Mashhad R. J. Math. Sci., Vol. 2(1)(2009) 43-51

The variational iteration method for solving linear and

nonlinear Schrodinger equations®

B. Jazbif(X) and M. Moini
School of Mathematics, Iran University of Science and Technology,
Narmak, Tehran 16844, Iran

Abstract

In this paper, the variational iteration method which proposed by Ji-Huan
He is applied to solve both linear and nonlinear Schrodinger equations. The
main property of the method is in its flexibility and ability to solve linear
and nonlinear equations accurately and conveniently. In this method, gen-
eral Lagrange multipliers are introduced to construct correction functionals
to the problems. The multipliers in the functionals can be identified opti-
mally via the variational theory. Numerical results show that this method
can readily be implemented with excellent accuracy to linear and nonlinear
Schrodinger equations. This technique can be extended to higher dimensions

linear and nonlinear Schrodinger equations without a serious difficulties.
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1 Introduction

The variational iteration method (VIM) was first proposed by Ji-Huan He in 1998
[6,7] and systematically illustrated in 1999 [11]. Since then, it has been success-
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fully applied to various engineering problems [15,16]. This method is employed
in [18] to solve the Klein-Gordon equation which is the relativistic version of the
Schrodinger equation, which is used to describe spinless particles. Application of
He’s variational iteration technique to an inverse parabolic problem is described
in [4]. In [2] the VIM is employed to solve the time dependent reaction-diffusion
equation which has special importance in engineering and sciences and consti-
tutes a good model for many systems in various fields. This technique is also
employed in [5] to solve the Fokker-Planck equation and in [3] to solve a bio-
logical population model. For more application of the method, the interested
reader is referred to [1,17,19,21]. The VIM [11,12] is a powerful tool to search
for approximate solutions of linear and nonlinear equations without requirement
of linearization or perturbation. Another important advantage is that the VIM
is capable of greatly reducing the size of calculation while still maintaining high
accuracy of the numerical solution. Moreover, the power of the method gives a
wider applicability in handling a huge number of analytical and numerical ap-
plications. The convergence of He'variational iterative method is investigated
in [20]. Here, we apply VIM to one and two dimensional linear and nonlinear
Schrodinger equations. This paper is organized as follows: In Section 2, we in-
troduce the model of the problems. In Section 3, first we describe VIM method
and then we apply VIM in a direct manner to establish exact solutions for linear
and nonlinear Schrodinger equations. In Section 4, we describe the numerical
solution of linear and nonlinear Schrodinger equations to show the power of the

method in a unified manner without requiring any additional restriction.

2 The model of the problem

In this paper, the linear Schrodinger equation is considered as follows:

(x,t)—l—i%(x,t) =0, (z,0)=f(z), z€R t>0, i = -1, (1)

9
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and we consider the nonlinear Schrodinger equation of the form

O 1y &) 2 2
ZE(XJ) = _E(W(Xat) + a—yQ(Xat)) + By, X eR, t>0, (2)

where X = (z,y) , [4|*> = 9, and S is a real constant.

3 Basic ideas of He’s variational iteration method

In this section, the application of the VIM is discussed for linear and nonlinear

Schrodinger equations. Considering the following general differential equation:
Lijp(z,t) + Rip(z,t) + Nip(z,t) = g(z,1), (3)

where L is a first order partial differential operator, R is a linear operator, N is
a nonlinear operator and g(x,t) is a known analytical function. According to the

VIM[8-10], we can construct the following correction functional:

t
dmﬂ%ﬂz%@ﬁ+AA@%@HR%@HW&ﬁrﬂwﬂﬁ,nZQM)

where X is a general Lagrange multiplier [14], which should be identified optimally
via the variational theory [14], the subscript n denotes the nth approximation,
and 1, is considered as a restricted variation [6,7,11] and [13] i.e 6¢, = 0 . We
first determine the Lagrange multiplier A that will be identified optimally via
integration by parts. The successive approximations ¢, 1(z,t) ,n > 0 of the
solution v (z,t) will be readily obtained using the derived Lagrange multiplier
and by using any selective function 1. The initial values 1 (z,0) and ) (z,0)
are usually used for selecting the zeroth approximation 1y . With A determined,
several approximation 1;(z,0), j > 0 follow immediately. Consequently, the

exact solution may be obtained by using (see [20])

¢ = lim )y, (5)

n—oo
According to the VIM, we consider linear Schrodinger equation (1) in the follow-
ing form([8-10]:

Dy,

IMn
P (2, 8) + i1

23

t
%H@wzwmﬁ+AA@< (r.)de.  (6)
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To find the optimal value of A\, we have

Dy,

Dby,
v x,f)—l—zax?

85(

S (2,1) = Spn(z, 1) + 6 / AE)( (£,€))de =0, (7)

or

I
23

t
S (2,1) = Bpu(, 1) + 6 /0 A (2 (2, ¢))de = 0. (8)

which follows
t
Hnia(at) = B (.01 XO) =5 [ N(@n(o.dg =0, (©
The following stationary conditions

1+ A(t) =0, (10)

follow immediately. This in turn gives

AE) = 1. (12)

Substituting this value of the Lagrange multiplier A = —1 into the functional (6)

gives in the following iteration formula

t 2,7
bonale,) = o) - [(GE@O+iGR@ M )

Similarly, we obtain the correction functional for (2). Hence we have

Oy, 24y, 8%4hn

Pny1(X,t) = z/)n(X,t)Jr/OtA(f)(z o (X,£)+%( 52 (X&) + oy (X,9)
— ByPp)de. (14)

The stationary conditions are of the following form
14 iX(t) =0, (15)
X&) =0, (16)

and so we have
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Substituting this value of the Lagrange multiplier A = 4 into the functional (14)

gives the following iteration formula

O 1, 0%y 0%
(X = a0+ [ (5 3G + FE )

—  BYPP)de. (18)

(X,8) +

Here, we will use this method to solve linear and nonlinear Schrodinger equations

to establish exact solutions for these equations.

4 Examples

To illustrate the solution procedure and show the ability of the method, some
examples are provided.

Example 4.1 Consider the following linear Schrodinger equation :

0 o
a—zf(:v,t) + ia—;f(x,t) 0, (19)
o(x) = sinh 2z. (20)

Using (13), we obtain the following successive approximations:

Y1(w,t) = (1 — 44t)sinh 2z,
(—4it)?
21

Po(z,t) = (1—4it+ ) sinh 2z,

(—4it)? N (—4it)? - (—4it)"

Yoz, t) = (1 —4it+ 51 3 " ) sinh 2.
Consequently, the exact solution is
Yegact (2, 1) = e 1" sinh 2. (21)
Example 4.2 Consider the nonlinear Schrodinger equation
0 &%) 2
Zg(xat)+w($,t)+2|¢| Y =0, (22)

tho(z) = e™*. (23)
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Using (18), we obtain the following successive approximations:

i(z,t) = (1+it)e ™,

it)?
Po(z,t) = (1+ (it) + %)6_”,

it)?  (it)?
palat) = (i) + 0 O

4 2 4 3 4 4 Al )
dn(zl) = (l—l—(z't)—i—(;) +(;) +(L) +...+(7?! Jei,

Consequently, the exact solution is
Yezaet (2, 1) = 7). (24)

Example 4.3 Consider the nonlinear Schrodinger equation

0 1,0° 0?
G+ (TR + G F 2Py =0, (@)

Yolz,y) = ). (26)

Using (9), we obtain the following successive approximations:

Pr(X,1) = (14 it)e@ty),
P (X, 1) = (1+(z't)+( ,) )l ty),
P3(X,t) = (1+(z't)+(2) +%) i(aty)
i) (i) (it)! )"
pa(x) = (1 + G O O B e,

Consequently, the exact solution is

'(/)e:cact(Xa t) = ei(t—l—:v—l—y)‘

Conclusions

In this paper, He’s variational iteration method has been successfully applied to

find the solution of the linear and nonlinear Schrodinger equations. The main
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advantage of the method is the fact that it provides an analytical approximation,
in many cases an exact solution, in a rapidly convergent sequence with elegantly
computed term. Analytical solutions enable researchers to study the effect of
different variables or parameters on the function under study easily. A clear
conclusion can be drawn from the numerical results which VIM provides with
highly accurate numerical solution without spatial discretizations for linear and

nonlinear Schrodinger equations.
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