case
i of that figure, in addition to the normal activation of Mdm2 by p53, there
is a path by which Mdm?2 is down-regulated by p53 [2].



Relation between intersection of nullclines and periodic solutions ... 69

A recent elementary model which is motivated biologically according to
case ii in part B of Figurel (autocatalysis) formulates as below

n
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where z(t) = [p53(¢)] and y(t) = [Mdm2|(t) are denoting concentration
of p53 and Mdm2 respictively[2]. In the first equation above,ay shows the
production rate of p53, the second therm with coefficient oy represents an
autocatalytic process and it is described with a Hill coefficient n € N which
determines the degree of cooperativity of the ligand of p53 binding to the
enzyme or receptor [5]. The third therm represents the active process of
ubiquitination of p53 independently of Mdm2 and the fourth term represents
the degradation of p53 independently of Mdm2. Similarly in the second
equation above, ag shows the production rate of Mdm2, and second term with
coefficient ag represents the activation of Mdm2 by p53 whit Hill coefficient
4, and the third represents the degradation of Mdm2 [2] .

Analysis the trace and determinate of system (1) can be shown in addition
to negative feedback loop in p53 - Mdm?2 network, autocatalysis by either p53
or Mdm?2 leads to the possibility of oscillatory behavior. In the absence of
autocatalysis, one can still get oscillations if p53 also down-regulates Mdm2
or Mdm?2 also up-regulates p53, in addition to the normal activation.

Here, Oscillatory behavior was described in the form of a limit cycle i.e.
to obtain oscillatory behavior from each initial condition the fixed point of
the system that resides within the limit cycle needs to be an unstable spiral.
In this case all trajectories in the phase plane originating at near that fixed
point spiral out and asymptote onto the limit cycle [2].

The goal of system biology is to analyze the behavior and interrelation-
ships of functional biological system [13]. we analyze system (1) ) to find
out the possible cases for existence of limit cycles that oscillatory behavior in
p53-Mdm?2 network is described. In fact the DNA damage can be controlled
when slightly oscillatory region would be given in system (1). In other word,
by changing the parameter values (parameter values to get the oscillation)
and conditions are imposed on the system (1), then system has the stable
limit cycle (oscillatory mode). Therefore, giving cell time to the repair the
damage and will not develop cancer. For this purpose we use the Poincare
Bendixson Theorem that possible case are shown for existence or nonexis-
tence of limit cycle in system (1). The Poincare Bendixson theorem says
that as t — oo the trajectories will tend to a limit cycle solution[11].

Theorem 2. (Poincare Bendixson Theorem) Suppose that Q is a
nonempty, closed and bounded limit set of a planar of differential equation
that contains no equilibrium point. Then Q) is a closed orbit [6].
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On of the most useful tools for analyzing nonlinear systems of differential
equations (especially planer systems) are the nullclines. For a system in the
form

o= fi(z, w0, 2)
(2)

i‘n: fn($17flf2,"' 7$Tl)

The z; -nullcline is the set of points where &; vanishes, so the x; -nullcline
is the set of points determined by setting f;(z1,z2, - ,2,) =0 [6].

First, with regard to the intersections of x- and y- nullcline (equilibrium
point) of system (1), We classify them in several cases. In any of regions
between the nullclines, the vector field is neither vertical nor horizontal, so
it must point in one of four direction: northeast, northwest, southeast or
southwest. We call such regions basic region [6]. The basic regions where
Z # 0 and gy # 0 are of four types:

Az >0,y>0Bx<0,y>0
C:2<0,y<0D:x>0,y<0

Equivalently, these are the regions where the vector field points northeast,
northwest, southwest, or southeast, respectively. [6].

Next we investigate the possibility of existence or nonexistence of limit
cycles in system (1) by using Poincare Bendixson theorem. The Poincare
Bendixson theorem says when the trajectory will tend to a limit cycle solution
as t — oo.

2 Classifying of nullclines

x- nullcline in system (1) is the set of points where F(x,y) = 0.

1 oy apz?

F(xvy)=0:>y=f($)=%(?+m—%) (3)

The map y = f(x) has two critical point

o= T\]/k1(—20[0 + oq(n — 1) + ﬁ) (4)

2(040 + 041)

where
q = —4nag + ain® — 2ain + o3 (5)

If we assume that x; and xo are positive, real and different; Therefore g
must be positive. It is easy to see that z; > x».
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Figure 2: x-nullcline

So if & — 0, then f(x) = y — oco. Since the x; and x5 are positive and
x1 > To then sign f’ is negative in interval (0,z3) and the map y=f(x) is
decreases in this area. The sign of f’ is changed in x5 because 1 and x5 are
simple roots of equation y = f'(z). Therefore sign f’ is positive between
and x5 and the map y=f(x) is increases in (zs,z1). The map has a change
of sign in x1, so sing f’ is negative in (z1,00) and y = f(x) is decreasing in
this interval. Therefore z; and z9 are maximum and minimum for y = f(x)
, respectively.

Also, for the graph of G(x,y)=0 i.e. y - nullcline We have

04333‘4

1
G(z,y) =0=y=g(x) = %(m+a2) (6)
and s s
lim g(z) = g,zgrfoo g(z) = - (7)
and v
rooy L dogkox
g ((E) - V3 <(k‘4 4 l‘4)2) (8)

So ¢'(z) > 0 in the first region coordinate system (z > 0,y > 0). Therefore
g(x) increases in this region

Now with regard to the intersections of x- and y- nullclines of system (1),
it is classified in several cases and we obtained the vector field for each of these
cases by XPP software. We discussed possibility of existence or nonexistence
of limit cycle near the equilibrium point (intersection of nullclines).

Case 1: The intersection before minimization
In this case,Trajectory of solution tends to intersection point of nullclines
and system do not have limit cycle near the intersection point( Figure 4).
The vector field is plotted for these parameters in this figure. By the basic
region, as mentioned in introduction, the sign of & and y(F and G) can be
determined respectively. We use the direction of vector field and basic regions
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Figure 3: y-nullcline

to get the sing of F,, and F, and G, and G, for Jacobin matrix system(1) in
intersection point .
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Figure 4: The vector field and nullclines and trajectory solution for the first
case

_ Fac(ms,ys) Fy(xs,ys)
A (Gm(xs,ys) Gy(xmys)) (9)

We move a long a line parallel to the z-axis through the equilibrium point
, I decreases since F' > 0 the lower z-side and F' < 0 on the higher z-side.
Therefore, Sign of F, is negative. Similarly, we move a long a line parallel to
the y-axis through the equilibrium point , G’ decreases since G > 0 the lower
y-side and G < 0 on the higher y-side (for detail see [11]). Therefore, Sign of
Gy is negative. So z- and y -nullcline is decrease and increase in intersection
point respectively. As we have in near the equilibrium point
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dx F,
pog = -2 F, F, 1
dy]p,o Fx<07 <0=F, <0 (10)
dx Gy

] . 11
) o Gx>0,Gy<O:G >0 (11)

In this case, sign of Jacobin matrix is equal

A_(:r:> (12)

Therefore trace of A matrix is negative and eigenvalues of A matrix is equal

Mo = % + % (irA)? — ddei A (13)
The equilibrium point is stable since eigenvalue of system (1) is negative real
part. Therefore system (1) by the Poincare Bendixson Theorem do not have
limit cycle near the intersection point in this case.
Case 2: the intersection after maximization of graph F=0
The vector field is plotted in Figure 5. By a similar process in the first case,
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The vector field and nullclines and trajectory solution for the second
case

the sign at A matrix is equal

A_(;:> (14)

which is trA < 0 and eigenvalue of system is negative real part. Therefore

the equilibrium point is stable. So system (1) do not have limit cycle near
the intersection point in this case.
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Case 3: the intersection between maximum and minimum of
graph F=0

Figure 6 showes the vector field in this case. Similarly we have
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Figure 6: The vector field and nullclines and trajectory solution for the third

case
A- (j _) (15)

In this case, it is possible that system (1) admits periodic solution [11].
We plotted the limit cycle near the intersection point in Figure 6 .

Case 4: two intersection points
We observe that system has two stable intersection points, which S; point is

similar to first case. So system (1) has not limit cycle near the intersection
point in this case.

Case 5: three intersection points (after maximum, between max-
imum and minimum, before minimum)
In Figure 8, S; and Ss points are located before of x5 and after of z; re-

spectively. Thus system (1) don’t have limit cycle near these points, because
S1 and Sy are stable points.

For S5 we have

F,>0,F,<0,G; >0,G, <0 (16)
= - — ——. 1
0< dx}(;zo da:}on =0 Gy = F, (17)

So
det(A) = F,G, — F,G, < 0. (18)
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Figure 7: The vector field and nullclines and trajectory solution for the fourth
case

This shows that Sy is saddle point. According to the Poincare Bendixson
theorem, this type of singularity does not admit periodic solutions. For more
details see([11]Section 7.3)

In following theorem we prove analytically that the only possible case for
the existence of limit cycle is second case and other cases don’t have limit
cycle at all.

Theorem 3. Theorem:System (1) can not admit limit cycle in cases 1, 2, 4
and 5 for the positive value of 1,73 and xs(intersection point of nullclines).

Proof. If (xs,ys) is equilibrium point of system (1) then Jocobian matrix of
system (1) is equal

Fu(zs,ys) F, (xs,ys)>
A= ’ Y 19
(Gz(ms,yg Gy (e, ) 1)
and eigenvalues of matrix A are
trA 1
Ao = TT + 5 /(trA)? — ddetA (20)
dg daf

By G, = —Gy% and F, = —Fy% we have

det(A) = FoGy — F,Gy = _Fszﬂ + FyGy% = det(A) = F,Gy(g' — [')

dx
(21)
Also

Fy=-mz,Gy=—3 (22)
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Figure 8: The vector field and nullclines and trajectory solution for the fifth
case

Then

Ay = s f'(vs) —v3 & \/('lesfl(xS) —73)% — dy1y3ws(9 () — f'(2s))
’ 2

(23)
Now since the (z1,y;) point is maximum of map f, if the intersection occurs
after maximum point then f’(x;) < 0 for each of x; that x; > 21 . Hence we
have f’(zs) <0, so by the positive value of 71,73 and z, trA < 0 and the
(xs,ys) point is stable point. Therefore trajectory of solution limits to that
point and we don’t have limit cycle near this point.

Similarly if the intersection of maps f and g occurs before minimum of map
f then the trace of matrix A is negative because of we have f’ < 0 in interval

(0, 23] and so this point is a stable point that trajectory of system (1) limits
to that point. O
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