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Abstract

In this paper, we introduce second derivative multistep collocation meth-
ods for the numerical integration of ordinary differential equations (ODEs).
These methods combine the concepts of both multistep methods and col-
location methods, using second derivative of the solution in the collocation
points, to achieve an accurate and efficient solution with strong stability
properties, that is, A-stability for ODEs. Using the second-order deriva-
tives leads to high order of convergency in the proposed methods. These
methods approximate the ODE solution by using the numerical solution in
some points in the r previous steps and by matching the function values
and its derivatives at a set of collocation methods. Also, these methods
utilize information from the second derivative of the solution in the colloca-
tion methods. We present the construction of the technique and discuss the
analysis of the order of accuracy and linear stability properties. Finally,
some numerical results are provided to confirm the theoretical expecta-
tions. A stiff system of ODEs, the Robertson chemical kinetics problem,
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and the two-body Pleiades problem are the case studies for comparing the
efficiency of the proposed methods with existing methods.
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1 Introduction

This paper is devoted to introducing a new class of collocation methods
by using the second derivative of the solution for the numerical solution of
ordinary differential equations (ODEs) in the form y′ = f(y(t)), t ∈ [t0, T ],

y(t0) = y0,
(1)

where the function f : Rd −→ Rd is sufficiently smooth, y0 ∈ Rd is a known
initial value, and the dimensionality of the system is shown by d.

One-step collocation methods for ODEs have been analyzed by many au-
thors (see [3] and references therein contained). As it is well known, the
collocation methods is a technique that the given equation is transformed to
an algebraic equation by representing the solution as a combination of basic
functions belonging to a chosen finite dimensional space, usually a piece-
wise algebraic polynomial, which enforces the integral equation at the chosen
collocation points.

Multistep methods play a crucial role in the numerical integration of
ODEs due to their ability to obtain the approximate solution of a high or-
der of convergence. Lie and Nørsett [14] first introduced the idea of multi-
step collocation methods. In comparison with classical collocation methods,
these methods depend on more parameters while computational cost does
not exceed them, and these methods have high convergence order and strong
stability properties.
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3 High order SDMCMs for ODE

In comparison with one-step methods, in view of computational cost and
precision of approximation, the multistep methods are more efficient [13].

Using higher order derivative can be a helpful way to achieve the inte-
gration methods will be more stable with high order convergency in both
onestep and multistep methods. Firstly, a class of second-order derivative
formulas is created, and the stability of these formulas was investigated by
Enright [7]. Following this work, successful implementation of second-order
derivatives has been developed in many literatures [4, 5, 6]. Also, second
derivative two-step collocation methods have been recently constructed in
[8]. These methods and all other traditional second derivative methods can
be considered as special cases of the class of second derivative general linear
methods (see, for instance, [1, 2, 4]).

We aim to provide a second derivative extension of the multistep colloca-
tion methods (SDMCMs) that use the second derivatives of the solution in
the collocation points. These methods combine the advantages of both mul-
tistep collocation methods and second derivative methods to obtain methods
with higher order accuracy and desired stability properties. In other word,
we derive a special case of multistep collocation methods, which fixed num-
ber r of previous time steps and first and second derivative of the solution
in m collocation points are used in the approximation of the solution in ev-
ery subinterval. The advantages of these methods are their ability to handle
stiff ODEs and their superior accuracy compared to multistep collocation
methods while the computational cost does not exceed.

Theoretical concepts of new proposed methods, SDMCMs, is discussed
in details in Section 2. In Section 3, the order condition of the proposed
method is obtained. Section 4 is dedicated to analyzing the linear stability
properties of SDMCMs with respect to the linear basic test equation. The
proposed methods with two and three steps and one and two collocation
parameters are constructed in Section 5. Finally, Section 6 presents several
numerical examples in order to validate the effectiveness of proposed methods
and experimentally verify the order of convergence.
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2 Construction of method

Let us divide the interval I := [t0, T ] to the finite set of subintervals [tn, tn+1]

for n = 0, 1, . . . , N − 1 by introducing a uniform mesh h in the form

Ih = {t0 + nh| n = 0, 1, . . . , N, h > 0, Nh = T − t0}.

Also, consider the abscissa vector c = [c1, c2, . . . , cm]T and define the colloca-
tion parameters by tn,i := tn+cih. The multi-step continuous approximation
to the solution of (1) is defined by

P (tn + sh) =

r−1∑
k=0

φk(s)yn−k + h

m∑
j=1

(
ψj(s)f(P (tn,j))

)
+ h2

m∑
j=1

(
χj(s)g(P (tn,j))

)
,

yn+1 =P (tn+1),

(2)

with s ∈ (0, 1] and the function g is the second derivative of unknown func-
tion y(t) and is defined by g(·) = f ′(·)f(·). Also, for the implementation
of the method, the approximate solution in the initial interval [t0, tr−1] is
needed where can be computed by an arbitrary method with sufficiently
high order convergency . The method is defined by the coefficient functions
φk(s), ψj(s), χj(s), j = 1, . . . ,m, k = 0, 1, . . . , r − 1, which are polynomials
of degree 2m + r − 1. The interpolation conditions for P (tn + sh) at the
points tn−i, lead to

P (tn−i) = yn−i, i = 0, 1, . . . , r − 1, (3)

and collocating the both sides of (1) and its derivative in the collocation
points tn,i is written in the form

P ′(tn,i) = f(P (tn,i)), P ′′(tn,i) = g(P (tn,i)), i = 1, 2, . . . ,m. (4)

The coefficient polynomials of method are determined by conditions (3) and
(4), which lead to

φk(−i) = δik, ψj(−i) = 0, χj(−i) = 0, (5)
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5 High order SDMCMs for ODE

and

φ′
k(ci) = 0, ψ′

j(ci) = δij , χ′
j(ci) = 0,

φ′′
k(ci) = 0, ψ′′

j (ci) = 0, χ′′
j (ci) = δij ,

(6)

where δij , i, j = 1, 2, . . . ,m, is the usual Kronecker delta. The construction
of these polynomials is obtained by the Hermite–Birkhoff interpolation [18].
To find the unique polynomial that satisfies these conditions, the polynomials
φk(s), ψj(s), and χj(s) can be formulated in the form

φk(s) =

2m+r−1∑
i=0

Φ
[k]
i

si

i!
, ψj(s) =

2m+r−1∑
i=0

Ψ
[j]
i

si

i!
, χj(s) =

2m+r−1∑
i=0

χ
[j]
i

si

i!
.

(7)

Now, the result of setting s = −k, k = 0, 1, . . . , r − 1, in (7) and setting
s = ci, i = 1, 2, . . . ,m in the first and second derivatives of the polynomials,
leads to a linear system for coefficient of the polynomials. The coefficient
matrix A ∈ R(2m+r)×(2m+r) is given by

A =



1 0 0 0 . . . 0

1 (−1)1

1!
(−1)2

2!
(−1)3

3! . . . (−1)2m+r−1

(2m+r−1)!

...
...

...
... . . . ...

1 (−r+1)1

1!
(−r+1)2

2!
(−r+1)3

3! . . . (−r+1)2m+r−1

(2m+r−1)!

0 1
c11
1!

c21
2! . . .

c2m+r−2
1

(2m+r−2)!

...
...

...
... . . . ...

0 1
c1m
1!

c2m
2! . . .

c2r+m−2
m

(2r+m−2)!

0 0 1
c11
1! . . .

c2m+r−3
1

(2m+r−3)!

...
...

...
... . . . ...

0 0 1
c1m
1! . . .

c2m+r−3
m

(2m+r−3)!



,

and the vectors in the right hand of linear system of equations are defined
by u[k]

r ∈ Rr, k = 1, 2, . . . , r, v[j]
m ∈ Rm, j = 1, 2, . . . ,m as
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(u[k]
r )i =

{
0, i ̸= k,

1, i = k,
(v[j]

m )i =

{
0, i ̸= j,

1, i = j.

By solving the systems

AΦ[k] = [u[k+1]
r ,0m,0m]T , k = 0, 1, . . . , r − 1,

AΨ[j] = [0r,v[j]
m ,0m]T , j = 1, 2, . . . ,m,

Aχ[j] = [0r,0m,v[j]
m ]T , j = 1, 2, . . . ,m,

(8)

the coefficients of the polynomials are determined.

Now, the conditions for applying the poising condition [9] are established.
Poising condition is a criterion that determines whether the given set of data
points can be interpolated using the Hermite–Birkhoff interpolation. By us-
ing this condition, it can be shown that the solution of the interpolation prob-
lems can be determined uniquely. For this purpose, the following theorems,
which are needed to check the uniqueness of the solution of the Hermite–
Birkhoff interpolation, are mentioned [9]:

Let k and n be natural numbers, and define the matrix

E = ∥ϵij∥, i = 1, . . . , k, j = 0, 1, . . . , n− 1,

as a matrix with k rows and n columns having elements

ϵij = 0 or 1,

which are such that ∑
i,j

ϵij = n.

We shall also assume that the matrix E has no zero rows. Also, suppose that
{xi}ki=1 is an increasing real number as

x1 < x2 < · · · < xk.

Also, the set of ordered pairs is considered by

e = {(i, j) | ϵij = 1}.
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7 High order SDMCMs for ODE

The interpolation problem is described by the reals xi and the “incidence
matrix” E in the form

f (j)(xi) = y
(j)
i for (i, j) ∈ e. (9)

The matrix E has a structure where each row corresponds to a different in-
terpolation point, and the columns represent the derivatives at those points.
It is appropriate to see (9) from the point of view of a Hermite–Birkhoff inter-
polation problem which we show it in an abbreviated form by HB-problem.

Definition 1. When the conditions

P (x) ∈ πn−1, P (j)(xi) = 0, for all (i, j) ∈ E,

are established, then the HB-problem (9) is poised, and as a result, P (x) ≡ 0,
equivalently, the matrix E is called poised if the related interpolation problem
has a unique solution for any set of constants y(j)i , in which the problem is
independent of choosing of the ordered interpolation points xl, x2, . . . , xk.

Define

m̃j =

k∑
i=1

ϵi,j , M̃l =

l∑
j=0

m̃j , j, l = 0, 1, . . . , n− 1.

It is shown by Schoenberg [18] that a necessary condition for poising of E is

M̃l ≥ l + 1, l = 0, 1, . . . , n− 1,

and these inequalities are recognized as Polya conditions.

Definition 2. Let the incidence matrix E be with k rows. Let fi be the
column index of the first one that appears in the row i. Moreover, E is called
a pyramid matrix if, for each i, ϵij = 1 implies ϵij′ = 1 for fi ≤ j′ ≤ j,
and there is some value of 1 ≤ i ≤ k so that f1 ≥ f2 ≥ · · · ≥ fi and
fi ≤ fi+1 ≤ · · · ≤ fk.

The necessary condition for poising the matrix E with respect to the
ordering points x1 < x2 < · · · < xk, is declared by Ferguson [9] in the next
theorem.
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Theorem 1. If E is a pyramid matrix with k rows, satisfying the Polya
conditions, then E is poised with respect to the ordering x1 < x2 < · · · < xk.

Now, we show that our interpolation problems (5)–(6) have unique so-
lution or equivalently the conditions hold true for the given interpolation
problem. For these problems, the interpolation points can be considered by

−r + 1 < −r + 2 < · · · < −1 < 0 < c1 < c2 < · · · < cm.

So, the matrix E with m+ r rows and 2m+ r columns can be defined by

E =



1 0 0 0 · · · 0
1 0 0 0 · · · 0
...
...
...

...
1 0 0 0 · · · 0
0 1 1 0 · · · 0
...
...
...

...
0 1 1 0 · · · 0


.

Thus, we have

m̃0 = r, m̃1 = m, m̃2 = m, m̃3 = 0, . . . , m̃n−1 = 0,

M̃0 = r, M̃1 = r +m, M̃3 = 2m+ r, . . . , M̃n−1 = 2m+ r = n.

By considering the numbers M̃j , since

M̃0 >= 1, M̃1 >= 2, M̃3 >= 3, . . . , M̃n−1 >= n.

the Polya condition is satisfied for the matrix E. Also, by considering

f1 = 0, f2 = 0, . . . , fr = 0, fr+1 = 1, . . . , fr+m = 1,

according Definition 2, one can see that the matrix E is a pyramid matrix.
Thus, by Theorem 1, it is concluded that E is poised with respect to the
ordering points −r+1 < −r+2 < · · · < −1 < 0 < c1 < c2 < · · · < cm. Thus,
satisfying these conditions guarantees a unique and smooth interpolating
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9 High order SDMCMs for ODE

polynomial that satisfies the given data (5)–(6). In the other word, the
matrix A is nonsingular.

When a nonlinear ODE is integrated by implicit (first derivative) meth-
ods, the approximation of the stage values leads to solving a nonlinear alge-
braic system of equations, which can be solved by Newton’s iterative methods.
Thus, the Jacobian matrix ∂f/∂y is usually computed. Therefore, computing
the second derivative function g := (∂f/∂y)f(y) does not impose any addi-
tional computational cost. It should be mentioned that in the application
of these methods, the Jacobian matrix ∂g/∂y is approximated by (∂f/∂y)2,
which is a piecewise constant approximation.

3 Continuous order conditions

In this section, we investigate continuous order conditions for the method
(2). We know that the collocation polynomial P (tn+ sh) provides a uniform
approximation of order p to y(tn + sh), s ∈ [0, 1]. For this end, the approx-
imate solution P (tn + sh) is replaced by y(tn + sh) in (2), where y(t) is the
exact solution of (1). Then by subtracting the both sides of the obtained
relation, the discretization error is obtained in the form

ε(tn + sh) =y(tn + sh)−
r−1∑
k=0

φk(s)y(tn−k)− h

m∑
j=1

ψj(s)f(y(tn,j))

− h2
m∑
j=1

χj(s)g(y(tn,j)),

(10)

where s ∈ [0, 1] and n = 1, 2, . . . , N − 1. By expanding local discretization
error in Taylor series around the point tn and collecting terms with the same
powers of h� we have the following theorem.

Theorem 2. Assume that the function f(y) is sufficiently smooth. Then
the method (2) has uniform order p if the following conditions are satisfied:
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r−1∑
k=0

φk(s) = 1,

r−1∑
k=0

kφk(s) +

m∑
j=1

ψj(s) = s,

r−1∑
k=0

(−k)i

i!
φk(s) +

m∑
j=1

(
ψj(s)

ci−1
j

(i− 1)!
+ χj(s)

ci−2
j

(i− 2)!

)
=
si

i!
,

(11)

where s ∈ [0, 1], i = 2, 3, . . . , p. Moreover, the local discretization error (10)
takes the form

ε(tn + sh) = hp+1Cp(s)y
(p+1)(tn) +O(hp+2), (12)

in which

Cp(s) =
sp+1

(p+ 1)!
−

r−1∑
k=0

(−k)p+1

(p+ 1)!
φk(s)

−
m∑
j=1

(
ψj(s)

(cj)
p

p!
+ χj(s)

cp−1
j

(p− 1)!

)
.

(13)

The set of order conditions (11) leads to a linear system of p + 1 equa-
tions in 2m + r unknowns. The unknowns of this system are the coefficient
polynomials of the proposed method.

Therefore, considering p at most equal to 2m+ r− 1 guarantees that the
linear system (11) is compatible. This leads to the following result.

Remark 1. The maximum attainable uniform order of convergence for the
new method (2) is 2m+ r − 1.

In the following, the necessary conditions for zero-stability of the new
method are investigated. For this end, the method is applied to the simple
ODE y′ = 0, where the recurrence relation is obtained in the form

yn+1 =

r−1∑
k=0

θkyn−k,

where θk = φk(1). Thus, the characteristic polynomial of this recurrence
relation is
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11 High order SDMCMs for ODE

p(ω) =

r−1∑
k=0

θkω
k,

Therefore, the constructed method is zero-stable if and only if −1 < θi ≤ 1

for i = 1, 2, . . . , r − 1.

4 Linear stability analysis

We now focus our attention on the linear stability properties of the SDMCMs
(2) with respect to the standard basic test equation of Dahlquist

y′ = λy, (14)

where λ is a complex number with negative real part. Let us consider the
vectors and matrices

A = [ψj(ci)]
m
i,j=1 ∈ Rm×m, A = [χj(ci)]

m
i,j=1 ∈ Rm×m,

vT = [ψi(1)]
T ∈ Rm, wT = [χi(1)]

T ∈ Rm,

(φ(c))j,i = [φj(ci)] ∈ Rm×r, j = 0, 1, . . . , r − 1, i = 1, 2, . . . ,m,

P (tn + ch) = [P (tn + cih)]
m
i,j=1.

(15)

Theorem 3. Applying the new method (2) to the basic test equation (14)
leads to the recurrence relation in the form yn+1

y
(r)
n

 =

M11(z) 0

Ir 0r,1

 yn

y
(r)
n−1

 , (16)

where z := λh and

M11(z) = φ(1) +
(
zvT + z2wT

)
Q−1φ(c) ∈ R1×r,

Q = Im − zA− z2A ∈ Rm×m.

Proof. First, the new constructed method (2) is applied to the test equation
(14), and then both sides of the obtained equation are collocated at points
ci, i = 1, . . . ,m. Thus the algebraic relation is obtained in the form
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P (tn + cih) =

r−1∑
k=0

φk(ci)yn−k + λh

m∑
j=1

ψj(ci)P (tn,j) + λ2h2
m∑
j=1

χj(ci)P (tn,j),

(17)

for i = 1, . . . ,m. Also, the approximated solution in the next step is obtained
by

yn+1 =

r−1∑
k=0

φk(1)yn−k + λh

m∑
j=1

ψj(1)P (tn,j) + λ2h2
m∑
j=1

χj(1)P (tn,j), (18)

for n = r− 1, r, . . . , N − 1. By the notations introduced in (15), the relations
(17)–(18) can be written in the matrix form as

P (tn + ch) = φ(c)y(r)
n + zAP (tn + ch) + z2AP (tn + ch),

yn+1 = φ(1)y(r)
n + zvTP (tn + ch) + z2wTP (tn + ch).

(19)

Thus by setting Q = I − zA− z2A, the first relation in (19) leads to

P (tn + ch) = Q−1φ(c)y(r)
n ,

where substituting it in (19) for computing yn+1 leads to

yn+1 =
(
φ(1) + (zvT + z2wT )Q−1φ(c)

)
y(r)
n . (20)

This relation is equivalent by the first row of (16) and the proof is complete.

The coefficient matrix in (16) is shown by R(z) ∈ C(r+1)×(r+1), and it is
called the stability matrix of the method. So the stability function is obtained
by

p(ω, z) = det(ωI −R(z)). (21)

The stability properties of (2) with respect to the standard test equation (14)
are dependent on the corresponding stability function p(ω, z).

Now, by multiplying the stability function (21) by its denominator, the
stability polynomial of the method is obtained, which will be shown by the
same symbol p(w, z). Therefore, the stability properties of the corresponding
methods depend on the obtained polynomial p(w, z). The region of absolute

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



13 High order SDMCMs for ODE

stability, A, is defined to be a region of the complex z-plane such that the
roots of p(ω, z) = 0 lie within the unit circle whenever z lies in the interior
of the region. To obtain the region of absolute stability, we use the bound-
ary locus method [15]. Inserting w = eiθ, the roots of stability polynomial
describe the bound of stability region.

5 Construction of A-stable SDMCMs

In this section, we focus our attentions on two steps and three steps con-
tinuous methods, (r = 2, 3) with one and two collocation parameters. The
polynomials of the methods are constructed by solving the linear system (8).
Also, one can construct these polynomials by solving the system of order
conditions (11) by p = 2m+ r− 1. Then, by considering the stability matrix
(16), collocation parameters in the interval [0, 1] are determined in order to
achieve A-stability.

5.1 Construction of SDMCMs with r = 2 and m = 1

In this subsection, we first investigate two step new methods with r = 2 and
one collocation parameter of order p = 2m + r − 1 = 3. The coefficients of
these methods are

φ0(s) =
s3 − 3cs2 + 3c2s+ 3c2 + 3c+ 1

3c2 + 3c+ 1
,

φ1(s) = −s(s
2 − 3cs+ 3c2)

3c2 + 3c+ 1
,

ψ1(s) =
(−s2 + 3cs+ 3c+ 1)s

3c2 + 3c+ 1
,

χ1(s) =
s((2c+ 1)s2 − (3c2 + 1)s− 3c2 − 2c)

2(3c2 + 3c+ 1)
.

The stability polynomial of the method is written in the form

p(w, z) =

3∑
i=1

pi(z)w
i

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??
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=
1

6c2 + 6c+ 2

((
(c4 + 2c3 + c2)z2 + (−4c3 − 6c2 − 2c)z + 6c2 + 6c+ 2

)
w3

+
(
(−2c4 + 4c2 − 2)z2 + (8c3 − 8c)z − 12c2 − 4

)
w2

+
(
(c4 − 2c3 + c2)z2 + (−4c3 + 6c2 − 2c)z + 6c2 − 6c+ 2

)
w
)
.

By performing an advanced search based on the boundary locus method, we
find that there are some A-stable methods within this class of methods, for
example, when the collocation parameter c lies in the interval [0.578, 1], the
obtained method is the A-stable of order 3. For example, by choosing c = 1,
an A-stable method of order 3 is obtained where the polynomials of methods
are in the form

φ0(s) =
s3 − 3s2 + 3s+ 7

7
, φ1(s) =

−s3 + 3s2 − 3s

7
,

ψ1(s) =
−s3 + 3s2 + 4s

7
, χ1(s) =

3s3 − 2s2 − 5s

14
.

5.2 Construction of SDMCMs with r = 2 and m = 2

In this subsection, we describe the construction of the method with r = 2

and two collocation parameters. The polynomials of method are of degree
5 and can be obtained by solving the system of order condition (11) with
p = 2m + r − 1 = 5. The stability polynomial of the method is obtained in
the form

p(w, z) =

3∑
i=1

pi(z)w
i,

where pi(z) are polynomials of degree 2. By an extensive computer searching,
we could not found A-stable methods for c1, c2 ∈ [0, 1], but in some cases, an
extensive stability region (near to A-stability) can be observed.

For example, choosing c = [ 12 , 1] leads to method of order 5 with un-
bounded stability region, where its stability region is plotted in Figure 1,
and its coefficients are determined by

φ0(s) = 1 +
15

182
s− 45

182
s2 +

5

14
s3 − 45

182
s4 +

6

91
s5,
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15 High order SDMCMs for ODE

φ1(s) =
−15

182
s+

45

182
s2 − 5

14
s3 +

45

182
s4 − 6

91
s5,

ψ1(s) =
−124

91
s+

372

91
s2 − 4

7
s3 − 356

91
s4 +

192

91
s5,

ψ2(s) =
415

182
s− 699

182
s2 +

3

14
s3 +

757

182
s4 − 198

91
s5,

χ1(s) =
−209

182
s+

263

182
s2 +

5

14
s3 − 283

182
s4 +

62

91
s5,

χ2(s) =
−149

364
s+

265

364
s2 − 3

28
s3 − 281

364
s4 +

43

91
s5.

Also, the stability polynomial of this method is

p(ω, z) = ω
2912 (18z

4 − 150z3 + 727z2 − 2120z + 2912)ω2

+ ω
2912

(
(−72z2 − 768z − 2944)ω + z2 + 8z + 32

)
.

Figure 1: Stability region (Shaded region) of method with r = 2, m = 2 and c = [ 1
2
, 1].

5.3 Construction of SDMCMs with r = 3 and m = 1

We now consider 3-step SDMCMs with one collocation parameter of order
p = 4. Solving the system of order condition (11) corresponding to p = 4,
we obtain the family of methods of order 4 depending on the parameter c.
We apply the boundary locus method on the stability polynomial p(w, z), in
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order to determine the values of the free parameters c ∈ [0, 1] achieving A-
stability. We obtained when c belongs in [0.619, 1], the constructed methods
are A-stable. Choosing, for example, for c = 7

10 , we obtain the three-step
formula of uniform order p = 4 with coefficients given by

φ0(s) = 1 +
7

10
s− 81

170
s2 − 11

170
s3 +

19

170
s4,

φ1(s) = −4

5
s+

42

85
s2 +

12

85
s3 − 13

85
s4,

φ2(s) =
1

10
s− 3

170
s2 − 13

170
s3 +

7

170
s4,

ψ1(s) =
2

5
s+

39

85
s2 − 1

85
s3 − 6

85
s4,

χ1(s) =
−1

5
s− 29

170
s2 +

8

85
s3 +

11

170
s4.

5.4 Construction of SDMCMs with r = 3 and m = 2

We now present the construction for SDMCMs of uniform convergence order
6 with r = 3 and m = 2. First, by solving the order conditions (11), the
polynomials of a method of degree 6 are determined depending on the pa-
rameters c1 and c2. The stability polynomial of the method is obtained in
the form

p(w, z) =

4∑
i=1

pi(z)w
i,

where pi(z) are polynomials of degree 2. We apply the boundary locus
method on the stability polynomial p(w, z), in order to determine the val-
ues of the free parameters c1, c2 ∈ [0, 1] achieving A-stability. The range
of (c1, c2) in the domain [0, 1] × [0, 1], which leads to A-stable methods, is
plotted in Figure 2.

For example, by choosing c = [ 12 , 1], an A-stable method of order p = 6 is
obtained, where coefficients are

φ0(s) =
13216s6 − 21564s5 − 33123s4 + 101259s3 − 87639s2 + 32517s+ 219758

219758
,
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φ1(s) =
−14672s6 + 25536s5 + 30786s4 − 103768s3 + 91308s2 − 34104s

219758
,

φ2(s) =
1456s6 − 3972s5 + 2337s4 + 2509s3 − 3669s2 + 1587s

219758
,

ψ1(s) =
77504s6 + 20400s5 − 305456s4 + 70768s3 + 253872s2 − 65248s

109879
,

ψ2(s) =
−83384s6 − 11604s5 + 323186s4 − 120143s3 − 211887s2 + 159662s

109879
,

χ1(s) =
2744s6 − 680s5 − 11128s4 + 8296s3 + 7520s2 − 8480s

9989
,

χ2(s) =
33320s6 + 12944s5 − 116167s4 + 33872s3 + 76025s2 − 53638s

219758
.

Figure 2: Acceptable (c1, c2) pairs for A-stability of SDMCMs with r = 3, m = 2.

6 Numerical eexperiments

In this section, we present numerical results arising from the application
of the SDMCMs in order to confirm the theoretical expectations, show the
efficiency and accuracy of the new method, and validate the order of these
methods in the integration of stiff systems. In what follows, we describe the
details of the implemented methods:

• Method 1: A-stable SDMCM of convergence order 3 with r = 2, m =

1, and collocation parameter c = 1.
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• Method 2: SDMCM of convergence order 5 with r = 2, m = 2, and
collocation parameters c1 = 5

10 , c2 = 1.

• Method 3: A-stable SDMCM of convergence order 4 with r = 3, m =

1, and collocation parameter c = 1.

• Method 4: A-stable SDMCM of convergence order 6 with r = 3, m =

2, and collocation parameters c = [ 12 , 1].

Also, we compared the results with the method in [6, 8], by the implementa-
tion of the method.

• Method 5: Second derivative two-step collocation method withm = 1,
p = 4m = 4, c = 2

3 and q = 1, introduced in [8].

• Method 6: Two-step almost collocation method with m = 2, p =

2m = 4, c = [ 12 ,
9
10 ], introduced in [6].

Computational experiments are done by applying the methods to the follow-
ing problems:

P1. The nonlinear stiff ODE y′1(t) = −10004y1(t) + 10000y2(t)
2, y1(0) = 1,

y′2(t) = y1(t)− y2(t)(1 + y2(t)
3), y2(0) = 1,

with t ∈ [0, 1]. The exact solution is [y1(t) y2(t)]
T = [e−4t e−t]T .

P2. The Robertson chemical kinetics problem [13]
y′1(t) = −0.04y1(t) + 104y2(t)y3(t), y1(0) = 1,

y′2(t) = 0.04y1(t)− 104y2(t)y3(t)− 3× 107y2(t)
2, y2(0) = 0,

y′3 = 3× 107y2(t)
2, y3(0) = 0,

with t ∈ [0, 1000].

P3. The Pleiades problem [16] is a celestial mechanics problem of seven
stars in the plane of coordinates xi and yi and masses mi = i for i =
1, 2, . . . , 7. The problem consists of a system of 14 special second-order
differential equations rewritten to a first-order form, thus providing a
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system of ODEs of dimension 28. The formulation and data have been
taken from [11]. The problem is in the form

z′′ = f(z), z(0) = z0, z′(0) = z′0,

with z ∈ R14 and 0 ≤ t ≤ 3. By considering z = (xT , yT )T ,

x, y ∈ R7, the function f : R14 → R14 is given by f(z) = f(x, y) =

(f (1)(x, y), f (2)(x, y))T , where f (1), f (2) : R14 → R7 are

f
(1)
i =

∑
j ̸=i

mj(xj − xi)/r
3/2
ij ,

f
(2)
i =

∑
j ̸=i

mj(yj − yi)/r
3/2
ij , i = 1, 2, . . . , 7,

with mi = i and

ri,j = (xi − xj)
2 + (yi − yj)

2.

We convert this problem to a first-order form by defining w = z′, which
leads to a system of 28 nonlinear differential equations of the form(

z′

w′

)
=

(
w

f(z)

)
,

where (zT , wT )T ∈ R28 and 0 ≤ t ≤ 3. The initial values are

(
z0

w0

)
=


x0

y0

x′0

y′0

 ,


x0 = (3, 3,−1,−3, 2,−2, 2)T ,

y0 = (3,−3, 2, 0, 0,−4, 4)T ,

x′0 = (0, 0, 0, 0, 0, 1.75,−1, 5)T ,

y′0 = (0, 0, 0,−1.25, 1, 0, 0)T .

Table 1 presents the reference solution at the end of the integration
interval, which is reported in [16].

In our numerical experiments, we apply Method 1– Method 4 to the given test
problems with the fixed step sizes h = T/N for several integer values of N .
The global error of the methods at the endpoint of the interval of integration
is listed by Err. Also, to verify theoretical results on the order of accuracy,
we compute a numerical estimate to the order of accuracy of the methods
by the formula log2(∥Errh(x)∥/∥Errh/2(x)∥), where Errh(x) and Errh/2(x)
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Table 1: Reference solution at the end of the integration interval

x1 =0.3706139143970502 y1 = -3.943437585517392
x2 = 3.237284092057233 y2 = -3.271380973972550
x3 = -3.222559032418324 y3 =5.225081843456543
x4 = 0.6597091455775310 y4 =-2.590612434977470
x5 = 0.3425581707156584 y5 = 1.198213693392275
x6=1.562172101400631 y6 = -0.2429682344935824
x7 = -0.7003092922212495 y7 = 1.091449240428980
x′1 = 3.417003806314313 y′1 = −3.741244961234010

x′2 = 1.354584501625501 y′2 = 0.3773459685750630

x′3 = −2.590065597810775 y′3 = 0.9386858869551073

x′4 = 2.025053734714242 y′4 = 0.3667922227200571

x′5 = −1.155815100160448 y′5 = −0.3474046353808490

x′6 = −0.8072988170223021 y′6 = 2.344915448180937

x′7 = 0.5952396354208710 y′7 = −1.947020434263292

are the errors at the endpoint of the interval of integration corresponding to
the step sizes h and h/2, respectively. we observed that the expected order
was achieved. Also, by comparing results by methods introduced in [6, 8],
one can see that the results are compatible with Method 5 and the solution
by this new method is more precise than the results of Method 4 while the
computational cost for the new method is less.

In problems P2, the reference solutions reported in [10] are used for com-
puting the global error. The obtained results are reported in Table 2.
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Table 2: The results of the methods for problem P1.

N 4 8 16 32 64

Method 1 Err 2.22× 10−4 3.40× 10−5 4.64× 10−6 6.04× 10−7 7.71× 10−8

p(h) 2.71 2.87 2.94 2.97

Method 2 Err 2.12× 10−7 8.38× 10−9 2.93× 10−10 9.66× 10−12 3.10× 10−13

p(h) 4.66 4.84 4.92 4.96

Method 3 Err 1.95× 10−5 1.92× 10−6 1.39× 10−7 9.30× 10−9 5.99× 10−10

p(h) 3.35 3.78 3.91 3.96

Method 4 Err 3.96× 10−9 1.01× 10−10 1.93× 10−12 3.33× 10−14 5.46× 10−16

p(h) 5.31 5.70 5.86 5.93

Method 5 Err 1.17× 10−3 6.14× 10−5 2.58× 10−6 1.01× 10−7 5.96× 10−9

p(h) 4.26 4.57 4.67 4.59

Method 6 Err 1.51× 10−3 1.74× 10−4 1.49× 10−5 1.08× 10−6 7.08× 10−8

p(h) 3.11 3.54 3.79 3.93
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Table 3: The results of SDMCMs for problem P2

N 500 750 1000 1250 1500

Method 1 Err 4.41× 10−5 1.69× 10−6 8.22× 10−6 4.62× 10−6 2.85× 10−7

p(h) 2.37 2.50 2.58 2.69

Method 2 Err 3.41× 10−7 7.41× 10−8 2.17× 10−8 8.07× 10−9 4.46× 10−9

p(h) 3.76 4.27 4.42 4.64

Method 3 Err 1.99× 10−6 8.24× 10−7 3.99× 10−7 2.16× 10−7 7.81× 10−8

p(h) 3.07 3.25 3.36 3.54

Method 4 Err 7.86× 10−8 1.67× 10−8 5.26× 10−9 1.58× 10−9 5.42× 10−10

p(h) 4.84 4.97 5.37 5.90

Table 4: The results of SDMCMs for problem P3

h 1
2
× 10−3 1

4
× 10−3 1

8
× 10−3 1

16
× 10−3

Method 1 Err 1.99× 10−1 2.49× 10−2 3.13× 10−3 3.90× 10−4

p(h) 2.99 2.99 3.00

Method 2 Err 7.32× 10−4 2.31× 10−5 7.21× 10−7 2.47× 10−8

p(h) 4.98 4.99 5.00

Method 3 Err 5.39× 10−2 2.52× 10−3 1.24× 10−4 6.67× 10−4

p(h) 4.41 4.34 4.22

Method 4 Err 2.15× 10−5 3.71× 10−7 6.02× 10−9 9.46× 10−11

p(h) 5.86 5.94 5.99

7 Conclusion

We have introduced a new family of SDMCMs. The constructed r-step
method with m collocation parameters has a uniform order 2m + r − 1.
Examples of SDMCMs up to order 6 with the property of A-stability were
constructed. The accuracy and efficiency of constructed methods were ver-
ified by solving some stiff problems. SDMCMs are efficient in solving stiff
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problems, which are confirmed by numerical experiments. Future work will
be in the investigation of G-simplecticity of SDMCMs [12, 17].
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