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A shape-measure method for solving
free-boundary elliptic systems with

boundary control function

A. Fakharzadeh Jahromi

Abstract

This article deals with a computational algorithmic approach for obtain-
ing the optimal solution of a general free boundary problem governed by
an elliptic equation with boundary control and functional criterion. After

determining the weak solution of the system, the problem is converted into
a variational format. Then, by using some aspects of measure theory, the
method characterize the nearly optimal pair of domain and its related opti-
mal control function at the same time. This method has many advantages

such as strong linearity, automatic existence theorem and the ability of ob-
taining global solution. Two sets of numerical examples is also given.

Keywords: Elliptic controlled system; Weak solution; Atomic measure; Lin-
ear programming; Free boundary problem.

1 Introduction and background

The class of elliptic partial differential equations includes many important
systems encountered in mechanics and geometry. Indeed an industrial set-
ting time is spent setting up the allowable set of shapes (domains of equa-
tions) in order to get a feasible solution. The structural optimization of
such systems has more commonly been applied in the automobile, marine
and aerospace industries designing and even in a simple mechano-chemical
model of a biomolecular processes (see [9], [1] and [2]). A large part of these
problems deals with the free boundary problems when a part of domain,s
boundary is fixed and the rest is varied. The understanding of models of
equations and free boundary problems (such as Monge-Amper equation) may
have significant geometric even topological applications. For instance, for
an inhomogeneous free boundary problem, Vogel obtained the convexity or
starlikeness of variable part when the fixed part is convex or starlike [23].
Furthermore, Lancaster showed that the method of curves of constant di-
rection could be used to investigate even the quasilinear and fully nonlinear
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elliptic free boundary problems [12]. Munch recently have done some works
based on topological and numerical approaches (see for instance [14] and
[15]). The main goal in structural optimization is to computerize the design
process and therefore shorten the time it takes to create a new design or to
improve an existing one. Therefore, the results on mechanical formulation of
the problems, their functional analysis and on control theory have recently
been combined. For a review of such results the reader is referenced to [9]
and [10]. Indeed, the optimal control theory provides the basic techniques for
computing the derivatives of criteria functions with respect to the boundary.
Thus in essence, the optimal control and optimization may be applied when
the control becomes associated with the shape of domain. In the former,
most of the induced solution methods from control theory, were focused on
applications of the principles of the calculus of variations (such as Hadamard
works [8]). However in the latter, studies were made only for those problems
with an explicit solution for PDE,s. Eventually the methods were extended
to problems of structural engineering; in particular, those were possible to
be converted into an optimal control problem with control governed by the
coefficients of PDE,s [18]. In this manner the numerical methods (Finite
Element, Finite Difference, Boundary Element,...) and Computer Aided De-
sign technology within the optimization loop are used for fully computerizing
the design loop. However, the problems are encountered with numerical dis-
cretization [18]. In 1986, Rubio in [19], introduced the embedding method for
solving the optimal control problems governed by ordinary differential equa-
tions, by use of positive Radon measures; then it was employed to obtain the
optimal control for a system governed by partial differential equations; like
[11] for diffusion and [20] for elliptic systems. The method was based on the
strong properties of measures and has many advantages.
Since 1999 till know, by helping of this method, we have solved different cases
of the optimal shape design problems governed by elliptic systems (a brief
report of this is given in [5]). After solving the problem in polar coordinates
in [3], the based measure theoretical approached was improved to cartezian
coordinates but for solving optimal shape problem in [4]. Then, we improved
the method for optimal shape design problems with distributed control func-
tion in [5] To continue, in the present paper we introduce an approach for
solving free boundary problems governed by elliptic equations with two spe-
cial characteristics. Herein, the system is involved with a boundary control
function as appears in industrial applications. Moreover, the geometry of
domains is completely in the general case.

2 Problem in classical form

As a geometrical point of view, we consider D ⊂ R2 as a bounded region
with a piecewise-smooth, closed and simple boundary ∂D which consists of
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Figure 1: A general domainD and its boundary ∂D.

a fixed and a variable part (cure), denoted by Γ. It is joining two known
points A = (a, a′) and B = (b, b′) so that a′ ≤ b′ and it makes ∂D simple
and closed (see Figure 1). By applying the idea of approximating a curve
with broken lines, Γ can be approximated by a finite number of connected
segments; we fix this number as M + 1. Therefore, each Γ can be con-
sidered as an M + 1 connected segments in which the initial and the final
points of them belong to Γ (see Figure 1). If these points are denoted by
A0 = A,A1, . . . , AM+1 = B, then any appropriate region D (domain) can be
represented by points Am = (xm, ym),m = 1, 2, . . . ,M .
Indeed the variable part of ∂D (and hence D) is represented with 2M vari-
ables x1, x2, . . . , xM and y1, y2, . . . , yM . We fix the y-component of each
point Am as ym = Ym ∈ R for m = 1, 2, . . . ,M , so that a′ < Y1 < Y2 <
· · · < YM < b′.0 This would not decries the generalities; since even ym is
fixed, but xm is varied and hence Am could be any place on the half line
y(x) = Ym with the vertex on the fixed part of D. Therefore the segments
AmAm+1,m = 0, 1, . . . ,M , could be selected so that the set of them approx-
imates Γ well enough.
Let f ∈ C(D × R) and g ∈ C(D), be two given real valued functions. The
above domain D is called admissible if the elliptic equation

∆u(X) + f(X,u) = g(X) , u|∂D
= v, (1)

has a bounded solution on the domain D; here it is also supposed that X =
(x, y) ∈ D, u : D → R is a bounded trajectory function which takes values in

0 For special case like a′ = b′, one can fix the x-components of points Am’s instead of
y-components.
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the bounded set U , and v : ∂D → R is a bounded boundary control function,
which is Lebesgue measurable and taks values in a bounded set V .

As mentioned, the variable part of ∂D can be approximated with M
number of unknown corners. For a fixed positive integer M , the set of all
admissible domains is denoted by DM . When M −→ ∞, if an appropriate
optimal shape design problem in DM has a minimizer, then this may tend
in some topology to the minimizer over D (the set of all general admissible
domains) if such exists. However things can go wrong; for instance: There
may be no minimizer over DM ; there may be no minimizer over D ; or both
D and DM ; the sequence of minimizer over DM may not be convergent or
may tend in some sense towards a curve that does not define a shape. Young
in [24] has shown that their related subsequence of broken lines, tends to
an infinitesimal zigzag (generalized curve). This is not (necessarily) an ad-
missible curve. So the solution over DM does not tend to the solution over
D, even in the weakly∗-sense. Also, there is the important point that too
oscillatory boundaries (like the infinitesimal zigzag) sometimes cause prob-
lem; Pironneau in [18] shows some of these problems. Hence, we prefer to
fix the number M in this paper, and search for the optimal solution of the
appropriate problems over DM .

For a given admissible domain D ∈ DM , let f1 : D × U −→ R and
, f2 : ∂D × V −→ R be two continuous, non- negative, real-valued functions;
further, we assume that there is a constant L > 0 so that | f1(X,u(X)) |≤
L | u |. We define the functional performance criteria, as

I(D, v) =

∫
D

f1(X,u(X)) dX +

∫
∂D

f2(s, v(s)) ds, (2)

where u is the bounded solution of (1). We also define F as the set of all pairs
of (D, v) where D ∈ DM and v is the boundary control function. With the
above assumption, we are going to solve the following optimal shape design
problem on F:

Minimize : I(D, v) =

∫
D

f1(X,u(X)) dX +

∫
∂D

f2(s, v(s)) ds

Subject to : ∆u(X) + f(X,u) = g(X) , u|∂D
= v, (3)

(For some industrial applications of this problem, the reader can have a look
on [18]).

To identify the optimal domain in DM , D∗, and its associated optimal
control function, v∗D∗ , we apply the method which we call shape-measure
[5]. This approach characterizes the optimal pair of domain and its related
optimal control function in two stages; first for a given domain D ∈ DM ,
by applying the embedding method and use of the Radon measures power,
the related optimal control problem will be solved. Then in the next stage,
a standard minimization algorithm will be applied to determine the nearly
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optimal pair of domain and its related optimal control function at the same
time.

3 Problem in new formulation

In general, even for a fixed domain, it is difficult to characterize a classical
bounded solution for the elliptic equation (1). Therefore, one can change the
problem into the other form in which a bounded weak (generalized) solution
of (1) is involved.

Proposition 1. : Let u be the classical solution of (1), then we have the
following integral equality:∫

D

(u∆ψ + ψf) dX −
∫
∂D

v(▽ψ.n) ds =
∫
D

ψg dX, ∀ψ ∈ H1
0 (D). (4)

that here n is the outward unit vector on ∂D.

Proof. By multiplying (1) with the function ψ ∈ H1
0 (D) (the set of

functions in the Sobolev space of order 1 in which they are zero on ∂D),
integrating over D, and then using the Green’s formula (see [13]), one can
obtain the equality (4). □
Now, by regarding [5], let D be a fixed domain; then the mentioned optimal
free boundary problem changes into an optimal control one in which the
same functional as I must be minimized over the set of all admissible pairs of
trajectory and control functions onD. We define Ω = D×U and ω = ∂D×V ;
then, a bounded weak solution and its corresponded control function define
a pair of positive and linear functional u(·) : F −→

∫
D
F (X,u(X))dX and

v(·) : G −→
∫
∂D

G(s, V (s))ds on C(Ω) and C(ω) respectively. As shown in
[19] and [20], the Riesz Representation Theorem [21] shows that there are
measures µu and νv so that:

µu(F ) = u(F ), ∀F ∈ C(Ω) ; νv(G) = v(G), ∀F ∈ C(ω).

So far, we have just changed the appearance of the problem. Indeed the trans-
formation between the pair of trajectory and controls, (u, v), and the pair of
measures (µu, νv), is injection (see [19]). Now we extend the underlying space
and consider the minimization of the problem over the set of all pairs of mea-
sures (µ, ν) in M+(Ω)×M+(ω) satisfying the mentioned conditions plus the
extra properties µ(ξ) =

∫
D
ξ(X) dX = aξ and ν(τ) =

∫
∂D

τ(s) ds = bτ ; these
are deduced from the definition of an admissible pair (u, v) and they indicate
that the measures µ and ν project on the (x, y)-plan and real line respec-
tively, as Lebesgue measures. We remind the reader that here it is supposed
ξ : Ω −→ R in C(Ω) depends only on variable X = (x, y) (i.e. ξ ∈ C1(Ω)),
and τ : ω −→ R in C(ω) depends only on variable s (i.e. τ ∈ C1(ω)).
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Therefore, we are going to solve the following problem:

Minimize : i(µ, ν) := µ(f1) + ν(f2)

Subject to : µ(Fψ) + ν(Gψ) = cψ, ∀ψ ∈ H1
0 (D);

µ(ξ) = aξ, ∀ξ ∈ C1(Ω);

ν(τ) = bτ , ∀τ ∈ C1(ω), (5)

where Fψ = u∆ψ + ψf , Gψ = −v(▽ψ.n |∂D) and cψ =
∫
D
ψg dX. This

new formulation has some advantages; for instance, it is linear in respect
to the unknown measure, and if we denote Q ⊂ M+(Ω) × M+(ω) as the
set of all pairs of measures (µ, ν) satisfying the conditions mentioned in (5),
then Q is compact in the sense of the weak∗ topology (see for instance [5]).
Moreover the function (µ, ν) ∈ Q −→ µ(f1) + ν(f2) ∈ R is continuous. Thus
by Proposition II.1 of [19], the problem (5) definitely has a minimizer in Q.
The theoretical measure problem (5) is an infinite-dimensional linear program
problem; even there is no any identified method for obtaining the solution
directly, but its solution can be achieved by choosing the countable sets of
functions that are uniformly dense (total), in the appropriate spaces. Let
{ψi : i = 1, 2, 3, . . . }, {ξj : j = 1, 2, 3, . . . }, and {τl : l = 1, 2, 3, . . . }, be
total sets in the spaces H1

0 (D), C1(Ω) and C1(ω) respectively. By choosing
just a finite number of these functions, the problem (5) is changed into the
following one:

Minimize : i(µ, ν) = µ(f1) + ν(f2)

Subject to : µ(Fi) + ν(Gi) = ci, i = 1, 2, . . . ,M1;

µ(ξj) = aj , j = 1, 2, . . . ,M2;

ν(τl) = bl, l = 1, 2, . . . ,M3, (6)

where Fi := Fψi , Gi := Gψi , ci := cψi , aj := aξj and bl := bτl . As proved
in [5] Theorem 2, the solution of (6) tends to the solution of (5) whenever
M1,M2,M3 −→ ∞; hence the solution of (5) can be approximated by one
from (6) when the positive integers M1,M2 and M3 are chosen large enough.
Now one can construct a suboptimal pair of trajectory and control functions
for the functional i via the optimal solution, (µ∗, ν∗), of (6).

4 Atomic measures and discretization

The problem (6) is a semi-infinite linear programming problem; the number
of equations is finite but the underlying space is not a finite-dimensional
space. Despite of some possibility for solving such problems (for instance see
[7]), it is much more convenient if we could estimate its solution by a finite
LP. The pair of optimal measures of (6) can be characterized by a result
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of Rosenbloom’s work which is shown in [19]; by introducing appropriate
dense subsets in Ω and ω, one can conclude that µ∗ and ν∗ have the form
µ∗ =

∑N
n=1 αnδ(Zn) and ν

∗ =
∑K
k=1 βkδ(zk) where Zn, n = 1, 2, . . . , N , and

zk, k = 1, 2, . . . ,K, belong to dense subsets of Ω and ω respectively and δ(t)
is the unitary atomic measure with support the singleton set {t}. Hence,
by defining a discretization on Ω and ω with the nodes Zn = (xn, yn, un),
n = 1, 2, . . . , N , and zk, k = 1, 2, . . . ,K, the solution of (6) can be obtained
by solving the following problem in which its unknowns are the coefficients
αn, n = 1, 2, . . . , N , and βk, k = 1, 2, . . . ,K.

Minimize :

N∑
n=1

αnf1(Zn) +

K∑
k=1

βkf2(zk)

Subject to :
N∑
n=1

αnFi(Zn) +
K∑
k=1

βkGi(zk) = ci, i = 1, 2, . . . ,M1;

N∑
n=1

αnξj(Zn) = aj , j = 1, 2, . . . ,M2; (7)

K∑
k=1

βkτl(zk) = bl, l = 1, 2, . . . ,M3;

αn ≥ 0, n = 1, 2, . . . , N ;

βk ≥ 0, k = 1, 2, . . . ,K; .

The result of this problem introduces a pair of measures (µ∗, ν∗) that the
value of i(µ∗, ν∗), will be minimum; this pair serves the suboptimal pair of
trajectory and control functions (uv∗D , v

∗
D). Thus for the fixed domain D, the

minimum value of the functional I in the problem (3) is approximated as
I(D, v∗D) ≡ i(µ∗, ν∗).

5 Searching the optimal curve (domain)

For a given domain, we have explained that how one can find the optimal
control v∗D for the problem (3), so that the value of I(D, v∗D) is minimum. To
obtain the minimum value of the performance criterion I(D, v) on F, for each
domain D ∈ DM , as explained, the variable part of its boundary is defined
by a set of points like {Am = (xm, Ym),m = 1, 2, . . . ,M}. Thus, for a given
D ∈ DM , by solving the appropriate finite linear programming problem in (7),
the nearly optimal value for I(D, v) (i.e. I(D, v∗D) ≡ i(µ∗, ν∗)) is calculated
as a function of the variables x1, x2, . . . , xM . Consequently, one can define
the following function, which is a vector function of variables x1, x2, . . . , xM :

J : D ∈ DM −→ I(D, v∗D) ∈ R. (8)
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Now to find the optimal pair of domain (or variable curve) and its related con-
trol function in F, say (D∗, v∗D∗), which solves the problem (3), it is enough
to find the minimizer of J.
The global minimizer of the vector function J, say (x∗1, x

∗
2, . . . , x

∗
M ), can be

identified by using one of the appropriate standard minimization search meth-
ods, like method introduced by Nelder and Mead in [16]; these algorithms
usually need an initial set of components (initial domain) to start the process
of minimization (we suppose that they give the global minimizer). Each time
that the algorithm wants to calculate a value for J, a finite LP problem like
(7) should be solved. Whenever it reaches to the minimum value for J, the
minimizer (x∗1, x

∗
2, . . . , x

∗
M ) (the optimal curve) and therefore its associated

optimal control function have been obtained. So, the optimal domain and its
corresponding optimal control are determined at the same time; this is one
of the main advantage of this method. Similar to the Proposition 5 of [5],
one can easily prove that the method is convergence.

6 Numerical tests

For the following numerical works, we choose a countable total sets of func-
tions in each spaces H1

0 (D), C1(Ω) and C1(ω), that is, so that the linear
combinations of these functions are uniformly dense (dense in the topology
of uniform convergence) in the appropriate spaces. We know that the vector
space of polynomials with the variable x and y, P (x, y), is dense in C∞(D);
therefore the set

P0(x, y) = {p(x, y) ∈ P (x, y) | p(x, y) = 0, ∀(x, y) ∈ ∂D} ,

is dense (uniformly) in
{
h ∈ C∞(D) : h|∂D

= 0
}
≡ C∞

0 (D). Since the set

Q(x, y) =
{
1, x, y, x2, xy, y2, x3, x2y, xy2, y3, . . .

}
is a countable base for the vector space P (x, y), each elements of P (x, y)
and also P0(x, y), is a linear combination of the elements in Q(x, y). By
Theorem 3 of [13] page 131, the space C∞(D) is dense in H1(D); thus the
space C∞

0 (D) will be dense in H1
0 (D). Consequently, the space P0(x, y) is

uniformly dense in H1
0 (D). Therefore, we define the function ψi for each i as

ψi(x, y) = qD(x, y)qi(x, y), (9)

where qi is an element of the countable set Q(x, y) and qD(x, y) is a polyno-
mial depended on D so that it is zero on ∂D ( it will be defined separately
for each example). Therefore ψi|∂D

= 0 and the set {ψi(x, y) : i = 1, 2, . . . } is

total (uniformly dense in the topology of the uniform convergence) in H1
0 (D).

Note: We remind the reader that Rubio and others (like Farahi and Kamyad
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[6] and [11]) avoids to use the polynomials for such purposes; they usually
prefer to apply the related functions defined by sin and cos or combinations
of them. To be sure that these polynomials are suitable to determine the
shape, we applied them first for determination the inside and the boundary
of a circle (as an example of a shape) by applying the embedding method.
For this purpose we used the Stock’s theorem for these functions to show the
relationship between the inside region and the boundary. The results was
very good so that the most obtained inner points (28 from 30) was inside the
circle and the rest (two other points) were close enough to the boundary.

For the second set (and also similarly the third one) of functions in (7),
let L be a given positive integer number and divide D into L (not necessary
equal) parts D1, D2, . . . , DL, so that by increasing L the area of each Ds, s =
1, 2, . . . , L, will be decreased. Then, for each s = 1, 2, . . . , L, we define:

ξs(x, y, u) =

{
1 (x, y) ∈ Ds

0 otherwise

These functions are not continuous, but each of them is the limit of an in-
creasing sequence of positive continuous functions,{ξsk}; then if µ is any
positive Radon measure on Ω, µ(ξs) = limk→∞ µ(ξsk). Now consider the
set {ξj : j = 1, 2, . . . , L} of all such functions, for all positive integer L. The
linear combination of these functions can approximate a function in C1(Ω)
arbitrary well (see [19] chapter 5).
By defining U = V = [−1.0, 1.0] and g(X) = 0, in the following, two examples
for the linear and nonlinear cases of the elliptic equations will be presented.

Example 6.1 Let the fixed part of the boundary of D consists of three
sides of a unit square joining points A = (1, 0), (0, 0), (0, 1) and B =
(1, 1); and a variable unknown curve joining points A and B, so that it
makes ∂D simple and closed. Therefore qD(x, y) in (9) can be chosen as

xy(y− 1)
∏M
l=1(x− xl+ y−Yl); in this manner, ψi(x, y) is selected so that it

is zero on each unknown corner Am = (xm, Ym) of Γ. Reminding that we are
able to choose it in a way that it would be zero on each segment Am−1Am
(something which is done in the next example). Now we take f2(s, v) = 0,

f1(X,u) =

{
400 -0.05 ≤ u ≤ 0.05
1
u2 otherwise,

and also M = 8, Y1 = 0.15, Y2 = 0.25, Y3 = 0.35, Y4 = 0.45, Y5 = 0.55,
Y6 = 0.65, Y7 = 0.75, Y8 = 0.85. The control function is supposed to be zero
on ∂D except the segment of line y = 1 which along this segment, v(s) takes

values in V , when s ∈ [0, 1]. Thus, in (7) we have Gi = −(∂ψi(s,y)
∂y )|y=1

.

To set up the finite linear programming (7) for the next two cases, we choose
M1 = 3 and M2 =M3 = 10. Also the condition 0 ≤ xm ≤ 2,m = 1, 2, . . . , 8,
is applied by using the penalty method (see [22]). Moreover we put a dis-
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cretization on Ω with N = 1100 nodes by points Zn = (xn, yn, un), n =
1, 2, . . . , N . Because the control function is zero on ∂D except the segment
of the line y = 1, we have put a discretization on ω with K = 110 nodes like
zk = (sk, vk), k = 1, 2, . . . ,K; these nodes have been chosen as zk = z11(i−1)+j

for i = 1, 2, . . . , 10 and j = 1, 2, . . . , 11, where s11(i−1)+j = (i−1)+0.5
10 and

v11(i−1)+j = 2(j−1)
10 − 1.0. Hence the total number of variables in a simi-

lar problem to (7) is 1100 + 110 = 1210. In the case of these concepts, we
solved the following examples for the linear and nonlinear case of the ellip-
tic equations; in each case we chose the subroutine AMOEBA (see [17]) as
the standard minimization algorithm with the initial valves Xm = 1.0, for
m = 1, 2, . . . , 8 (indeed, here the initial domain is selected as a unit square).
Also, we applied the E04MBF NAG-Library Routine for solving the appro-
priate finite linear program.
Linear Case: In this example for the linear case, we chose f = 0; then by
applying the mentioned method, after 497 iteration we achieved the optimal
value of I = 0.44432256772971. The value of the variables in the final step
was

X1 = 0.044671, X2 = 0.000003, X3 = 0.000018, X4 = 0.083868, X5 = 0.004590,

X6 = 1.181268, X7 = 0.003360, X8 = 1.291424.

According to the obtained results, the suboptimal control function, the initial
and the final domain, and also the changes diagram of the objective function
according to the number of iterations, have been plotted in the Figures 2, 3
and 4. We remind that one could do some smoothness and get better results
(see Example 6.2 for instance).
Nonlinear case: By choosing f = 5u2 and applying the other assumption
as above, the example for the nonlinear case of the elliptic equations was
solved. After 492 iterations, the optimal value was I = 0.44432182922939
and the value of the variables in the final step was X1 = 0.044691, X2 =
0.083889, X3 = 0.004568, X4 = 0.003356, X5 = 0.000026, X6 = 0.000001, X7 =
1.181291, X8 = 1.291379. The results have introduced the suboptimal control
function, the final domain and the changes diagram of the objective function
which have been plotted in the Figures 5, 6 and 7.

Example 6.2 Let the fixed part of the boundary be the left half of the
unite circle, joining the points A = (0,−1) and B = (0, 1). Hence for M = 9,
qD(x, y) in (9) can be chosen as

(x+
√
1− y2)(x−5X1(y+1))(x−5X9(y−Y9))

9∏
l=2

(x−Xl−1−5(Xl−Xl−1)(y−Yl−1)),

where Y1 = −0.8, Y2 = −0.6, Y3 = −0.4, Y4 = −0.2, Y5 = 0, Y6 = 0.2,
Y7 = 0.4, Y8 = 0.6, Y9 = 0.8. This function is zero on all ∂D and thus in (7)
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Figure 4: Change of the objective function according to iterations for the
linear case of of Example 6.1.

s

v

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

0
-0

.9
5

-0
.9

0
-0

.8
5

-0
.8

0

Optimal Control function - nonlinear case

Figure 5: The optimal boundary control function for the nonlinear case of
Example 6.1.
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Figure 6: The initial and the optimal domain for the nonlinear case of Ex-
ample 6.1.
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Figure 7: Change of the objective function according to iterations for the
nonlinear case of Example 6.1.
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Figure 8: The optimal boundary control function for the linear case of Ex-
ample 6.2.

we have Gi = v
√
1− y2ψix − vyψiy. To show that the method is suitable

enough even for the hard situations, we considered much more difficulties
in conditions. Therefore, it is supposed that here the variables xi’s have
an upper bounds

√
1− Y 2

i and a lower bound which guaranteed that the
variable points can not pass the left half of the unite circle. These conditions
are applied by means of the penalty method (see [22]). By selecting

f2(s, v) =

{√
(Xi + 5(Xi −Xi−1)(s− Yi−1)2 + s2, Yi−1 ≤ s ≤ Yi

s2 − v2 − 1, 1 ≤ s ≤ 1 + π,

K = 3200, N = 11875, M2 = 9 and M3 = 15 (9 equation for fixed bound-
ary and the rest for Γ), an extra condition for the summation of αi’s is also
considered to be sure that the domain is covered by characteristic functions
perfectly. Thus Ω and ω are discretized by 15075 nodes in which 100 of
them was chosen from the fixed part of boundary and also on each segment
Am−1Am, 20 nodes was selected. Moreover the subroutines AMOEBA and
DLLRRS from the Fortran library were used for solving the following exam-
ples.
Linear Case: Let f1 = 1 − u2 and f = 0 (hence the elliptic equation (1)
is linear). The initial domain is selected as complete unite circle. After 785
iterations, the optimal value was converge to 19.9850134 and the optimal val-
ues of xi’s were: 0.941, 0.1868, 0.2767, 0.3863, 0.5033, 0.3845, 0.2770, 0.1870,
0.0945. The nearly optimal control and the optimal domain, before and after
fitting a smooth curve by means of the natural cubic Spline, were plotted in
Figures 8, 12 and 10 (by use of Maple9.5 software).

Nonlinear Case: By the above assumptions and choosing f1 = x+y+u−0.1
and f = 5u2, a nonlinear case of the problem is solved. The initial domain is
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Figure 9: The optimal domain for the linear case of Example 6.2 before
fitness.

Figure 10: The optimal domain for the linear case of Example 6.2 after fitness.
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Figure 11: The optimal boundary control function for the nonlinear case of
Example 6.2.

Figure 12: The optimal domain for the nonlinear case of Example 6.2 after
fitness.

also selected as a unit circle and after 1303 iterations the optimal control and
the optimal domain are obtained. The optimal control is plotted in Figure
11 and after fitting a smooth curve as above, the optimal domain for this
case is shown in Figure 12. In this case, the optimal value was 10.699029.

7 Conclusions

Having continued our previous work; herein, we have shown that the men-
tioned Shape-measure method can be successfully applied for solving free
boundary problems which involved with boundary control function. The
method was able to characterize the optimal pair of domain and its related
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control function simultaneously; moreover, the optimal value for the general
form of the objective function were determined in an easy way just by apply-
ing a standard search technique and also the simplex algorithm perfectly well.
Presenting a linear treatment even for the extremely nonlinear problems was
one of the main advantages of this method.
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List of symbols
D: a domain
∂D: boundary of D
u: solution of the elliptic system
v: boundary control
DM: the set of admissible domains for fixed M
D: the set of general admissible domains
F : the set of all pairs of (D, v) where D ∈ DM
n: is the outward unit vector on ∂D
H1(D): the Sobolev space of order 1
H1

0 (D): set of functions in H1(D) in which they are zero on ∂D
C(Ω): the set of continuous and bounded functions on Ω
C1(Ω): the set of functions in C(Ω) which depend only on the first variable
M+(Ω): the space of positive Radon measures on C(Ω)
P (x, y): the space of polynomials of x and y.
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