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Homotopy perturbation and Elzaki
transform for solving Sine-Gorden and
Klein-Gorden equations

E. Hesameddini and N. Abdollahy

Abstract

In this paper, the homotopy perturbation method (HPM) and Elzaki
transform is employed to obtain the approximate analytical solution of the
Sine Gorden and the Klein Gorden equations. The nonlinear terms can be
handled by the use of homotopy perturbation method. The proposed homo-
topy perturbation method is applied to reformulate the first and the second
order initial value problems which leads to the solution in terms of trans-
formed variable, and the series solution that can be obtained by making use
of the inverse transformation.

Keywords: Homotopy-perturbation method; Elzaki transform; Sine-Gorden
equation; Klein-Gorden equation.

1 Introduction

In this paper, we have considered the Sine-Gorden (SG) and Klein-Gorden
(KG) equations, as the following and also in [2] respectively:

Ut — Ugg + O‘g(u) = f(xvt)v (1)

and
Ut — Uy + Pru+ Bag(u) = f(x,1), (2)

where u is a function of x, t and g is a nonlinear function . The « pa-
rameter is so-called dissipative term, which is assumed to be a real number
with o« > 0. When a = 0, Eq. (1), reduces to the undamped SG equation,
and when « > 0, to the damped one. f is also a known analytic func-
tion. The Sine-Gorden and Klein-Gorden equations model many problems
in classical and Quantum mechanics, solitons, and condensed matter physics
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[1, 5]. The SG equation arose in a strict mathematical context in differential
geometry in the theory of surfaces of constant curvature [17]. For the SG
equation, the exact soliton solution have been obtained in [16], using Hirotas
method in [21], using Lambs method in [18], by Bécklund transformation
and painlevé transcendents in [18]. Numerical solutions for the undamped
SG equation have been given among others by Guo et al. [8] by use of two
diffirent schemes, Xin [24] who studied SG equation as an asymptotic reduc-
tion of the two-level dissipationless Max well-Bloch system, Christiansen and
Lomdahl [3] used a generalized leapforg method and Argyris et al. found
the accurate and efficient methods for solving such equations which is an
active research undertaken by Herbst et al. The method [14], presented a
numerical solution for the SG equation obtained by means of an explicit
symplectic behavior of a double-discrete, completely integrable discretization
of the Sine-Gorden equation, and they have illustrated their technique by
numerical experiments. Wazwaz [23] has used the tanh method to obtain
the exact solution of SG equation. Approximate analytical solution of Kline
Gorden equation thrangh the Adomian Decomposition Method (ADM) was
presented in [4, 6, 20]. Kaya has applied the modified ADM (MADM) for
obtaining the approximate analytical solution of the Sine-Gorden equation
n [19]. Another more powerful and convenient analytical technique, called
the homotopy-perturbation method (HPM), was first developed by He [13].
Some part of this work on HPM can be found in [9, 10, 11]. HPM trans-
formes a difficult problem into a set of problems which are easier to solve.
Chowdhury and Hashim [2], have used the HPM to obtain the approximate
analytical solution of Sine-Gorden and Klein-Gorden equations. Recently,
Tarig Elzaki [7], has introduced a new integral transform, named the Elzaki
transform, and it has further applied to the solution of ordinary and partial
differential equations.

Now, we consider in this work the effectiveness of the homotopy-perturbation
Elzaki transform method to obtain the exact and approximate analytical so-
lution of the Sine-Gorden and the Klein-Gorden equations.

2 Elzaki Transform

The basic definition of modified form of Sumudo transform or Elzaki trans-
form is defiend as follow, Elzaki transform of the function f(t) is:

E[f(t)] = ’U/OOO f(t)e tvat, t>0. (3)

Tarig M. Elzaki showed the modified form of Sumudu transform or Elzaki
transform in which it is applied to the differential equations, ordinary dif-
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ferential equations, system of ordinary, partial differential equations, and
integral equations.

To obtain the Elzaki transform of partial derivative, we use the integration
by part, and then we have:

of (x,t) 1

00y L ) - wpeo), @
g I L) — pa0) - o200, 8
0D Ay, ©
E[%] - di;:r(x,u). 1)
Proof: First, we assume
U/OOO %ﬁdt = T(z,v). (8)

By using the integration by parts one obtain:

of @, t), — [* Of = . > of
E| 5t ]—/O S dt—plggo ; ve 8tdt

= i (foe¥ 7o - [ ¥ pott)
_ ij Y o f(a,0). 9)

Assuming that f is a piecewise continuous function and % exist, also it is
of exponential order which is means that there exist nonegative constants M
and T such that for all ¢ > T, we have

|f(t)] < Me™.
Now,
Of (z,t) _/OO of (z,t) =t
E| . | = ; Ll dt, (10)
using the Leibnitz rule to find:
of(e,t), _ d
E| o ]_de(x,v). (11)

By using this method, we have:
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To find: o2
Lera) (13)
Let: 9 ;
ol s, (14)
then we have:
o180y 20 g0, )
o0y L)~ pa0) - 00, (16)

Therefore, one can easily extend this result to the nth partial derivative by
using mathematical induction. We will see that, the Elzaki transform rivals
the Laplace transform in solving the problem, its main advantage is the rivals
that it may be used to solve problems without resorting to a new frequency
domain because it preserve scales and units properties, the Elzaki transform
may be used to solve intricate problems in engineering, mathematics and
applied science without resorting to a new frequency domain.

3 Homotopy Perturbation Method:

The basic idea of the standard HPM was given by He [9, 12] and a new
interpretation of this technique was presented by our research gorup [15].
To introduce HPM, considered the following general nonlinear differential
equation:

Lu+ Nu = f(z,t), (17)

with initial conditions:
u(z,0) = k1, w(x,0) = ko. (18)

Where u is a function of x, t and k1, ko are constants or functions of z. Also
L and N are the linear and nonlinear operators respectively. According to
HPM [2] we construct a homotopy which satisfies the following relation:

H(u,p) = Lu — Lvy + p[Lvg + Nu — f(x,t)] =0, (19)

where p € [0,1] is an embedded parameter and v is an arbitrary initial
approximation satisfing the given initial condition.
By setting p =0 and p =1 in Eq. (19), one obtain:

H(u,0) = Lu—Lyy =0, and H(u,1) = Lu+Nu— f(z,t) = 0, (20)
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which are the linear and nonlinear original equations, respectively. In topol-
ogy, this is called deformation and Lu— Lvy and Lu+ Nu— f(z,t) are called
homotopic. Here, the embedded parameter is introduced much more natu-
rally, unaffected by artificial factor, further it can be considered as a small
parameter for 0 < p < 1.

Chowdhury and Hashim in [2], have presented an alternative way for
choosing the initial approximation, that is:

vo = u(2,0) + tug(x,0) + L7 f (2, ) = ky + thy + L1 f (2, 1), (21)

where L1(.) = fot fot fot(.)dt...dtdt depends on the order of the linear op-
erator. With this assumption that the initial approximation vy given in Eq.
(21), in HPM, the solution of Eq. (19), is expressed as:

u(z,t) = uo(z,t) + puy (z,t) + pPus(z,t) + ... (22)

Hence the approximate solution of Eq. (17), can be expressed as a power
series of p, i. e.

p—1

u=limu= Zui. (23)
i=0

4 Homotopy Perturbation and Elzaki Transform
Method:

Consider a general nonlinear partial differential equation with initial condi-
tions of the form:

Du(z,t) + Ru(z,t) + Nu(z,t) = f(x,t), (24)

u(z,0) = ¢, ug(z,0) = co. (25)

Where D is a linear differential operator of order two, R is a linear differential
operator of less order than D , N is the general nonlinear differential operator,
f(z,t) is the source term and ¢y, co are constants or functions of x.

By taking Elzaki transform to both sides of Eq.(24), result in:

E[Du(z,t)] + E[Ru(z,t)] + E[Nu(z,t)] = E[f(z,t)]. (26)

Using the differentiation property of Elzaki transform and the initial condi-
tion in Eq.(24), one obtain:

Elu(x,t)] = v*E[f(z,t)] + v?ci + viey — v?E[R(2,t) + Nu(z,t)].  (27)

Applying the inverse Elzaki transform on both sides of Eq.(27), we get:
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u(z,t) = F(x,t) — E-Y{v*E[Ru(z,t) + Nu(z,t)]}, (28)

where F(x,t) represent the term arising from the source term and the pre-
scribed initial conditions.

According to HPM we have:

u(z,t) = F(x,t) — pE~ {v? E[Ru(x,t) + Nu(x,t)]}, (29)

now by substituting

u(z,t) = Zpiui(x,t), Nlu(z,t)] = ZpiHi(u), (30)
=0 i=0

in Eq. (29 ) where H;(u) is He’s polynomials that are given by:

190 >

H;(ug,uyy .y uy) = E@T}i[N(;piui)]p:O’ i=0,1,2,...,  (31)
one obtain:
Zpiui(x, t) =F(x,t)
i=0
B PE(RY pus(e, ) + NS5 Hi)]]}. (32)
i=0 i=0

This our method is infact a coupling technique of Elzaki transform and the
homotopy perturbation method. Comparing the coefficients of the like powers
of p the following approximations are resulted:

Y s ug(x,t) = F(a,t),

ptuy(z,t) = =B Hu? E[Rug(x,t) + Ho(u)]},

p? us(z,t) = —E*I{UQE[Rul(:c,t) + Hqi(uw)]},
etc.

Therefore the solution will be obtained as:

u(z,t) = up(x,t) + uy(x,t) + us(x, t) + ... (33)
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5 Numerical Applications

In this section, we apply the homotopy-perturbation and Elzaki transform
method for solving Sine-Gorden and Klein-Gorden equations. Numerical re-
sults are very encouraging.

Example 5.1 First, consider the following Sine-Gorden equation with the
given initial conditions:

U — Ugg +sinu =0, u(z,0) =0, w(z,0)=4sech(x). (34)
The exact solution is given in [2] as:

u(z,t) = 4arctan[tsech(x)]. (35)

3 5

To solve the example by this method, we take sinu ~u — % + {55.

After taking Elzaki transform of (34), subjected to the initial conditions,
one obtain:

Bl(u(z,t)] = 4v3sech(x) + U2d—2E[(u(x £)] — v?E[u — Ligh “i]. (36)
’ dx2 ’ 6 120
The inverse Elzaki transform implies that:
(,1) = dtsech(x) + B~ fo? & Bl(u(x, 0] - o?Blu— = + 213 (37)
u\xr = X v — ux — U u— — —|r.
’ dx? ’ 6 120

Now applying the homotopy perturbation method, we get:

2 oo

Zpiui(x, t) = 4tsech(x) + p{vQ%E[Z pus(x, t)] (38)
i=0

i=0
S Pui(z,t)? (g pruila,t))®
6 120

B[y (1)~ I

By comparing the coefficients of the same powers of p, result in:
pY :ug(x,t) = 4tsech(x),
d2
ptug(x,t) = d—zE_l{4tsech(x)v2E(t)} — E~{4tsech(x)v?E(t)}
x

+ E_l{%SGChS(X)UQE(ts)} - E_l{llo—;(;lsech5(x)02E(t5)}.

Then, we get:
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4
pt g (x,t) = ﬁsech5 (x) — (—105t3 cosh?(x) + 42t° cosh?(x) — 16t7),

4
2. 5 9 40t8 9 2 4990t4 4
p° tug(x,t) = 20270251? sech” (x)(7040t° — 33696t cosh”(x) 90t* cosh™(x)

+ 143000t* cosh? () — 2059202 cosh* (z) 4 51480t cosh® ()
— 270270 cosh® (z) + 405405 cosh? (z),

therefore, the 3-terms Elzaki-HPM solution is:

4
u(z,t) = mtsechg (x)(7040t*? — 336960 cosh?(x) — 4290t® cosh? (x)

+ 143000t cosh? () — 3088805 cosh® () + 514805 cosh® ()
+ 405405t* cosh* () — 675675t2 cosh® () — 270270 cosh®(z).

The behavior of the solution (34), by 4-terms of EHPM and its exact solution
are shown in Figures 1 and 2.

Exact solution

Figure 1: These surfaces show the approximate solutions obtained by 4-terms
of EHPM and the exact solution of u(x,t), respectively .(a) Exact plot; (b)
EHPM plot(Eq. (35))

Example 5.2 Considering the following Sine-Gorden equation with the given
initial conditions:

Upt — Ugg + sinu = 0, u(z,0) =7 +ecos(pz), w(z,0)=0. (39)

Where = % and ¢ is a constant.

We take sinu ~ u — %3 + % to solve this example.
By taking Elzaki transform of (39), subjected to the initial conditions,we
have:

2 7‘113 US

Elu(z,t)] = v*(r + e cos(uzx)) + UZ%E[U(L )] — v?Efu — 5 + m}(40)
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Figure 2: Comparison of the results by EHPM with the exact solution for

example 5.1.

(b)

\
.\‘
= e r e
-5 0 5 10 5 0 5
x x
- = * Exact E-HPM - = * * Exact E-HPM
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Table 1: Comparison of the exact and numerical solutions of example 5.1

T t Exact solution EHPM-4term Absolute error
0 0 0 0 0

0.062 0.162 0.6412071928 0.6412071885 4.3 x 1077
0.156 0.156 0.6116706532 0.6116706503 2.9 x 10~°
0.469 0.469 1.5964486815 1.596478333  .8482 x 10~ 7
0.539 0.403 1.349539812 1.349538454  .1358 x 10~
0.620 0.685 2.077035544 2.076989415  .0590 x 10~*
0.781 0.781 2.136014353 2.135871203  .1431 x 1077
0.896 0.893 2.234155992 2.233473035  .6829 x 1077
0.975 0.992 2.319920856 2.317982103  .1938 x 1077
1.000 1.000 2.300024730 2.297874130  .2150 x 1077

The inverse Elzaki transform implies that:

u(z,t) = (7 + e cos(px)) B~ [v?] + E_l{vz%E[(u(x, t)] — v E[u]

+ v?E[—] — v

ud
6

2 [u5]
200

2

Now applying the homotopy perturbation method, result in:

(e, 1) = (x4 cos(ua)) B~ 0?) 4 p{E~ (% B (u(r, 1)] — o2 B[]

+ v?E]

u3
6

]—v

[u®]
i 120 b

2
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By taking u(z,t) = Y o0 p'ui(z,t) and comparing the coefficients of the
same powers of p, one obtain:
p° s ug(x,t) = (7 + £ cos(ux)),

1 5

t2 1 1
puy(z,t) = 5{—u25cos(;wx) + 6(77 + ecos(ux))® — EO(T(' + e cos(ux))

— (m 4 ecos(ux))}.

ete.
Therefore, the 3-terms Elzaki-HPM solution is:

t2 1 1
u(z,t) = 7+ ecos(uzx) + 5{—,u25 cos(px) + g(w + ecos(ux))® — 120

2

( m+ecos(ux))® — (7 +ecos(ux))} + [e% cos? () 4 9me® cos® (ux)

69120
+ (3672 — 32)e” cos (ux) + (847 — 2247)£8 cos® (ux)
14 , 5

7 8
+ 720(p? + 4—074 T + B)s cos® (pux)

21 4 7
+ 24007r(@7r4 + 3 + p? - Eﬂ'2)€4 cos* (1) (z)

7 7
— 480(e?p® + (—67% +12)p® — 8% + 5774 - Eﬂﬁ + £)e® cos® (ux)
4

7 1 8
— 14407 (% p® + (—7% 4+ 6)p® + 5" Eﬁﬁ — 5772 + ¢)e? cos? (ux)

—1 7
— 1d0(e* (r* = 2) — 2 + { ' —d 4 2 4 e

1 4
+ 4n? — ﬁﬂ'g) - §7r4 — 2)e cos(px) — 4807 (12 — 6)pu’e?
+ 3847 + 28807 — 19207 + 7 — 3277 ¢,

The behavior of the solution (39), by 4-terms of EHPM and its HPM solution
are shown in Figure 3.

Example 5.3 Considering the following Klein-Gorden equation with the
given initial conditions:

Utp — Uz = 4,  u(x,0) =1+sinz, wuz,0)=0. (41)
Taking Elzaki transform of (41), subjected to the initial condition, one obtain:

E[(u(z,t)] = (1 +sinz)v? + v?Eu] + UQ%E[u]. (42)

The inverse Elzaki transform implies that:
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Figure 3: Comparison of the results by EHPM with the HPM solution for
example 5.2.

u(z,t) =1 +sinz + B~ v E[u] +’U2£E[u]}. (43)

dx?
Now, applying the homotopy perturbation method, we get:
d2
u(z,t) = 1 +sinz + p{E" {v*E[u] + UzﬁE[u]}} (44)
i

By taking u(z,t) = Y o0 p'ui(z,t) and comparing the coefficients of the
same powers of p, result in:

P’ ug(z,t) =1 +sinz,
1 t?
p U1(1',t) = Ea
2 t*
t R
p UQ(I', ) 24a
3 t°
7t )
p° :ug(z,t) 720
ete.

Therefore, the 4-terms approximate series solution is:

Ul S A
u(w,t)zl—}-sina:—i-g—i—ﬁ—i—%, (45)
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and this will, in the limit of infinitely many terms, yield the closed form
solution [6],

u(z,t) = sinz + cosht. (46)

Example 5.4 Consider the following Klein-Gorden equation with the given
initial conditions:

Ut — Ugy = —u,  u(x,0) =0, ug(z,0) = z. (47)

Taking Elzaki transform of (47), subjected to the initial conditions, one ob-
tain:
d2
El(u(z,t)] = zv® + UQEE[U] — v?E[u]. (48)
The inverse Elzaki transform implies that:
d2
u(z,t) = tx + Eil{UQPE[u] —v?Eu]}. (49)
x
Now applying the homotopy perturbation method, we get:
d2
u(z,t) =tz + p{E_l{v2@E[u] —v?Eu]}}. (50)

By taking u(z,t) = > ;o) p'ui(z,t) and comparing the coefficients of the
same powers of p, one obtain:

P s ol t) = ta,

—xt3

pl :ul(x,t) = 31 )

+xt®

P (e t) = o

—zt”

p3 uz(z,t) = o
etc.

Thus, the 4-terms approximate series solution is:

atd  wtt at”
ulrt) =to = S g - oy

and this will, in the limit of infinitely many terms, yield the closed form
solution [22],
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u(x,t) = xsint. (52)

6 Conclusion:

In this paper, the Elzaki Homotopy-Perturbation method (EHPM) has been
successfully employed to obtain the approximate analytical solutions of the
Sine-Gorden and the Klein-Gorden equations. In example 5.3, the obtained
result by this method is almost accurate and very near to the exact solution,
also in example 5.4, it is observed that the (EHPM) solution yields the exact
solution in only few iterations. Therefore, this novel iterative method has
a bright aspect in future to obtain the approximate analytical solutions of
ordinary and partial differential equations.

References

1. Caudrey P., Elibeck I. and Gibbon J. The sine-gorden equation as a
model classical field theory, Nuovo cimento, 25 (1975), 496-511.

2. Chowdhury, M. S. H. and Hashim, 1. Application of homotopy-
perturbation method to Kline-Gorden and Sine-Gorden equations, Chaos,
Solitons Fractals, 39 (2009), 1928-1935.

3. Christiansen P. L. and Lomdahl, P. S. Numerical solution of 2+1 dimen-
sional Sine-Gordon solitons, Phys 2D (1981), 482-494.

4. Deeba, E. and Khuri, S. A decomposition method for solving the nonlinear
Kline-gorden equation, J Comput Phys, 124 (1996), 442-448.

5. Dodd P., Elibeck I. and Gibbon J. salitons and nonlinear wave equation,
London Academic, 1982.

6. El-Sayad S. The decomposition method for studying the Kline-Gordon
equation, Chaos, Soliton Fractals, 18 (2003), 1025-1030.

7. Elzaki T. M. and Hilal, E. M. A. Homotopy perturbation and FElzaki
transform for solving nonlinear partial differential equations, Mathemat-

ical Theory and Modling, 2 (2012), 3, 33-42.

8. Guo, B. Y., Pascual, P. J., Rodriguez, M. J. and Vzquez, L. Numerical
solution of the Sine-Gorden equation, Appl Math comput, 18 (1986),
1-14.

9. He J. A copuling method of homotopy technique and perturbation tech-
nique for nonlinear problem, Int J Nonlinear Mech, 35 (2000), 37-43.



46

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

E. Hesameddini and N. Abdollahy

He J. Homotopy-perturbation method for solving boundary value problem,
Phys Lett A, 350 (2006), 87-88.

He J. Non-perturbative methods for strongly nonlinear problems, Ger-
manay: Die Deutsche bibliothek, 2006.

He J. Some asymptotic method for strongly nonlinear equations, Int J
Mod Phys B, 20 (2006), 1141-1199.

He J. Varuational iteration method-a kind of non-linear analytical tech-
nique: some examples, Int J Nonlinear mech, 34 (1999), 699-708.

Herbst B. and Ablowitz M. Numerical homoclinic instabilities in the Sine-
Gorden equation, Quaest Math, 15 (1992), 345-630.

Hesameddini, E. and Latifizadeh, H. A new vision to the He’s homotopy
perturbation method, Nonlinear sci. simul., 10 (2009), 1389-1398.

Hirota, R. FEzact three-soliton solution of the two-dimensional Sine-
Gorden equation, J Phys Soc Jpn, 35 (1973), 15-66.

Hu H. C. and Lou, S. Y. New guasi-periodic waves of the (2+1)dimen-
sional Sine-Gorden system, Phys Lett A, 341 (2005), 422-426.

Kaliappan, P. and Lakshmanan, M Kadomstev-Petviashvili two-
dimensional Sine-Gorden equations: reduction to painleve transcendents,
J Phys A, 12 (1979), 249-252.

Kaya D. A numerical solution of the Sine-Gorden equation using the
modified decomposition method, Appl Math Comput, 143 (2003, 309-317.

Kaya D. and El-Sayed S. A numerical solution of the Kline-Gordon equa-
tion and convergence of the decomposition method, Appl Math Comput,
156 (2004), 341-353.

Leibbrandt, G. New ezxact solutions of the classical Sine-Gorden equation

in 2+1 and 3+1 dimensionals, Phys Rev Lett, 41 (1978), 435-438.

Mohyud-Din, S. T. and Yildirim A. Variatonal Iteration Method for solv-
ing Kline-Gordon equation, JAMSI, 6 (2010), 1, 99-106.

Wazwaz A. The tanh method: exact solution of Sine-Gordon and the
sinh-Gordon equations, Appl Math Comput, 167 (2005), 1196-1210.

Xin, J. X. Modeling light bullets with the two-dimensional Sine-Gordon
equation, Phys D, 135 (2000), 345-368.



	complete1

