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Abstract

We introduce Ćirić-generalized quasicontractive fuzzy mappings and pro-
vide the necessary and sufficient conditions of having a unique endpoint for
such mappings. Then we introduce β-ψ-quasicontractive fuzzy mappings, es-
tablishing an endpoint result for them. Finally, we provide some results as

an application.
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1 Introduction and preliminaries

The concept of fuzzy set was introduced initially by Zadeh [12] in 1965. In
1981, Heilpern [6] established the fuzzy contraction and proved a fuzzy fixed
point theorem, which was a generalization of Nadler’s fixed point theorem for
multi-valued mappings (see [9]). In 2001, Estruch and Vidal [5] utilized the
result of Heilpern to fuzzy fixed point with fixed degree α for some α ∈ [0, 1],
which was later generalized by many authors (see, for instance, [1,3,11]). Re-
cently, Abbas and Turkoglu [11] proved the existence of a fuzzy fixed point for
a generalized contractive fuzzy mapping. On the other hand, In 2010, Amini-
Harandi [2] proved that some multi-valued mappings T : X → CB(X) have a
unique endpoint if and only if they have the approximate endpoint property.
Afterwards, considering the same properties, Moradi and Khojasteh [8] gen-
eralized Amini-Harandi’s result. In this paper, in the sense of [8], we prove
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that some fuzzy mappings have a unique fuzzy endpoint if and only if they
have the fuzzy approximate endpoint property.

Definition 1.(see [6]) Let X be a space of points with generic element x
and I = [0, 1]. A fuzzy set in X is a function that associates any point of X
with a number in interval [0, 1]. If A is a fuzzy set in X and x ∈ X, then
A(x) is called the grade of membership of x in A.

Definition 2.(see [6]) Let (X, d) be a metric space and let A be a fuzzy
set in X. For α ∈ [0, 1], the α-level set of A denoted by [A]α, is defined as

[A]α = {x|A(x) ≥ α} if α ∈ (0, 1]

and
[A]0 = {x|A(x) > 0},

where B denotes the closure of the nonfuzzy set B.

Definition 3.(see [6]) Let X be a nonempty set. For x ∈ X, we write {x}
the characteristic function of the ordinary subset {x} of X. For α ∈ (0, 1],
the fuzzy point xα of X is the fuzzy set in X given by

xα(y) =

{
α, y = x,
0, y ̸= x.

Define

Wα(X) = {C ∈ IX : [C]α is nonempty and compact}.

Throughout this paper, IX denotes the collection of all fuzzy sets in X. For
A,B ∈ IX , it is called that A is more accurate than B (denoted by A ⊂ B)
whenever A(x) ≤ B(x) for all x ∈ X. For x ∈ X, S ⊆ X, A,B ∈ Wα(X),
and α ∈ (0, 1], we define

d(x, S) = inf{d(x, a) : a ∈ S},

pα(x,A) = inf{d(x, a) : a ∈ [A]α},

pα(A,B) = inf{d(a, b) : a ∈ [A]α, b ∈ [B]α},

Dα(A,B) = H([A]α, [B]α) = max{supx∈A pα(x,B), supy∈B pα(y,A)},

where H is the Hausdorff distance. It is easily seen that Dα is the Hausdorff
metric onWα(X) induced by the metric d. Hereafter, we denote by Dα(x,A)
the amount Dα({x}, A) = H({x}, [A]α) for all x ∈ X and A ∈Wα(X).

Definition 4.(see [5]) Let X be a nonempty set, let T : X → IX , and
let α ∈ (0, 1]. A fuzzy point xα is called a fuzzy fixed point of T if xα ⊂ Tx
(or equally x ∈ [Tx]α). This means that the fixed degree of x is at least α.
If {x} ⊂ Tx, then it is called that x is a fixed point of T .
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2 Main results

Now, we are ready to state and prove the main results of this study. Firstly,
we give the following definition:

Definition 5. Let X be a nonempty set, let T : X → IX , and let α ∈ (0, 1].
We say that a point x ∈ X is a fuzzy endpoint of T if {x} = [Tx]α. This
means that x is the only point in X that the fixed degree of x is at least α.
If {x} = [Tx]1, we say that x is an endpoint of T .

Now, we give the following definition of fuzzy approximate endpoint prop-
erty in the sense of Amini-Harandi [2].

Definition 6. Let (X, d) be a metric space, let T : X → IX , and let
α ∈ (0, 1]. We say that T has the fuzzy approximate endpoint property
whenever

inf
x∈X

sup
y∈[Tx]α

d(x, y) = 0

or equally
inf
x∈X

Dα(x, Tx) = 0.

Definition 7. Let (X, d) be a metric space, let α ∈ (0, 1], and let
T : X → Wα(X). We say that T is a Ćirić-generalized quasicontrac-
tive fuzzy mapping whenever there exists an upper semicontinuous (u.s.c)
mapping ψ : [0,+∞) → [0,+∞) such that ψ(t) < t, for all t > 0 and
lim inft→∞(t− ψ(t)) > 0 satisfying

Dα(Tx, Ty) ≤ ψ(M(x, y)) for all x, y ∈ X, (1)

where

M(x, y) = max{d(x, y), Dα(x, Tx), Dα(y, Ty), Dα(x, Ty), Dα(y, Tx)}.

Theorem 1. Let (X, d) be a complete metric space, let α ∈ (0, 1], and let T :
X → Wα(X) be a Ćirić-generalized quasicontractive fuzzy mapping. Then,
T has a unique fuzzy endpoint if and only if T has the fuzzy approximate
endpoint property.

Proof. If T has a fuzzy endpoint, obviously, it has the fuzzy approxi-
mate endpoint property. Conversely, let T has the fuzzy approximate
endpoint property. Then, there exists a sequence {xn} in X such that
limn→∞Dα(xn, Txn) = 0. Now for any n,m ∈ N, we have
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M(xn, xm) = max{d(xn, xm), Dα(xn, Txn),
Dα(xm, Txm), Dα(xn, Txm), Dα(xm, Txn)}

≤ Dα(xn, Txn) +Dα(xm, Txm) +Dα(Txn, Txm)
≤ Dα(xn, Txn) +Dα(xm, Txm) + ψ(M(xn, xm)).

(2)

Therefore, from the above inequality, we have

lim inf
n,m→∞

(M(xn, xm)− ψ(M(xn, xm))) = 0.

From the property of ψ, we can conclude that lim supn,m→∞M(xn, xm) <∞.
Thus from (2) and by upper semicontinuity of ψ, we have

lim sup
n,m→∞

M(xn, xm) ≤ lim sup
n,m→∞

ψ(M(xn, xm))

≤ ψ(lim sup
n,m→∞

M(xn, xm)).

So we have lim supn,m→∞M(xn, xm) = 0 and so {xn} is a Cauchy sequence.
Since X is complete, there exists x∗ ∈ X such that limn→∞ d(xn, x

∗) = 0.
We shall show that {x∗} = [Tx∗]α. To see this, we have

Dα(x
∗, Tx∗) ≤ d(x∗, xn) +Dα(xn, Txn) +Dα(Txn, Tx

∗)

≤ d(x∗, xn) +Dα(xn, Txn) + ψ(M(xn, x
∗)).

(3)

Limiting from both sides of (3), we get

Dα(x
∗, Tx∗) ≤ lim sup

n→∞
ψ(M(xn, x

∗)). (4)

On the other hand,

M(xn, x
∗) = max{d(xn, x∗), Dα(xn, Txn),

Dα(x
∗, Tx∗), Dα(xn, Tx

∗), Dα(x
∗, Txn)}

≤ d(xn, x
∗) +Dα(xn, Txn) +Dα(x

∗, Tx∗),

which implies
lim sup
n→∞

M(xn, x
∗) ≤ Dα(x

∗, Tx∗). (5)

Consequently, from right upper semicontinuity of ψ, (4) and (5) yield

Dα(x
∗, Tx∗) ≤ ψ(Dα(x

∗, Tx∗))

and so H({x∗}, [Tx∗]α) = Dα(x
∗, Tx∗) = 0. This means that {x∗} = [Tx∗]α.

The uniqueness of endpoint is concluded from (1).

Definition 8. Let (X, d) be a metric space, α ∈ (0, 1], and T : X →
Wα(X). We say that T is a Ćirić-generalized β-ψ-quasicontractive fuzzy
mapping whenever there exists an upper semicontinuous (u.s.c) mapping ψ :
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Fuzzy endpoint results for Ćirić-generalized quasicontractive fuzzy mappings 189

[0,+∞) → [0,+∞) such that ψ(t) < t, for all t > 0 and lim inft→∞(t−ψ(t)) >
0 and a function β : X ×X → [0,∞) satisfying

β(x, y)Dα(Tx, Ty) ≤ ψ(M(x, y)) for all x, y ∈ X, (6)

where

M(x, y) = max{d(x, y), Dα(x, Tx), Dα(y, Ty), Dα(x, Ty), Dα(y, Tx)}.

Theorem 2. Let (X, d) be a complete metric space, let α ∈ (0, 1], and let
T : X → Wα(X) be a Ćirić-generalized β-ψ-quasicontractive fuzzy mapping.
Moreover suppose that

(i) there exists a sequence {xn} in X such that β(xn, xm) ≥ 1 for all
n,m ∈ N with n < m and limn→∞Dα(xn, Txn) = 0,

(ii) for any sequence {xn} in X which β(xn, xm) ≥ 1 for all n,m ∈ N with
n < m and xn → x, we have β(xn, x) ≥ 1, for all n ∈ N.

Then, T has a fuzzy endpoint.

Proof. For any n,m ∈ N, we have

M(xn, xm) = max{d(xn, xm), Dα(xn, Txn),
Dα(xm, Txm), Dα(xn, Txm), Dα(xm, Txn)}

≤ Dα(xn, Txn) +Dα(xm, Txm) + β(xn, xm)Dα(Txn, Txm)
≤ Dα(xn, Txn) +Dα(xm, Txm) + ψ(M(xn, xm)).

(7)
Similar to Theorem 1, we conclude that lim supn,m→∞M(xn, xm) = 0 and
so {xn} is a Cauchy sequence. Let limn→∞ d(xn, x

∗) = 0. We show that
{x∗} = [Tx∗]α. To see this, we have

Dα(x
∗, Tx∗) ≤ d(x∗, xn) +Dα(xn, Txn) + β(xn, x

∗)Dα(Txn, Tx
∗)

≤ d(x∗, xn) +Dα(xn, Txn) + ψ(M(xn, x
∗)).

(8)

Consequently, as in Theorem 1, we obtain

Dα(x
∗, Tx∗) ≤ ψ(Dα(x

∗, Tx∗)),

which implies H({x∗}, [Tx∗]α) = Dα(x
∗, Tx∗) = 0. This means that {x∗} =

[Tx∗]α.

Let ⊂ be the partial order on Wα(X) defined by A ⊂ B if and only if
A(x) ≤ B(x) for all x ∈ X. In the following result, we restrict the contraction
condition only for x, y ∈ X with Tx ⊂ Ty.
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Corollary 1. Let (X, d) be a complete metric space, α ∈ (0, 1], and T : X →
Wα(X) be a fuzzy mapping such that there exists an upper semicontinuous
(u.s.c) mapping ψ : [0,+∞) → [0,+∞) with ψ(t) < t, for all t > 0 and
lim inft→∞(t− ψ(t)) > 0 satisfying

Dα(Tx, Ty) ≤ ψ(M(x, y)) for all x, y ∈ X with Tx ⊂ Ty, (9)

where

M(x, y) = max{d(x, y), Dα(x, Tx), Dα(y, Ty), Dα(x, Ty), Dα(y, Tx)}.

Moreover suppose that

(i) there exists a sequence {xn} in X such that {Txn} is a nondecreasing
sequence in Wα(X) and limn→∞Dα(xn, Txn) = 0,

(ii) for any sequence {xn} in X which {Txn} is a nondecreasing sequence
in Wα(X) and xn → x, we have Txn ⊂ Tx, for all n ∈ N.

Then, T has a fuzzy endpoint.

Proof. Define the mapping β : X × X → [0,∞) by β(x, y) = 1, whenewer
Tx ⊂ Ty and β(x, y) = 0 otherwise. Then apply Theorem 2.

Corollary 2. Let (X, d) be a complete metric space, let x∗ ∈ X be a fixed
element, let α ∈ (0, 1], and let T : X →Wα(X) be a fuzzy mapping such that
there exists an upper semicontinuous (u.s.c) mapping ψ : [0,+∞) → [0,+∞)
with ψ(t) < t, for all t > 0 and lim inft→∞(t− ψ(t)) > 0 satisfying

Dα(Tx, Ty) ≤ ψ(M(x, y)) for all x, y ∈ X with Tx(x∗) = Ty(x∗), (10)

where

M(x, y) = max{d(x, y), Dα(x, Tx), Dα(y, Ty), Dα(x, Ty), Dα(y, Tx)}.

Moreover suppose that

(i) there are a sequence {xn} in X and λ ∈ [0, 1] such that Txn(x
∗) = λ

is fixed for all n ∈ N and limn→∞Dα(xn, Txn) = 0,

(ii) for any sequence {xn} in X that Txn(x
∗) = λ is fixed for all n ∈ N

and xn → x, we have Tx(x∗) = λ, for all n ∈ N.

Then, T has a fuzzy endpoint.

Proof. Define the mapping β : X × X → [0,∞) by β(x, y) = 1, whenever
Tx(x∗) = Ty(x∗) and β(x, y) = 0 otherwise. Then applying Theorem 2
completes the proof.
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