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Global error estimation of linear
multistep methods through the

Runge-Kutta methods
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Abstract

In this paper, we study the global truncation error of the linear multi-
step methods (LMM) in terms of local truncation error of the corresponding
Runge-Kutta schemes. The key idea is the representation of LMM with a cor-

responding Runge-Kutta method. For this, we need to consider the multiple
step of a linear multistep method as a single step in the corresponding Runge-
Kutta method. Therefore, the global error estimation of a LMM through the
Runge-Kutta method will be provided. In this estimation, we do not take

into account the effects of roundoff errors. The numerical illustrations show
the accuracy and efficiency of the given estimation.

Keywords: Linear multistep methods; Runge-Kutta methods; Local trun-
cation error; Global error; Error estimation.

1 Introduction

The error estimation is one of the major issues in designing numerical algo-
rithms. In the study of the linear multistep methods (LMM)

k∑
j=0

αjyn+j = h
k∑

j=0

βjfn+j , (1)

for solving an ordinary differential system{
y′ = f(x, y),
y(x0) = y0,

(2)

where, f : R×Rm → Rm, there is a challenging issue of estimation of global
truncation error (GTE) or simply global error. In spite the local trunca-
tion error (LTE), the estimation of GTE is much more complicated. The
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LTE estimations have been studied in some special cases, e.g., predictor-
corrector (PC) and embedded Runge-Kutta methods. In the case of PC
methods that predictor is an Adams-Bashforth scheme of order p and cor-
rector is an Adams-Moulton scheme of the same order, the Milne estimation
provides an estimation for LTE of the resulted PC method [9, 10]. Recently,
Cao and Petzold have developed an estimation for global error with adjoint
method [3]. However, many efforts have previously been reported for provid-
ing GTE bounds [6, 7]. These bounds are of no practical value and the LTE
form estimation of GTE, given in this paper, is more simpler than the usual
theoretical bounds. For more extensive discussion on linear multistep meth-
ods and their important subclauses, like backward difference formula (BDF)
schemes see [1, 2, 8–10, 12]. The more important application of the LMMs
is in the time discretization of time dependent partial differential equations.
The LMMs with strong stability preserving property (SSP) have a major role
in this context [4, 5].

In this paper, we represent a multiple step of a LMM as a single step of a
new Runge-Kutta method. Then, we accomplish the GTE estimation of the
LMM by estimation of LTE of the corresponding new Runge-Kutta method.

This paper has been organized as follow: In Section 2 a very short review
of the Runge-Kutta schemes is presented. Then, in Section 3 the main idea
of the paper is given for one-step methods with a rather detailed study of the
LTE and stability region of the new method. In Section 4 the idea of previous
section is generalized to formulate a general LMM in the form of a new
Runge-Kutta method. The new RK method has a popular structure in view
of Butcher array. We take into account a starting procedure, subsequently,
the method order and its LTE determined, which is the GTE of the original
scheme. Finally, in Section 5 we present some numerical tests including a
fourth order total variation bounded (TVB) scheme to illustrate efficiency of
the given theory.

2 A review of Runge-Kutta methods

In this section, we shortly review the main concepts of Runge-Kutta methods
that are required in the rest of the paper. For more details we refer to [2,9].
The s-stage Runge-Kutta method for the problem (2) is defined as follow

yn+1 = yn + h

s∑
i=1

biki, (3)

where

ki = f(xn + cih, yn + h
s∑

j=1

aijkj), i = 1, 2, . . . , s. (4)
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Traditionally the Runge-Kutta methods is represented by the following
Butcher array

c A

bT
(5)

where,

c = [c1, c2, . . . , cs]
T , b = [b1, b2, . . . , bs]

T , A = [aij ]
s
i,j=1. (6)

The derivation of a Runge-Kutta method of an arbitrary order is a crucial
work without using the advanced concepts of elementary differentials and
most related rooted trees. In fact, there is a 1-1 corresponding between ele-
mentary differential (that are defined by Fréchet derivative) and the rooted
trees. Therefore, using the rooted trees one can easily define the order con-
dition and LTE of a Runge-Kutta method. The local truncation error of the
pth order Runge-Kutta method (5) is given by

LTE =
hp+1

(p+ 1)!

∑
r(t)=p+1

α(t)[1− γ(t)ψ(t)]F (t) +O(hp+2), (7)

where,

α(t) =
r(t)!

σ(t)γ(t)

and r(t), σ(t) and γ(t) are order, symmetry and density of a tree t. The
function F (t) is defined on the set T of all trees which corresponds between
the rooted trees and elementary differentials. The elementary differentials
are evaluated at the value y(xn). The ψ(t) function is also defined on the set
of all trees T . For example we have,

F ( ) = f,

F ( ) = {f} = f (1)(f),

F ( ) = {f2} = f (2)(f, f),

F ( ) = {2f}2 = f (1)(f (1)(f)),

where, f (M)(K1,K2, . . . ,KM ), Kt ∈ Rm, t = 1, 2, . . . ,M is the Mth order
Fréchet derivative of f . For more detailed definition of these functions see
[2, 9].
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The following theorem gives the coefficients of the linear combination of
y(q) for a general q in terms of elementary differentials [9]:

Theorem 1. Let y be the solution of the autonomous problem (1). Then

y(q) =
∑

r(t)=q

α(t)F (t). (8)

The stability function of a Runge-Kutta method is given by

R(ĥ) =
det [I − ĥA+ ĥebT ]

det [I − ĥA]
, (9)

where, ĥ = λh, here λ is typically an eigenvalue of the jacobian matrix of f
that is equivalently the eigenvalues of the linearized equation.

3 One step methods

In this section, we firstly study the situation for the one-step methods. The
idea will be extended to a general linear multistep methods in the next sec-
tions. Consider the following linear one step method

yn+1 = yn + h(β0fn + β1fn+1) (10)

for a consistent method we have β0 + β1 = 1. Applying the above rule on N
successive steps to advance the solution from x0 to xN we obtain

y1 = y0 + h(β0f0 + β1f1)

y2 = y1 + h(β0f1 + β1f2)

...

yN = yN−1 + h(β0fN−1 + β1fN ).

Introducing the following slopes

k1 = f(x0, y0), k2 = f(x1, y1), . . . , kN+1 = f(xN , yN ),

we can write (10) as a (N+1)-stage Runge-Kutta method with the steplength
H = Nh,

ym+1 = ym +
H

N
(β0k1 + k2 + · · ·+ kN + β1kN+1)

where, tm = x0, tm+1 = tm +H = xN and,
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k1 = f(tm, ym)

k2 = f(tm +
H

N
, ym +

H

N
(β0k1 + β1k2))

...

kN+1 = f(tm +H, ym +
H

N
(β0k1 + k2 + · · ·+ kN + β1kN+1)).

Thus, the corresponding Butcher array takes the following form

0 0
1
N

β0

N
β1

N
2
N

β0

N
1
N

β1

N
...

...
...

. . .
N
N

β0

N
1
N · · · 1

N
β1

N

β0

N
1
N · · · 1

N
β1

N

(11)

3.1 Local truncation error

In this section we obtain the LTE and the order of the reduced method
(11). To determine the order of the deduced RK scheme we verify the order
conditions for the Butcher array (11):

ψ( ) =
N+1∑
i=1

bi = 1, (12)

ψ( ) =
N+1∑
i=1

bici =
1

2
. (13)

Since we have β0 + β1 = 1, substituting the data from (11) we observe
that the first condition always holds

N+1∑
i=1

bi = 1 ⇒ β0
N

+
1

N
+ · · ·+ 1

N
+
β1
N

= 1.

However, for the second condition to be valid we have,

β0
N
.0 +

1

N
(
1

N
+

2

N
+ · · ·+ N − 1

N
) +

β1
N
.
N

N

=
N2 −N + 2β1N

2N2
=

1

2
, only if β1 =

1

2
.
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where, we have used β0 + β1 = 1. Therefore, the only possible second order
one step method is the trapezoidal rule.

Now, we can find the general form of the local truncation error for both
first (forward and backward euler) and second order (Trapezoidal) methods.

For the second order method we have, β1 = 1
2 ,

ψ( t1 = ) =

N+1∑
i=1

bic
2
i =

2N2 + 1

6N2
,

ψ( t2 = ) =
N+1∑
i,j=1

biaijcj =
1

N
[
1

2
, 1, . . . , 1,

1

2
]Ac =

2N2 + 1

12N2
.

It is evident that in the limit the above order conditions, as N → ∞, tend
to the following infinite dimensional exact order conditions:

∞∑
i=1

bic
2
i =

1

3
,

∞∑
i,j=1

biaijcj =
1

6
.

The corresponding elementary differentials with the rooted trees t1 and
t2 are,

F (t1) = f (2)(f, f), F (t2) = f (1)(f (1)(f)).

To specify the LTE of second order scheme we need a representation of y(3)

in terms of elementary differentials. According to Theorem 1, we have

y(3) = F (t1) + F (t2), (14)

therefore, the principle term in local truncation error (PLTE) for β1 = 1
2 ,

where p = 2 reads

PLTE =
H3

3!

∑
r(t)=3

α(t)[1− γ(t)ψ(t)]F (t) (15)

=
H3

3!
(− 1

2N2
)(F (t1) + F (t2))

= − 1

12
Nh3y(3)(x0)

= − 1

12
h2(xN − x0)y

(3)(x0),

and then,
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LTE = − 1

12
h2(xN − x0)y

(3)(x0) +O(h3). (16)

We can also regard (16) as the global error in N steps of the trapezoidal rule.
Similarly, for β1 ̸= 1

2 we obtain

LTE =
1

2
N(N − 1 + 2β1)h

2y(2)(x0) +O(h3). (17)

3.2 Stability regions

To construct the stability function of (11) we simply note that

ĤA =
Ĥ

N

β0 β1
. . .

β0 1 . . . 1 β1

 , ĤebT =
Ĥ

N


β0 1 . . . 1 β1
β0 1 1 β1
...

...
...
...

β0 1 . . . 1 β1

 ,

thus we have

I − ĤA+ ĤebT =


1 + Ĥ β0

N
Ĥ
N . . . Ĥ

N
Ĥ
N β1

1 + Ĥ β0

N
Ĥ
N

Ĥ
N β1

. . .
...

1 + Ĥ β0

N
Ĥ
N β1
1

 ,

and thereby,

det[I − ĤA+ ĤebT ] = (1 + Ĥ
β0
N

)N .

Similarly, we can show that the following relation is also valid

det[I − ĤA] = (1− Ĥ
β1
N

)N .

Inserting the above results into (9) we obtain

R(Ĥ) =
(1 + Ĥ β0

N )N

(1− Ĥ β1

N )N
. (18)

which is the stability function of (11).
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Figure 1: The stability region of the new RK method with β0 = 1, β1 = 0
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Figure 2: The stability region of the new RK method with β0 = 0, β1 = 1
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Figure 3: The stability region of the new RK method with β0 > 0, β1 > 0, β0 + β1 = 1

In Figures 1, 2, 3, the absolute stability regions of the given RK method
(11) have been demonstrated for various values of β0 and β1. We observe
that in the case β0 > 0, β1 > 0, β0 + β1 = 1 the new RK method is A-stable
and in the cases β0 = 0, β1 = 1 and β0 = 1, β1 = 0 the absolute stability
regions, in terms of ĥ, tend to the same regions of the forward and backward
Euler methods, respectively.

4 Linear multistep methods

In this section, we present the general theory for an arbitrary linear multistep
method. We demonstrated the main idea by using the one-step and multi-
step starting procedures. In both cases, we obtain the corresponding Runge-
Kutta scheme and the LTE of this method provide an estimation of the global
truncation error of the given LMM.

4.1 A single step method as starting procedure

Now, we represent a general linear multistep method (LMM) in the form of a
Runge-Kutta scheme. For simplicity, we use the trapezoidal rule as starting
procedure of the LMM. We show the starting values {yn+j}k−1

j=1 as a linear

combination of the yn and {fn+j}k−1
j=0 . Therefore, starting with
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yn+1 = yn +
h

2
(fn + fn+1),

we find

yn+j = yn +
h

2
(fn + 2fn+1 + · · ·+ 2fn+j−1 + fn+j), j = 1, 2, . . . (19)

therefore, we have

k∑
j=0

αjyn+j = yn+k + (

k−1∑
j=0

αj)yn +
h

2
{(

k−1∑
j=1

αj)fn + (α1 + 2

k−1∑
j=2

αj)fn+1

+ · · ·+ (αk−2 + 2αk−1)fn+k−2 + αk−1fn+k−1)}. (20)

Substituting (20) into the LMM (1), we obtain

yn+k = −
k−1∑
j=0

αjyn+j + h
k−1∑
j=0

βjfn+j

= −(

k−1∑
j=0

αj)yn + h{(β0 −
1

2

k−1∑
j=1

αj)fn + (β1 −
1

2
α1 −

k−1∑
j=2

αj)fn+1

+ · · ·+ (βk−2 −
1

2
αk−2 − αk−1)fn+k−2

+(βk−1 −
1

2
αk−1)fn+k−1 + βkfn+k)},

or,

yn+k = yn + h
k+1∑
i=1

bifn+i−1, (21)

where,

b1 = β0 −
1

2

k−1∑
j=1

αj ,

bi = βi−1 −
1

2
αi−1 −

k−1∑
j=i

αj , 2 ≤ i ≤ k − 1

bk = βk−1 −
1

2
αk−1

bk+1 = βk.

It is straightforward to show that

k+1∑
i=1

bi = k.
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On defining

Ki+1 = f(xn+i, yn+i) = f(xn+ih, yn+
h

2
(fn+2fn+1+ · · ·+2fn+i−1+fn+i)),

the scheme (21) can be represented in the form of the following RK method

ym+1 = ym +H
k+1∑
i=1

b′iKi,

where,

K1 = f(tm, ym),

Ki = f(tm + ciH, ym +H
i∑

j=1

aijKj), i = 2, 3, . . . , k + 1.

We will change the subscript n to m in order to show that when LMM runs
from yn to yn+k the RK scheme runs just a single step from ym = yn to
ym+1 = yn+k. Therefore, we set

tm = xn, tm+1 = xn +H,

aij =


1
2k , j = 1, i,

1
k , 2 ≤ j ≤ i− 1,

0, j > i or i = 1.

ci =
i− 1

k
,

b′i =
bi
k
,

H = kh.

In this case, the first order condition holds

k+1∑
i=1

b′i = 1,

but, the second order condition no longer holds

k+1∑
i=1

b′ici =
k + 1

2k
.

In k → ∞ this condition turns out to be the exact order condition. Again,
the principle local truncation error (PLTE), where p = 1 reads
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PLTE =
H2

2!

∑
r(t)=2

α(t)[1− γ(t)ψ(t)]F (t) = −1

2
h(xk − x0)y

(2)(x0),

and therefore, we have

LTE = −1

2
h(xk − x0)y

(2)(x0) +O(h2),

which is the global error in k times application of a k-step LMM with Trape-
zoidal rule as starting procedure.

4.2 A Runge-Kutta method as starting procedure

Now, we have considered the general explicit Runge-Kutta method (5)-(6)
as the starting procedure for the linear multistep method and we find the
Runge-Kutta representation of the given LMM (1). Based on this starting
procedure, we have obtained approximate values for yn+j , j = 1, . . . , k− 1 as
follows

yn+j = yn + jh

s∑
i=1

bik
(j)
i ,

k
(j)
i = f(xn + jcih, yn + jh

s+1∑
l=1

ailk
(j)
l ), i = 1, . . . , s+ 1,

where cs+1 = 1, ai,s+1 = 0, i = 1, 2, . . . , s+ 1, as+1,j = bj , j = 1, 2, . . . , s. For
an implicit method corresponding to the yn+k, we define

k
(k)
s+1 = f(xn + kcs+1h, yn + kh

s+1∑
l=1

as+1,lk
(j)
l ).

By inserting these approximations into the LMM (1) we obtain

yn+k = −
k−1∑
j=0

αjyn+j + h

k∑
j=0

βjfn+j

= −
k−1∑
j=0

αjyn − h
k−1∑
j=1

s∑
i=1

αjbik
(j)
i + h

k∑
j=0

βjk
(j)
s+1,

there is s(k− 1)+2 different k
(j)
i in the above representation, however we do

not distinguish them and consider (s+1)(k−1)+1 moments. The advantage
of ignoring the similarity in the moments is that the resulted Butcher array
is simpler to work and it is convenient to prove the theorems. Let,
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tm = xn, H = kh, tm+1 = tm +H = xn+k

and

c̄i+(j−1)(s+1) =
j

k
ci, i = 1, . . . , s+ 1, j = 1, . . . , k − 1,

c̄(s+1)(k−1)+1 =
1

k
,

and

b
(1)
1 = −1

k
(α1b1 − β0),

b
(j)
i = −1

k
jαjbi, i = 1, . . . , s, j = 1, . . . , k − 1,

b
(j)
s+1 =

1

k
βj , j = 1, . . . , k,

the vector b̄ consist of these values:

b̄ = [b(1), b(2), . . . , b(k−1), b
(k)
s+1].

Therefore, we find the new Runge-Kutta scheme

ym+1 = ym +H

s̄∑
i=1

b̄ik̄i,

k
(j)
i = f(tm +

j

k
ciH, ym +

j

k
H

s+1∑
l=1

ailk
(j)
l ), i = 1, . . . , s+ 1,

where, s̄ = (s+ 1)(k − 1) + 1 and

k̄ = [k(1), k(2), . . . , k(k−1), k
(k)
s+1].

The corresponding Butcher array is given in Table 1. where 0 is a (s+1)× 1
zero vector. Introducing D as a (k − 1)× (k − 1) diagonal matrix

D =
1

k


1
2
3
. . .

k − 1

 .

The more compact form of the above scheme is resulted.
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Table 1: Butcher array of the Runge-Kutta representation of LMM (1) scheme

1
k c 1

k

[
A

0
b

]
2
k c 2

k

[
A

0
b

]
...

. . .
. . .

k−1
k c k−1

k

[
A

0
b

]
k
k b̄T

b̄T

Table 2: Butcher array of the Runge-Kutta representation of LMM (1) scheme

c̄
D ⊗

[
A

0
b

]
b̄T

b̄T

Now, to verify the order of the new Runge-Kutta scheme suppose that the
order of LMM (1) and Runge-Kutta scheme (5)-(4) are p and p̄, respectively.
Then, we can prove the following theorem.

Theorem 2. If the Runge-Kutta scheme as starting procedure has order
p̄ and the order of linear multistep method (1) is p, then the corresponding
Runge-Kutta method with Butcher array in Table 2 is of order min{p, p̄}.

Proof. The order condition corresponding to the tree

t =

. . .

with m leaves is

s∑
i=1

bic
m
i =

1

m+ 1
, m = 0, 1, . . . , p̄

for any m ≤ min{p, p̄} we prove that

s̄∑
i=1

b̄ic̄
m
i =

1

m+ 1
, m = 0, 1, . . . ,min{p, p̄}.
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According to the definition of c̄ and b̄, we have

s̄∑
i=1

b̄ic̄
m
i = −

k−1∑
j=1

1

k
jαj

s∑
i=1

bi(
j

k
ci)

m +
1

k

k∑
j=1

βj(
j

k
)m

= − 1

m+ 1

1

km+1

k−1∑
j=1

jm+1αj +
1

km+1

k∑
j=1

jmβj

=
1

(m+ 1)km+1

(
km+1 −

k∑
j=0

jm+1αj

)
+

1

k3

k∑
j=0

jmβj

=
1

m+ 1
.

note that in the above relations we have used the order conditions for starting
Runge-Kutta method as well as the order conditions for linear multistep
methods:

1

m+ 1

k∑
j=0

jm+1αj =
k∑

j=0

jmβj , m = 2, . . . , p.

The rest of the proof is closely related to the block structure of the Butcher
array in Table 1. The extracted elements of the Butcher array is demon-
strated in the Table 3.

Table 3: Elements of Butcher array of Table 1

l
k c

l
k

[
A

0
b

]
b(l)

, l = 1, 2, . . . , k − 1

1 b̄T

b
(k)
s+1 = 1

kβk

These partial elements will help us to exactly find the effect of them in
multiple sums in order conditions.

The last condition to complete the proof of the third order conditions is∑s̄
i,j=1 b̄iāij c̄j . The role of each element in summation, separately, is

s∑
i,j=1

(− l

k
αlbi)(

l

k
aij)(

l

k
cj) + (

1

k
βl)

s∑
i=1

(
l

k
bi)(

l

k
ci), l = 1, 2, . . . , k − 1

1

k
βk(

s̄∑
i=1

b̄ic̄i),



..

G
al
le
y
P
ro
of

114 J. Farzi

summing up these terms we obtain

s̄∑
i,j=1

b̄iāij c̄j =
k−1∑
l=1

( s∑
i,j=1

(− l

k
αlbi)(

l

k
aij)(

l

k
cj) + (

1

k
βl)

s∑
i=1

(
l

k
bi)(

l

k
ci)
)

+
1

k
βk(

s̄∑
i=1

b̄ic̄i)

=
1

6k3
(k3 −

k∑
l=1

l3αl) +
1

2k3

k∑
l=0

l2βl

=
1

6
.

similarly we can prove the higher order conditions.

4.3 Local truncation error of the new Runge-Kutta
method

We have shown that the order of the new Runge-Kutta method with Butcher
array in Table 2 is p∗ = min{p, p̄}. Ignoring the effect of the roundoff errors,
we can consider LTE of this method as the global error of the given linear
multistep method in evaluation of yn+k. The LTE of this scheme now reads

LTE =
hp

∗+1

(p∗ + 1)!

∑
r(t)=p∗+1

α(t)[1− γ(t)ψ(t)]F (t) +O(hp
∗+2). (22)

5 Numerical illustrations

Example 1. As an example we consider the Heun’s third order 3-stage
formula

0
1
3

1
3

2
3 0 2

3

1
4 0 3

4

as starting procedure for the third order convergent linear multistep method

yn+3 +
1

4
yn+2 −

1

2
yn+1 −

3

4
yn =

h

8
[19fn+2 + 5fn], (23)

the corresponding Runge-Kutta method is
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0
1
9

1
9

2
9 0 2

9
1
3

1
12 0 3

12

0 0 0 0 0
2
9 0 0 0 0 2

9
4
9 0 0 0 0 0 4

9
2
3 0 0 0 0 2

12 0 6
12

1 6
24 0 3

24 0 − 1
24 0 − 3

24
19
24 0

6
24 0 3

24 0 − 1
24 0 − 3

24
19
24 0

(24)

This method is of order p∗ = min{3, 3} = 3. Substituting the above data in
LTE (7) we find that

LTE =
h4

4!

∑
r(t)=4

α(t)[1− γ(t)ψ(t)]F (t) +O(h5)

=
h4

4!

( 73

729
y(4) − 7

729
{2f2}2 −

28

729
{3f}3

)
+O(h5),

where all functions are evaluated at x = xn and y = yn. Note that this
formulation maintains the actual order of both schemes, while the error term
is only exact for {1, x}.

To numerical illustrations, we consider (2) with the following data [9]

f(x, y) = [v, v(v − 1)/u]T , x ∈ [0, 1], (25)

where,
y = [u, v]T , y(0) = [1/2,−3]T .

In this test we take N = 51 with h = 1/50 for 3-step method (23) and
H = Nh = 3/50 for the corresponding Runge-Kutta scheme (24).

Figure 4 illustrates the global error (accumulation error) of (23) for test
problem (25). The estimation of GTE of (23) is shown in Figure 5. As
we have proven the LTE of (24) is the GTE of (23). However, to find the
true LTE we make localizing assumptions in implementation of (24), i.e., in
evaluation of yn+1 we assume that yn = y(xn). The comparison of the third
portions of Figure 4 and Figure 5 justify the efficiency of the given estimation.
The negligible difference in the error is due to roundoff errors.
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Figure 4: The numerical (red circles) and exact solutions (solid line) of (25) with (23),
and the GTE of the method
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Figure 5: The numerical (red circles) and exact solutions (solid line) of (25) with (24),
and the LTE of the RK method

Example 2. In this example, we consider a four-step, fourth-order total
variation bounded (TVB(4,4)) linear multistep scheme (1) with the data
given in Table 4 [11].
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Table 4: The coefficients of the four-step, fourth-order linear multistep scheme
(TVB(4,4))

αi βi

i = 0 −0.345464734400857 −0.620278703629274
i = 1 1.494730011212510 2.229909318681302
i = 2 −2.777506277494861 −3.052866947601049
i = 3 2.628241000683208 1.618795874276609
i = 4 1 0

We utilize the fourth order classic Runge-Kutta method as a starting
procedure.

0 0
1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

(26)

It turns out that the corresponding Runge-Kutta scheme takes the form given
in Butcher array (27), where the elements of b is given in the Table 5.

Table 5: The elements of vector b in Runge-Kutta scheme (27)

bi bi+8

i = 1 −0.092789258773464 −0.231458856457905
i = 2 0.124560834267709 −0.763216736900262
i = 3 0.124560834267709 0.328530125085401
i = 4 0.062280417133855 0.657060250170802
i = 5 0.557477329670325 0.657060250170802
i = 6 −0.231458856457905 0.328530125085401
i = 7 −0.462917712915810 0.404698968569152
i = 8 −0.462917712915810 0
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0 0
1
8

1
8

1
8 0 1

8
1
4 0 0 1

4
1
4

1
24

1
12

1
12

1
24 0

0 0
1
4

1
4

1
4 0 1

4
1
2 0 0 1

2
1
2

1
12

1
6

1
6

1
12 0

0 0
3
8

3
8

3
8 0 3

8
3
4 0 0 3

4
3
4

1
8

1
4

1
4

1
8 0

1 b

b

(27)

The test problem is the same as the previous example. For numerical il-
lustrations we take N = 120, thus we have h = 1/120 and accordingly
H = 4/120 = 1/30. The numerical results including the GTE of TVB(4,4)
scheme and LTE of (27) are presented in Figure 6 and Figure 7, respectively.
By comparison, we find the excellent estimation of global truncation error of
TVB(4,4) based on new Runge-Kutta method. The maximum error in this
estimation is 2.67E − 05.

6 conclusion

In this paper, we have developed an estimation for the global truncation error
of a linear multistep method. The global error analysis is more complicated in
comparison with the local error analysis. The key idea is the representation
of several steps of the LMM as a single step of a corresponding Runge-Kutta
method. Therefore, the analysis of global error of a LMM accomplished by
estimating the local truncation error the corresponding new Runge-Kutta
method. We have demonstrated the theoretical aspects for some important
class of linear multistep methods with total variation bounded (TVB) prop-
erty, which is a crucial property in selecting an appropriate time marching
method for solving nonlinear conservation laws [11].



..

G
al
le
y
P
ro
of

Global error estimation of linear multistep methods ... 119

0 0.5 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

u

0 0.5 1
−3

−2.5

−2

−1.5

−1

−0.5

0

x

v

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−5

x

||u
|| 2

Figure 6: The numerical (circles) and exact solutions (solid line) of (25) with TVB(4,4),
and the GTE of the method
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Figure 7: The numerical (circles) and exact solutions (solid line) of (25) with (27), and

the LTE of the RK method
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رونگه-کوتا روشهای توسط خطی چندگامه روشهای سراسری خطای تخمین

فرضی جواد

ریاضی گروه پایه، علوم دانشکده سهند، صنعتی دانشگاه تبریز،

١٣٩۵ فروردین ٢٣ مقاله پذیرش ،١٣٩۴ اسفند ١٩ شده اصلاح مقاله دریافت ،١٣٩۴ دی ۵ مقاله دریافت

محلی برشی خطای کمک با را خطی چندگامه روشهای سراسری برشی خطای مقاله این در : چکیده
رونگه روش یک با خطی چندگامه روش یک نمایش اصلی، ایده کنیم. می مطالعه رونگه-کوتا روشهای
روش ساده گام یک عنوان به را خطی چندگامه روش چندگام باید کار این برای است. متناظر –کوتای
روش طریق از خطی چندگامه روش سراسری برشی خطای بنابراین، بگیریم. نظر در متناظر رونگه-کوتای
عددی نتایج گیریم. نمی نظر در را گردکردن خطاهای تاثیرات تخمین این در شود. می فراهم رونگه-کوتا

دهد می نمایش را شده ارائه تخمین کارآمدی و دقت

سراسری؛ خطای محلی؛ برشی خطای رونگه-کوتا؛ روشهای خطی؛ چندگامه روشهای : کلیدی کلمات
خطا. تخمین


